Strukturní analýzy organických sloučenin

Nukleární Magnetická Rezonance NMR spektroskopie

doc. Ing. Bohumil Dolenský, Ph.D., VŠCHT Praha

Strukturní analýza organických látek a sloučenin

NMR spektroskopie

Nedestruktivní metoda vyžadující obvykle několik mg látky pro vysoce citlivé přístroje zlomky µg látky

Umožňuje měření v plynné, kapalné i pevné fázi

Umožňuje stanovit kovalentní, sekundární, terciární i kvartérní strukturu

NMR je téměř nejsilnějším analytickým nástrojem k řešení struktury organických a bioorganických látek

Umožňuje studovat interakce molekul i biomolekul

V následujícím textu je zahrnuta řada zjednodušení a aproximací

NMR spektroskopie

Nukleární (jaderná)

Využívá vlastností atomových jader majících nenulový jaderný spin $(I \neq 0)$

Magnetická

Vyžaduje silné magnetické pole (standard ca. 11 Tesla)

lidský mozek 0,1-1 pT, Země 25-65 μT, magnet na lednici 5-10 mT, permanentní 1,25 T, levitace žáby 16 T, SCM do 24 T, pulsní 100 T, jednorázový 2,8 kT, neutronová hvězda 1-100 MT, magnetar 0,1-100 GT

1 Tesla = 10000 Gauss

Resonance

Resonanční podmínka (Larmorova frekvence, MHz)

Spektroskopie

Interakce s elektromagnetickém zářením o frekvenci 10⁶ až 10¹⁰ Hz 10¹¹ až 3.10⁷ nm 4.10⁻⁷ až 4.10⁻³ kJ/mol

NMR spektroskopie

Radiation	Wavelength (nm) λ	Frequency (Hz) ν	Energy (kJ mol ⁻¹)				
Cosmic rays	<10 ⁻³	$>3 \times 10^{20}$	$>1.2 \times 10^{8}$				
Gamma rays	10^{-1} to 10^{-3}	$3 imes 10^{18}$ to $3 imes 10^{20}$	$1.2 imes 10^6$ to $1.2 imes 10^8$				
X rays	10 to 10 ⁻¹	$3 imes 10^{16}$ to $3 imes 10^{18}$	$1.2 imes10^4$ to $1.2 imes10^6$				
Far ultraviolet rays	200 to 10	$1.5 imes 10^{15}$ to $3 imes 10^{16}$	$6 imes 10^2$ to $1.2 imes 10^4$				
Ultraviolet rays	380 to 200	$8 imes10^{14}$ to $1.5 imes10^{15}$	$3.2 imes10^2$ to $6 imes10^2$				
Visible light	780 to 380	$4 imes 10^{14}$ to $8 imes 10^{14}$	$1.6 imes10^2$ to $3.2 imes10^2$				
Infrared rays	$3 imes 10^4$ to 780	10^{13} to 4×10^{14}	4 to 1.6×10^{2}				
Far infrared rays	$3 imes 10^5$ to $3 imes 10^4$	10^{12} to 10^{13}	0.4 to 4				
Microwaves	$3 imes 10^7$ to $3 imes 10^5$	10^{10} to 10^{12}	4×10^{-3} to 0.4				
Radiofrequency (Rf) waves	10^{11} to $3 imes10^7$	10 ⁶ to 10 ¹⁰	4×10^{-7} to 4×10^{-3}				

The Electromagnetic Spectrum

Nukleární (jaderná)

μ

Jednou z podmínek pro měření NMR je *I* > 0

Spinové kvantové číslo jádra (I) = jaderný spin = spin

Spin je kvantově mechanická vlastnost mnoha fundamentálních částic Jádro nemusí rotovat aby mělo nenulový spin Spinem se nazývá neboť se jedná o typ momentu hybnosti a platí pro něj vztahy týkající se momentu hybnosti

Jádra s nenulovým jaderným spinem mají nenulový magnetický moment

$$\mu = \gamma \sqrt{I(I+1)} h / 2\pi$$

 $h = 6,626\ 068\ 96\ (33)$. 10^{-34} J.s Planckova konstanta $\gamma =$ gyromagnetický poměr (vlastnost jádra)

Jaderný magnetický spin isotopů

Jaderný magnetických spin isotopu (*I*) je důsledkem orientace magnetických spinů nukleonů (tj. neutronů a protonů) v jeho jádru

Jaderný magnetických spin isotopu / je za standardních podmínek neměnný (viz Mössbauerova spektroskopie, absorpce gama záření)

Je-li hmotnostní i protonové čí sudé je jaderný spin nulový	slo jádra	^a ¹² ₆ C	¹⁶ ₈ O	³² ₁₆ S	
Je-li hmotnostní číslo liché je jaderný spin poločíselný	${}^{1}_{1}H$	³ H ¹³	³ C ¹⁹ 9	F ¹⁵ ₇ N	³¹ ₁₅ P
Je-li hmotnostní číslo sudé a p číslo liché je spin celočíselný	vrotonov	^{/é} ² ₁ H	⁶ ₃Li	¹⁴ 7N	

