Fourier transform microwave and millimeter-wave spectroscopy of the CH_2I radical (X^2B_1)

Toho University

<u>S. Bailleux¹, P. Kania¹, H. Ozeki², T. Okabayashi³, T. Matsumoto³ and M. Tanimoto⁴</u>

¹ Université Lille 1, Laboratoire PhLAM, CERLA, CNRS UMR 8523, F-59650 Villeneuve d'Ascq, France 2 Department of Environmental Science, Faculty of Science, Toho-University 2-2-1, Miyama, Funabashi 274-8510, Japan ³Center for Instrumental Analysis, Faculty of Science, Shizuoka University, Oya 836, Shizuoka 422-8529, Japan ⁴ Department of Chemistry, Faculty of Science, Shizuoka University, Oya 836, Shizuoka 422-8529, Japan

cerla

Interest & Aim

Limited number of experimental (& theoretical) studies:

CITS

- first identified by matrix infrared spectroscopy^[1]
- one UV band observed by photoelectron spectroscopy^[2]
- also detected in emission by infrared spectroscopy^[3]
- recently: investigation of reaction mechanisms of Cl with CH_2I_2 ^[4]

No high-resolution spectroscopic detection in the gas-phase reported thus far

Atmospheric interest:

CH₂X (X=Cl, Br & I) radicals may have important implications in ozone depletion processes

Prediction of the Rotational Spectrum $({}^{2}B_{1})$

Nearly planar structure	re calculated at the U-	CCSD(T) level ^[5] :		
$R_{C-H} = 1.0775 \text{ Å}$	R_{C-I} = 2.0500 Å	$\mathcal{HCI} = 118.4^{\circ}$		
slightly asymmetric prolate rotor: $\kappa = -0.998$				
C _{2v} point group wit	h a axis of symmetry =	a-type spectrum		

Dipole moment: 0.8 D

<u>Rotational Constants / MHz:</u> A_e = 279415 *B_e* = 8806 *C_e* = 8537

Electron spin - rotation interaction constants:

Spectroscopic interest:

complete the high-resolution studies in the microwave and millimeterwave regions of the CH₂X series for structural comparison (geometry and electronic configuration)

scaling from CH₂Cl & CH₂Br, ε_{aa} & ε_{bb} should have large, negative values: $\varepsilon_{aa} \approx -45000 \text{ MHz}$

 $\varepsilon_{bb} \approx -1000 \text{ MHz}$

 ε_{cc} should be small and positive for a planar π -radical (+200 MHz ?)

Empirical Prediction of the Hyperfine Interaction Constants of Iodine $(I_{\rm I} = 5/2)$ (a necessity before conducting the experiments!)

 \succ Fermi-contact term a_F (measure the s-character of the unpaired electron on the halogen): a_F^I/A^I (A^I = atomic value for iodine = 41600 MHz) $CH_2F: a_F F/A^F = 0.4\%; CH_2CI: a_F C/A^{CI} = 0.2\%; CH_2Br: a_F^{Br}/A^{Br} = 0.08\% - Assuming a_F^{I}/A^{I} = 0.04\%, a_F^{I}$ was predicted to be positive: +16.6 MHz

> <u>Magnetic dipole-dipole interaction terms</u> T_{ii} : $T_{cc} = -(T_{aa} + T_{bb})$ with $T_{aa} \approx T_{bb}$ for a π -radical in the ² B_1 state

using a spin density on the halogen similar to that in $CH_2CI \& CH_2Br$ (~16%): $T_{cc} = 0.16 * (2/5 P_{atomic I}) \times 2 \approx +260 \text{ MHz}$ ($P_{atomic I} = 2031 \text{ MHz}$)

> Quadrupole coupling constants:

 $\chi(CH_3I) = -1934 \text{ MHz} \Rightarrow \text{scaling from } CH_2Br, \chi_{aa}(CH_2I) \text{ is predicted to be } -1740 \text{ MHz}$

$$\chi_{cc} = -(\chi_{aa} + \chi_{bb}) = +652MHz$$

 $\chi_{bb} \approx +1088 \text{ MHz} (\text{scaled from } \chi_{aa})$

The Experiments

FTMW (Shizuoka University):

2. Millimeter-wave (Lab. PhLAM, Lille 1 University):

- \succ Precursors: CH₂I₂ or CH₃I
- > Backing pressure: 1.5 atm (Ar)
- > Pulsed discharge: 1.2 kV

- \geq Precursors: CH₃I or CH₂I₂ reacting with atomic Cl (for H or I abstraction reaction)
- > Temperature: partial cooling of the absorption cell by limited liquid nitrogen flow

 \succ <u>Detected by-products</u>: <u>stable</u>: CH₂ICl (CH₂I + Cl), ICl, CH₃Cl ; <u>transient</u>: CH₂Cl (CH₃Cl + Cl)

Observations & Results

> Calculations:

- ✓ predictions & least-squares analysis made with H.M. Pickett's SPFIT & SPCAT
- ✓ 32 parameters determined (including nuclear spin-rotation constants, not shown) $\checkmark \sigma_{fit}$ = 30 kHz
- > Spectra measured: ✓ FTMW spectroscopy:

Constant /MHz	predicted	determined	
A	273120	276676.3(33)	
B + C	17343	17509.9416(40)	
B-C	242.0	283.1023(40)	
E _{aa}	-45000	-29409.791(12)	
$\mathcal{E}_{bb} + \mathcal{E}_{cc}$	-800	-717.720(39)	
$\varepsilon_{bb} - \varepsilon_{cc}$	-1200	-1135.306(39)	
$a_F^{\{I\}}$	+16.6	-15.8370(5)	
$T_{aa}^{\{I\}}$	-148	-152.9605(8)	

to diffusion

v pump

 $a_{F}^{(I)}$ has been accurately determined, with its sign being unambiguously and surprisingly negative ($a_{F}^{(X)}$ is positive in other CH₂X radicals !) *Interpretation:* spin polarization effect: The sign results from a balance between α - and β - spins on the halogen

nucleus. The excess amount of α - spin on the s orbital induced by spin polarization systematically decreases from 0.35% in CH₂F, 0.20% in CH_2CI , to 0.071% in CH_2Br , and -0.038% in CH_2I .

The relationship for π -radicals : $T_{aa}^{\{I\}} \approx T_{bb}^{\{I\}} \approx -\frac{1}{2} T_{cc}^{\{I\}}$ is satisfied: the ground electronic state is ${}^{2}B_{1}$

Unpaired electron density on the p_{π} orbital of I: 18%

- 73 hyperfine components between 17-38 GHz
- hyperfine structure due to the hydrogen and iodine fully resolved
- no splitting observed for the para-species (odd K_a): the G.S. is ² B_1 , meaning the radical is planar