Magnetická Resonance

Energie stavu je nižší při stejné orientaci vektorů magnetického pole a magnetického momentu

$$\mathbf{E} = \mathbf{E}_{\beta} - \mathbf{E}_{\alpha} = \boldsymbol{\gamma} \, \boldsymbol{\hbar} \, \mathbf{B}_{0} \quad [J]$$

$$\Delta \mathbf{E} = h \boldsymbol{\nu}$$

$$\hbar = h / 2\pi$$

$$\omega = \gamma \mathbf{B}_0 / 2\pi = \mathbf{v}$$

 ω - resonanční frekvence [rad. s⁻¹] LARMOROVA FREKVENCE

v - resonanční frekvence $[s^{-1} = Hz]$

NMR aktivní isotopy																			
1	1	přímo studovatelné isotopy $\frac{2}{10}$																	
	<u> </u>																		
2	3	4		5 6 7 8 9 10															
		Be	Nuclear Onice $1/2$ $1/2/2$ $5/2$ $7/2$ $0/2$																
2	11	12 Nuclear Spins 1/2 1 3/2 5/2 1/2 9/2 13 14 15 16 17 18																	
3	<u>Na</u>	<u>Mg</u>												Al	<u>Si</u>	<u>P</u>	<u>S</u>	<u>Cl</u>	Ar
4	19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	<u>K</u>	<u>Ca</u>		<u>Sc</u>	<u>Ti</u>	V	<u>Cr</u>	<u>Mn</u>	<u>Fe</u>	<u>Co</u>	<u>Ni</u>	<u>Cu</u>	<u>Zn</u>	<u>Ga</u>	Ge	As	<u>Se</u>	<u>Br</u>	<u>Kr</u>
_	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	<u>Rb</u>	<u>Sr</u>		Y	<u>Zr</u>	<u>Nb</u>	Mo	Tc	<u>Ru</u>	<u>Rh</u>	Pd	Ag	<u>Cd</u>	In	<u>Sn</u>	<u>Sb</u>	<u>Te</u>	Ī	<u>Xe</u>
	55	56	*	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0	<u>Cs</u>	<u>Ba</u>	Ť	Lu	<u>Hf</u>	<u>Ta</u>	W	<u>Re</u>	<u>Os</u>	Ir	<u>Pt</u>	<u>Au</u>	Hg	<u>Tl</u>	<u>Pb</u>	<u>Bi</u>	Ро	At	Rn
-	87	88	**	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
/	Fr	Ra		Lr	Unq	Unp	Unh	Uns	Uno	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
×۲				57	58	59	60	61	62	63	64	65	66	67	68	69	70		
*Lan	thanide	S *	Ť	La	Ce	<u>Pr</u>	Nd	Pm	<u>Sm</u>	<u>Eu</u>	<u>Gd</u>	<u>Tb</u>	<u>Dy</u>	Ho	Er	<u>Tm</u>	<u>Yb</u>		
sta si-			**	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
**A		~ ~	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No			

Isotopy mající nulový jaderný spin nelze měřit (např.: ¹²C, ¹⁶O, ³²S, ...)

Isotopy mající velký elektrický kvadrupólový moment téměř nelze měřit (např. ¹⁴N, ³⁵Cl, ³⁷Cl, ⁷⁹Br, ⁸¹Br, ¹²⁷l, …)

Takové isotopy nebo fragmenty, které je obsahují, nazýváme NMR inaktivní či tiché Komplikují až znemožňují využití NMR

O. Zerbe, S. Jurt: Applied NMR Spectroscopy for Chemists and Life Scientists, 2014

Varian A-60 NMR 60 MHz (1,41 Tesla) 1961

the first NMR spectroscope designed for routine use

Varian Mercury Plus 300 MHz 7,05 Tesla

900 MHz 21,1 Tesla

Varian Mercury Plus 7,05 Tesla 300 MHz

800MHz 2.2K NMR Cryostat Schematic

© Coford Instruments Superconductivity Limited

1.2 GHz, 28.2 Tesla, 8 tun, > 310 mil Kč (instalace 2020)

2020 první 1.2 GHz NMR (Brucker) CERM University of Florence (Itálie)

2020 první 1.2 GHz NMR pro pevnou fázi (Brucker) Eidgenössische Technische Hochschule (ETH) Zürich (Švýcarsko)

2021 1.2 GHz NMR (Brucker) Max Planck Institute (MPI), Biophysical Chemistry in Göttingen (Německo)

UHF NMR magnet

Solenoidový magnet je složen z několika soustředně uspořádaných sekcí magnetů z různých supravodivých materiálů

FIELD LABORATORY

The lab's flagship magnet, the 45 Tesla hybrid is composed of a 33.5 Tesla resistive magnet nested in an 11.5 Tesla outsert.

Coil A Coil B Coil (

DO NOT ENTER WHEN

CRANE IS IN USE

MAGNET SYSTEM

H

HYBRID

OPERATORS ONLY

Nejsilnější kontinuální zdroj magnetického pole

experimentální magnet

45 T 1,9 GHz

NMR přístroj s nejvyšším polem B₀ v ČR

Národní NMR centrum Josefa Dadoka

950 MHz NMR spektrometr Bruker Avance III HD pro spektroskopii vysokého rozlišení v kapalinách, **4 RF kanály**, 5 mm **trojrezonanční** (1H-13C-15N) **inverzní kryosonda** s chlazenými předzesilovači (1H, 13C), rozsah teplot vzorku -40 oC až 80 oC.

850 MHz NMR spektrometr Bruker Avance III HD pro spektroskopii vysokého rozlišení v kapalinách, **4 RF kanály**, 5 mm **trojrezonanční** (1H/19F-13C-15N) **inverzní kryosonda** s chlazenými předzesilovači (1H, 13C), rozsah teplot vzorku 0 oC až 135 oC.

700 MHz NMR spektrometr Bruker Avance III HD pro měření spekter biomolekul, 4 RF kanály, 5 mm **trojrezonanční** (1H-13C-15N) **inverzní kryosonda** optimalizovaná pro 13C detekci s chlazenými předzesilovači (1H, 13C, 15N), rozsah teplot vzorku -40 oC až 80 oC.

700 MHz NMR spektrometr Bruker Avance III HD pro měření vzorků v kapalinách a pevné fázi, **4 RF kanály**, vybavený 5 mm **duální** širokopásmovou sondou, 5 mm **duální** inverzní širokopásmovou sondou, 1,7 mm **trojrezonanční** (1H-13C-15N) sondou, 3,2 mm **trojrezonanční** (1H-13C-15N) **MAS sondou** pro měření vzorků v pevné fázi a 4 mm duální CP/MAS sondou pro měření vzorků v pevné fázi.

600 MHz NMR spektrometr Bruker Avance III HD pro spektroskopii vysokého rozlišení v kapalinách, **5 RF kanálů**, 5 mm **čtyřrezonanční** (1H-13C-15N-31P) inverzní **kryosonda** s chlazenými předzesilovači (1H, 13C), rozsah teplot vzorku -40 oC až 80 oC.

500 MHz NMR spektrometr Bruker Avance pro měření vzorků v kapalinách a pevné fázi, **3 RF** kanály, vybavený 5 mm duální (BB-1H) kryosondou chlazenou dusíkem (Prodigy), 5 mm trojrezonanční (1H-13C-15N) sondou, 10 mm duální (1H-13C) sondou a 4 mm duální (BB-1H) CP/MAS sondou na měření vzorků v pevné fázi.

Stolní NMR přístroje s permanentními magnety (Benchtop NMR)

armor frequency	82 MHz (1,9 T)
Nucleus	¹ H
Resolution	20 ppb
Magnet type	PERMANENT
Capillary	40 μL
Weight	19,5 kg
Dimensions	43 x 35 x 25 cm

Varian A-60 vs. NMReady-60

Nanalysis 100PRO

100 MHz (2,35 T, permanentní), standardní 5 mm NMR kyvety Dvoukanálový, např.: ¹H-¹³C , ¹H-³¹P , ¹H-¹⁹F , ¹H-¹¹B , ¹⁹F-⁷Li, ... Rozlišení < 1.0 Hz, citlivost 200:1 (1% EtBz), 16-28 °C

Low-field benchtop NMR spectroscopy: status and prospects in natural product analysis Teris André van Beek, *Phytochemical Analysis* **2021**, 32, 24-37, DOI: 10.1002/pca.2921

Citlivost NMR

 \Rightarrow větší B₀ = větší populační rozdíl = vyšší citlivost

Základní informace z NMR spektra čisté látky

Počet signálů

odpovídá počtu chemicky neekvivalentních jader v molekule (omezíme na spektra látek při "vyšší teplotě")

Intenzita signálů

vypovídá o množství daných jader v molekule

(omezíme na spektra měřená za obvyklých "servisních" podmínek)

Chemický posun signálů

vypovídá o chemickém okolí jader daného signálu (omezíme na běžná jádra a běžné organické látky)

• Multiplicita signálů

vypovídá o přítomnosti jader s nenulovým magnetickým spinem (v molekule) (omezíme na jádra s l = $\frac{1}{2}$, a na spektra prvního řádu)

Počet signálů v NMR spektru čisté látky odpovídá počtu *chemicky neekvivalentních* jader, tedy jader s různým *chemickým okolím*

Chemicky ekvivalentní (neboli Homotopní) jádra jsou taková,

která jsou v důsledku symetrie nerozlišitelná, mají stejné chemické okolí

Počet signálů vypovídá o symetrii molekuly studované látky

Chemicky ekvivalentní (neboli Homotopní) jádra jsou taková, která jsou v důsledku symetrie nerozlišitelná, mají stejné *chemické okolí*

Pro chemicky ekvivalentní jádra platí "substituční test" :

→ Záměnou jednoho za X vzniká stejná látka jako záměnou druhého za X

2 signály v ¹H NMR 4 signály v ¹³C NMR

Ή

Za *chemicky ekvivalentní* lze považovat i jádra, která jsou ekvivalentní v důsledku *rychlé* rotace skupiny nebo jiné rychlé *chemické výměny*

Byla-li by rotace velmi *pomalá*, vodíky by byly neekvivalentní

Obecně jsou rotace kolem jednoduché vazby rychlé a vedou k ekvivalenci jader rotujících skupin Pokud nejsou neekvivaletní z jiného důvodu !!!

Měření NMR spektra trvá ca. 10⁻¹ až 10¹ s Pro rychlé procesy je pozorována jejich průměrná hodnota

> Methyl se otočí mnohotisíckrát za sekundu Vodíky methylu jsou ekvivalentní

Uvažujte volnou rychlou rotaci kolem jednoduchých vazeb.

NMR není chiroptickou metodou

Enantiotopní jádra

Diastereotopní jádra

Vliv teploty na počet signálů v NMR spektru

- Amidová vazba má charakter parciální dvojné vazby
- Rotace je významně omezena
- Tyto rotamery jsou stejné látky

Při dostatečně nízké teplotě ¹H NMR: 3 signály ¹³C NMR: 4 signály

Při dostatečně vysoké teplotě

¹H NMR: 2 signály ¹³C NMR: 3 signály

Vliv teploty na počet signálů v NMR spektru

Při dostatečně nízké teplotě ¹H NMR: 4 a 4 signály ¹³C NMR: 5 a 5 signálů Při dostatečně vysoké teplotě ¹H NMR: 4 signály ¹³C NMR: 5 signálů

- Amidová vazba má charakter parciální dvojné vazby
- Rotace je významně omezena
- Tyto rotamery jsou <u>různé látky</u> = mají různou energii
- Budou v poměru $n_A : n_B \neq 1$ $x_A + x_B = 1$
- ¹H NMR: x_A(3:3:2:3) a x_B(3:3:2:3)

Počet signálů v ¹H NMR

TIP: Proveďte substituční test CH₂ vodíků

Tvar signálu – OH, NH, SH, ...

- * Široké signály jsou důsledkem pomalé chemické výměny
- * Jsou-li chemické výměny velmi rychlé nebo velmi pomalé pak jsou signály úzké
- * Chemický posun je silně závislý zejména na koncentraci, teplotě a pH

Identifikace signálů OH, NH, SH, ... využitím chemické výměny

Vliv koncentrace na signály skupin OH, NH, SH, ...

Identifikace signálů OH, NH, SH, ... využitím chemické výměny

Identifikace signálů OH, NH, SH, ... využitím chemické výměny

Rezonanční frekvence signálů v NMR spektru

 $\mathbf{v} = \gamma \mathbf{B}_0 / 2\pi$

Rezonanční frekvence TMS (tetramethylsilan, (CH₃)₃Si, standard ¹H, ¹³C i ²⁹Si NMR)

В ₀ [Т]	¹ H jádra [MHz]	¹³ C jádra [MHz]	²⁹ Si jádra [MHz]
1,41	60,0	15,1	11,9
7,05	300,1	75,5	59,6
9,4	400,1	100,6	79,5
11,75	500,1	125,8	99,4
14,1	600,1	150,9	119,2
18,8	800,1	201,2	159,0
23,5	1000,1	251,5	198,7

Silnější magnetické pole = vyšší rezonanční frekvence

Na každém přístroji absorbují stejná jádra při jiné frekvenci

Pro přenositelnost nutno využít referenční látky (standardu)

Chemický posun signálů v NMR spektru

Chemický posun signálu δ je **bezrozměrné číslo nezávislé na síle použitého magnetického pole**

Vzhledem k jeho obvyklé velikosti 10⁻⁶ až 10⁻⁴ udáváme jeho hodnotu v **ppm**

Vliv B₀ na NMR spektra

větší B_0 = větší disperze signálů = méně překryvů = nižší řád spektra

based on Glenn Facey

Chemický posun NMR signálů je závislý na složení roztoku

Table 2 Results obtained by the four applied methods – for each component of codergocrine mesylate, the relative amount is given in mass percentage: dihydroergocornine (Cor), dihydroergocristine (Cr), α -dihydroergocryptine (α), and β -dihydroergocryptine (β).

Chemické posuny v ¹H NMR spektrech

Chemické posuny v ¹³C NMR spektrech

¹⁹F NMR

³¹ P	NMR			P (111)					
I = ½ přiroze	ené	PF3 +97	PCI ₃ +220	PBr ₃ +29	Pl3 +178	PH3 -238			
zastou	pení 100 %	PH ₂ (C -122	ehy)	PH(C_H_); _41	2	P(C ₆ H ₅) ₃ -8	PH ₂ (CH ₃) -164	Ph(Ch ₃) -99	2 P(CH ₃) ₃ -62
	P (IV)	P(N(C +122	H3)2)3	P(SCH ₃) ₃ +125		P(OCH ₃) ₃ +141			
0=PF ₃ 0 -36	+2 -103	3						ſ	P(V)
O≕PH(C ₆ H ₅) ₂ +23	O≔P(C ₆ H ₅) ₃ +25	O≕PH(CH ₃)₂ +63	0=P(C) +36	13/3			Pi -3:	Fs PCIs 5 -80	PBr5
0=PH2(OCH3) +19	O==PH(OCH ₃) ₂ +11	O=P(OCH ₃) ₃ -1	O≔P(N(+27	CH ₃) ₂)3				P(OEt) ₅ -71	P(CeHs)5 -89
S=P +25	PCI ₃ S≕PBr ₃ 9 -112	S=P(CH ₃) ₃ +59	S=P(OC +73	ΩΗ₀)₃					
но-Р-о-г он +3	0 R-0-P-0-R ∪ 0H +2	0 0 HO-P-O-P- OH OF -6 -10	-O-R F	с- 0- Р-0- Он -35	р 0н	R HO P	-19 -10	0-R	
0 R-O-₽-Сн₂ Он	-0R H0-₽- 	CH2-P-O-P-C H OH OH +8 -11)—R I	0 HO-P-O- OH -0	0 	0 			

¹⁵N NMR

I = ¹/₂ přirozené zastoupení pouze %

Chemický posun signálů v NMR spektru

Hodnota chemického posunu odráží chemické okolí atomů (stínění)

Z tabulek těchto hodnot lze navrhnout možné strukturní fragmenty neznámé látky Pro známou molekulovou strukturu lze predikovat chemické posuny

Intenzita signálu v NMR spektrech

Integrální intenzita signálu je úměrná množství chemicky ekvivalentních jader daného isotopu v měřené části vzorku

Signály chemicky neekvivalentních jader se mohou náhodně překrývat tj., mohou být náhodně isochronní

Poměr integrálních intenzit signálů odpovídá poměru počtu ekvivalentních jader v molekule

Pokud není znám sumární vzorec pak je poměr pouze relativní

Při **standardním** měření lze integrálních intenzit využít při **kvalitativní** analýze u ¹H i ¹⁹F NMR spekter, nikoli např. u ¹³C NMR spekter

Intenzita signálů v ¹H a ¹⁹F NMR spektrech je obvykle od 80 do 100 % Intenzita signálů v ¹³C NMR spekter je obvykle od 5 - 100 %

Při časově náročném kvantitativní měřením dosahuje intenzita signálů 99 – 100 %

Intenzita signálu v NMR spektru

relativní integrální intenzita 1H

relativní integrální intenzita 3H

Počet a integrální intenzita signálů v NMR spektru

Uvažujte volnou rychlou rotaci kolem jednoduchých vazeb

Počet signálů

Tyto konstituční isomery lze snadno rozlišit pomocí NMR nikoli ze spekter IČ, Raman či MS

qNMR ... Kvantitativní NMR

Integrální plocha signálu $I_x = k \cdot N_x$

Vyžaduje měření spekter za podmínek kvantitativní odezvy

Molární poměr pozorovaných látek bez použití standardu

Jsou-li všechny látky směsi pozorovány lze stanovit obsah libovolné z nich bez použití standardu

Jsou-li pozorovány jen některé složky, pak jednobodová kalibrace s použitím standardu

Pokus o stanovení molární hmotnosti neznámé látky !!! dvě neznámé (M_x a N_x)

$$\frac{n_X}{\sum_{i=1}^m n_i} = \frac{I_X/N_X}{\sum_{i=1}^m I_i/N_i}$$

 $\frac{n_X}{n_Y} = \frac{I_X}{I_Y} \frac{N_Y}{N_X}$

$$P_X = \frac{I_X}{I_{\text{Std}}} \frac{N_{\text{Std}}}{N_X} \frac{M_X}{M_{\text{Std}}} \frac{m_{\text{Std}}}{m} P_{\text{Std}}$$

$$\frac{I_X}{N_X} \cdot \frac{M_X}{m_X} = \frac{I_{Std}}{N_{std}} \cdot \frac{M_{Std}}{m_{Std}}$$

Signál mající jediný pík nazýváme singlet (s)

Signál, který je složen z více píků (má jemnou strukturu) nazýváme **multiplet** Signál mající dva píky nazýváme **dublet** (d), tři píky **triplet** (t), čtyři píky **kvartet** (q), ...

Multiplicita signálu je důsledek vzájemné interakce jader nenulového jaderného magnetického spinu prostřednictvím vazebných elektronů

Též nazývána interakcí přes vazby či skalární interakce či <u>nepřímá</u> spin-spinová interakce

Počet a intenzita **píků multipletu** má přímou spojitost s druhem a počtem okolních jader

- Počet chemicky neekvivalentních jader → počet signálů (symetrie molekuly)
 - Počet chemicky ekvivalentních jader \rightarrow intenzita signálu
 - Atomy a skupiny v okolí → chemický posun signálu
 - Jádra s nenulovým spinem v okolí \rightarrow multiplicita signálu
 - = jemná struktura signálu
 - = signál je složen z více píků

příklad: $CH_3 - CHBr_2$

 ${}^{3}J_{\rm HH} = 7,0 \,\rm Hz$

Protony CH₃ jsou chemicky ekvivalentní = budou mít jeden signál o intenzitě 3H

Jaderný spin CHR₂ může být vůči CH₃ buď 🔶 nebo 👌 s pravděpodobností ca. 1:1

Protony CH₃ absorbují při dvou různých frekvencích, jejichž rozdíl je interakční konstantou uváděnou v Hz

Chemický posun leží v těžišti signálu (multipletu)

U spekter prvního řádu je těžiště shodné se středem

Multiplicita signálu – Interakční konstanta

Interakce přes vazby je charakterizována interakční konstantou J (Hz)

 $n_{AB} \quad [Hz] \quad \begin{array}{l} \text{Hodnota může být kladná i záporná} \\ \text{(běžné měření} \rightarrow absolutní hodnota)} \end{array}$

n ... počet vazeb (nejčastěji 1 až 4) mezi interagujícími jádry A, B ... interagující jádra (homonukleární, heteronukleární)

Velikost interakční konstanty závisí zejména na:

- * druhu interagujících jader
- * počtu vazeb mezi nimi
- * jádrech, která je oddělují
- * prostorovém uspořádání

Triplet – interakce s dvěmi chemicky i magneticky ekvivalentními jádry

Mějme singletový signál o integrální intenzitě 8

8

4

J/2

2 /

2

J/2

2

4

J/2 J/2

J/2 J/2

2

Interakcí s **jedním** jádrem o **spinu** ½ dojde k jeho rozštěpení na dva píky Píky budou **symetricky** dle pozice původního píku ve vzdálenosti rovnající se hodnotě **J**

Každý z píků bude mít **polovinu intenzity** původního píku a tedy i výšku (neboť lze očekávat stejnou šířku píku jako u původního píku) Vznikne dublet s intenzitou píků 4:4

> Interakcí s druhým ekvivalentním jádrem (stejná **J**) dojde k rozštěpení každého píku dubletu na dublet zcela shodný způsobem Vzhledem k tomu, že pozice dvou píků bude zcela totožná dojde k jejich součtu a vznikne triplet s intenzitou píků 2:4:2

> > Interakcí s dalším ekvivalentním jádrem by došlo ke vzniku kvartetu 1:3:3:1, atd.

Mějme na počátku signál mající absolutní intenzitu 8

Interakcí s jedním jádrem mající jaderný spin $\frac{1}{2}$ dojde k rozštěpení tohoto signálu na dvě linie (píky) v poměru 4:4 (1:1 relativně), vzdálené o sebe o interakční konstantu *J*

Interakcí s dalším **chemicky ekvivalentním** jádrem jádrem dojde ke stejnému rozštěpení (stejná *J*) každé linie na dvě v poměru 1:1, kde dvě linie jsou na stejné pozici – dojde k jejich součtu a dostáváme triplet 2:4:2 (1:2:1 relativně)

Interakcí s dalším chemicky ekvivalentním jádrem jádrem dojde ke stejnému rozštěpení (stejná *J*) každé linie na dvě o intenzitě 1:1, kde některé linie jsou na stejné pozici – dojde k jejich součtu a dostáváme kvartet 1:3:3:1

Integrální intenzita celého signálu je zachována, ale je rozdělena mezi jednotlivé linie (píky) multipletu

Vyšší multiplicita = nižší detekční limit

V těchto případech lze *J* odečíst mezi libovolnými sousedními píky multipletu

příklad: $CH_3 - CHR_2$

Signál protonu CHR₂ skupiny bude mít intenzitu 1H a důsledkem interakce s protony CH₃ skupiny bude mít čtyři linie $(2 \cdot \frac{1}{2} \cdot 3 + 1)$

Jaderné spiny CH₃ protonů mohou vůči CHR₂ zaujmout osm různých pozic, přičemž některé jsou energeticky shodné

Energeticky shodné, ale trojnásobná **pravděpodobnost**

jádro CHR₂ absorbuje při čtyřech různých frekvencích s pravděpodobností 1 : 3 : 3 : 1, kde rozdíl mezi nimi je interakční konstantou

Chemický posun leží v těžišti signálu (u spekter prvního řádu je těžiště shodné se středem)

1

dublet triplet Poměry linií multipletu Vyšší multiplicita = nižší detekční limit kvartet kvintet sextet septet nonet oktet dekaplet

Multiplicita signálu prvního řádu v NMR spektru

Počet píků signálu jádra A je ve spektrech prvního řádu roven ($2 \cdot I \cdot n + 1$), kde **n** ... je počet interagujících jader **B** (chemicky ekvivalentních) I ... je jaderný spin interagujících jader B Pro jádra s jaderným spinem ½ je počet linií roven (n + 1) "**n+1**" pravidlo chemicky ekvivalentních Počet linií multipletu = Počet interagujících jader + 1 Počet interagujících jader = Počet linií multipletu - 1 chemicky ekvivalentních

Střechový efekt (stříškový efekt, Roof effect) efekt druhého řádu

Bližší píky multipletů **interagujících** signálů mají zvýšenou intenzitu na úkor vzdálenějších

5.4 5 f1 (<u>p</u>pm) 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.5 4.3 4.6 4.4 4.2

Multiplicita signálu - počet píků signálu

Počet a intenzita píků signálu chemicky a magneticky ekvivalentních jader **A** závisí na poměru frekvenčního rozdílu interagujících jader **M** a absolutní hodnoty jejich vzájemné interakční konstanty:

Blízký 1 nebo menší

Tvrdé štěpení (strong coupling) signály druhého řádu

- signál může být nesymetrický
- značný střechový efekt
- počet píků signálu ≠ 2·*l*·n + 1
- znaménko J má vliv
- analýza počítačovou simulací

Alespoň 5 a více

 $\frac{|v_{A} - v_{M}|}{|J_{AM}|}$

Měkké štěpení (weak coupling)

signály prvního řádu

- signál je symetrický
- střechový efekt je zanedbatelný
 - počet píků signálu = 2·*l*·n + 1
 - znaménko J nemá vliv
 - analýza nevyžaduje simulaci

signály pseudoprvního řádu

téměř symetrické, nezanedbatelný střechový efekt, počet píků signálu = $2 \cdot I \cdot n + 1$

Spinové systémy a jejich značení – Pople notace

Spinovým systémem rozumíme soubor jader, které jsou vzájemně propojené spin-spinovými interakcemi

Podobné spinové systémy mají signály podobné multiplicity

K označení spinových systémů se používá Pople notace

Chemicky ekvivalentní jádra se označují velkým písmenem s dolním indexem udávajícím jejich počet. Např.: **A**, **A**₂, **A**₃, **M**, **X**₆, ...

Magneticky neekvivalentní jádra se označují stejným písmenem doplněným jedním či více apostrofy. Např.: **AA'**, **XX'X''**, ...

Chemicky neekvivalentní jádra se označují odlišným velkým písmenem s dolním indexem udávajícím jejich počet. Např.: **AX** , **A**₂**B**₃, **ABX**₂, **AA'BB'**, ...

Vzdálenost písmen v abecedě se volí dle poměru frekvenčního rozdílu signálů interagujících jader a absolutní hodnoty jejich vzájemné interakční konstanty. Čím je frekvenční rozdíl posunů větší než interakční konstanta, tím vzdálenější písmena v abecedě se pro jejich označení používají. Např. dvouspinové systémy **AB** či **AX**, nebo tříspinové systémy **AMX**, **ABX**, **ABM**, **ABC**, **A**₂**B**, **A**₂**X** či **AA'X**, ...
Multiplicita signálu v NMR spektru

- !!! Interakce jader A a B je vzájemná (angl. coupling)
- !!! Interakční konstanta $J_{AB} = J_{BA}$ (angl. *coupling constants*)
- !!! Multiplicita signálů A a B může být rozdílná
- !!! Integrální intenzita signálů A a B může být různá
- !!! Multiplicita a integrální intenzita signálů A a B jsou v přímém vztahu

2 I n + 1 $| I = \frac{1}{2}$

počet signálů / integrální poměr signálů / multiplicita

Uvažujme interakce pouze přes 3 vazby a uvažujme všechny interakční konstanty budou mít stejnou hodnotu, neuvažujme interakci s protonem hydroxylové skupiny

Interakční konstanty ${}^{3}J_{HH}$ mají velikost v závislosti na dihedrálním úhlu ϕ .

Karplusova rovnice

$$^{3}J_{\rm HH} = A + B \cos \phi + C \cos^{2} \phi$$

Interakce jádra A s dvěmi chemicky neekvivalentními jádry B a C

Multiplicita A = $(2 \cdot I_B \cdot n_B + 1) \cdot (2 \cdot I_C \cdot n_C + 1)$

pro jádra s jaderným spinem $I_{\rm B} = I_{\rm C} = \frac{1}{2}$

Multiplicita A = $(n_B + 1) \cdot (n_C + 1)$

pro případ $n_{\rm B} = n_{\rm C} = 1$

Multiplicita A = 4

Multiplicita signálu v NMR spektru

Interakce s různými jádry

Multiplicita $\mathbf{H}^{a} = (n(\mathbf{H}^{b}) + 1) \cdot (n(\mathbf{H}^{c}) + 1) = 4$ Multiplicita $\mathbf{H}^{b} = (n(\mathbf{H}^{a}) + 1) \cdot (n(\mathbf{H}^{c}) + 1) = 4$ Multiplicita $\mathbf{H}^{c} = (n(\mathbf{H}^{a}) + 1) \cdot (n(\mathbf{H}^{b}) + 1) = 4$

Multiplicita signálu

Interaguje-li jeden druh atomů s více než jedním typem atomů, pak je výsledná multiplicita rovna násobku multiplicit způsobených každým typem atomů zvlášť, tj. $(2 \cdot I_a \cdot n_a + 1) \cdot (2 \cdot I_b \cdot n_b + 1)$. Jinými slovy, každý pík multipletu vzniklého v důsledku interakce s jádry A má multiplicitu způsobenou interakcí s jádry B. Počet píků může být snížen v důsledku jejich překryvu.

Multiplicita signálu spolu s velikostí interakční konstanty přímo souvisí s počtem a typem jader v molekule v nejbližším okolí, tj. přes jednu až tři vazby (přes více vazeb jsou interakce malé).

Analýza multipletu postupným snižováním multiplicity

- 1. Rozdíl mezi prvním a druhým píkem je vždy nejmenší interakční konstantou multipletu
- 2. Poměr jejich intenzit odpovídá sub-multiplicitě způsobené touto interakcí
- 3. Po snížení multiplicity se postup opakuje až do snížení multiplicity na singlet

Analýza multipletu prvního řádu

- 1. Signál prvního řádu je symetrický
- 2. Při štěpení jádry $I = \frac{1}{2}$ je počet komponent mocninou dvou
- 3. Rozdíl mezi prvním a druhým píkem je nejmenší interakční konstantou multipletu
- 4. Integrální poměr prvního a druhého píku udává sub-multiplicitu
- 3. Každý z píků multipletu musí být součástí stejného sub-multipletu
- 6. Pomyslným dekaplinkem sub-multipletu zjednodušíme multiplet signálu
- 7. Postup opakujeme na zjednodušeném multipletu signálu až k známému multipletu

Dublet dubletu tripletů

 $1+2+1+1+1+2+2+1+1+1+2+1 = 16 = 2^4$

Konstrukce multipletu

¹H NMR

- 1. Počet signálů?
- 2. Multiplicita signálů ?

- Uvažujte pouze ³J_{HH} interakce
- Uvažujme, že všechny J_{HH} chemicky neekvivalentních jader se liší
- Uvažujme interakce s OH skupinou

¹H Selektivní homonukleární dekapling

Počet signálů v ¹³C NMR spektru

NMR spektra jsou součtem spekter všech isotopomerů všech isotopologů Většina isotopologů není pozorována pro nízké přirozené zastoupení ve vzorku

Iádro	Spin	Přirozený	γ NMR frekvence		Citlinet
Jauro		výskyt	$[10^{7} \text{rad} \text{T}^{-1} \text{s}^{-1}]$	(11,74 T)	CHIIVOSI
$^{1}\mathrm{H}$	1/2	99,99	26,75	500,0 MHz 100	
^{2}H	1	0,01	4,11	76,8 MHz	0,0001
$^{3}\mathrm{H}$	1/2	-	28,54	533,3	0
^{12}C	0	98,93	-	-	-
^{13}C	1/2	1,07	6,73	125,7 MHz	0,02
^{14}N	1	99,63	1,93	36,1 MHz	0,1
^{15}N	1/2	0,37	-2,71	50,7 MHz	0,0004
¹⁶ O	0	99,96	-	-	-
¹⁹ F	1/2	100	25,18	470,4 MHz	83
³¹ P	1/2	100	10,84	202,4 MHz	6,6

Homonukleární interakce

¹H-¹H (100 %), ¹⁹F-¹⁹F (100 %), ³¹P-³¹P (100 %)

Neplatí pro izotopově obohacené látky

Jádro	Spin	Přirozený	γ NMR frekvence		Citlivost
		vyskyt	[10 rad1 s]	(11,/4 1)	
$^{1}\mathrm{H}$	1/2	99,99	26,75	500,0 MHz 100	
^{2}H	1	0,01	4,11	76,8 MHz	0,0001
$^{3}\mathrm{H}$	1/2	-	28,54	533,3	0
^{12}C	0	98,93	-	-	-
^{13}C	1/2	1,07	6,73	125,7 MHz	0,02
^{14}N	1	99,63	1,93	36,1 MHz	0,1
^{15}N	1/2	0,37	-2,71	50,7 MHz	0,0004
¹⁶ O	0	99,96	-	-	-
¹⁹ F	1/2	100	25,18	470,4 MHz	83
³¹ P	1/2	100	10,84	202,4 MHz	6,6

Heteronukleární interakce ${}^{1}H{}^{-19}F(100\%), {}^{1}H{}^{-31}P(100\%), {}^{31}P{}^{-19}F(100\%)$

v ¹H, ¹⁹F a ³¹P spektru je interakce s ¹³C pouze u 1,07 % jader (s ¹⁵N pouze 0,37 %) → signály ¹³C₁ či ¹⁵N₁ isotopologů často překryty šumem nebo jinými signály

ale v ¹³C či ¹⁵N spektru je interakce s ¹H, ¹⁹F či ³¹P vždy pozorována!

Interakce ¹³C-¹⁵N je "neměřitelná" (0,004 %)

Neplatí pro izotopově obohacené látky

¹³C NMR ... Multiplicita ¹³C signálů

Jaké nepřímé spin-spinové interakce lze očekávat?

Pouze s jádry mající významné přirozené zastoupení izotopů mající jaderný magnetický spin $I = \frac{1}{2}$.

Pozor na izotopově obohacené látky.

Jádro	Spin	Přirozený výskyt	Způsobí multiplicitu signálů ¹³ C jader?
$^{1}\mathrm{H}$	1/2	99,99	ANO
^{2}H	1	0,01	NE (DEUTEROVANÁ ROZPOUŠTĚDLA ANO)
^{3}H	1/2	-	NE (NEPATRNÝ VÝSKYT)
^{12}C	0	98,93	NE (NULOVÝ JADERNÝ MAGNETICKÝ SPIN)
^{13}C	1/2	1,07	NE (NÍZKÝ VÝSKYT)
^{14}N	1	99,63	NE (KVADRUPÓLOVÝ MOMENT)
^{15}N	1/2	0,37	NE (NÍZKÝ VÝSKYT)
^{16}O	0	99,96	NE (NULOVÝ JADERNÝ MAGNETICKÝ SPIN)
¹⁹ F	1/2	100	ANO
³¹ P	1/2	100	ANO

Standardně se ¹³C NMR spektra měří s šumovým dekaplinkem ¹H

Interakce s ¹H jsou potlačeny

¹³C NMR dekaplink OFF nebo ON, a APT

NMR ... ¹³C versus ¹³C APT versus ¹³C¹H NMR spektra

¹³C NMR ... Dekapling ¹H

Multiplicita signálu prvního řádu - Interakce s jádry se spinem /= 1

Spin-spinová interakce jádra ¹³C ($I = \frac{1}{2}$) s jádrem ²H (I = 1)

Signál v ¹³C NMR spektru

Signál v ²H spektru je dublet 1:1 s ¹ J_{DC} = Hz

²H či ¹⁴N

MULTIPLICITA (počet linií) pro $I_x = 1$ ²H, ¹⁴N, ...

0	1	Singlet (s)
1	1 1 1	Triplet (t)
2	1 2 3 2 1	Kvintet (kv)
3	1 3 6 7 6 3 1	Septet (sep)

$2 \cdot n_x \cdot l_x + 1$
pro <i>I</i> _x = 1
2∙n _x + 1

Solid-state NMR = NMR v pevné fázi

80 % farmaceutických produktů jsou pevné látky

NMR v pevné fázi

Anizotropie

chemického posunu a dipolárních interakcí mají geometrický člen

 $(3\cos^2\theta - 1)$

Magic

Angle

Spinning

54° 44'

NMR v pevné fázi

The Effect of Magic Angle Spinning and High Power ¹H Decoupling in ¹³C Cross Polarization NMR Experiments

Solid State ¹³C NMR of Glycine at 4.7 Tesla

NMR v pevné fázi

Sumární vzorec z kombinace EA a MS analýz = C_3H_8O

Sumární vzorec z kombinace EA a MS analýz = $C_5H_{10}O$

Sumární vzorec z kombinace EA a MS analýz = $C_4H_8O_2$

Sumární vzorec z kombinace EA a MS analýz = C_3H_7Br

Sumární vzorec z kombinace EA a MS analýz = C_7H_8O

Sumární vzorec z kombinace EA a MS analýz = $C_{10}H_{12}O_2$

Sumární vzorec z kombinace EA a MS analýz = $C_6H_{10}O_2$

Výsledky jsou na konci prezentace

Sumární vzorec z kombinace EA a MS analýz = $C_9H_{10}O_2$

Výsledky jsou na konci prezentace

Sumární vzorec z kombinace EA a MS analýz = $C_6H_{10}O_2$

Výsledky jsou na konci prezentace

Základní 1D a 2D NMR techniky k řešení molekulární struktury

¹H NMR

Počet, intensita, multiplicita, tvar signálů
→ symetrie molekuly, strukturní
fragmenty, funkční skupiny

¹H-¹H COSY a TOCSY

Krospíky mají signály jader atomů ¹H
 interagujících přes vazby, ²⁻⁴J_{HH}
 → Určení spinových systémů,
 strukturní fragmenty

¹H-¹H NOESY

Krospíky mají signály jader atomů ¹H prostorově blízkých, *r*_{H-H} < 0,5 nm → Prostorová vzdálenost ¹H atomů

¹³C APT NMR

Počet uhlíkových signálů, počet připojených vodíků

→ symetrie molekuly, C, CH, CH₂, CH₃ skupiny, strukturní typy, funkční skupiny

¹H{¹³C} HSQC

Krospíky mezi signály jader ¹H a ¹³C vázaných přes jednu vazbu, ¹J_{CH} → Přiřazení signálů ¹H k ¹³C na něž jsou vázány

¹H{¹³C} HMBC

Krospíky mezi signály jader ¹H a ¹³C vázaných přes jednu vazbu, ²⁻³ J_{CH} \rightarrow Přiřazení signálů ¹H k ¹³C, které jsou vázány přes 2-3 vazby

NMR ... ¹H-¹H gCOSY, ¹H, spinová simulace

2D ROESY a NOESY

Čím intenzivnější krospík, tím silnější NOE, tím blíže jsou si jádra v prostoru

H7

f1 (ppm)

NMR ... ¹H-¹³C HSQC 2D NMR spektra (gHSQC, HMQC, ...)

Krospíky mezi signály jader ¹H a ¹³C vázaných přes jednu vazbu, ¹ J_{CH}

→ Přiřazení signálů ¹H k ¹³C na něž jsou vázány

NMR ... HMBC

Molekulová struktura látek v příkladech 1 až 10

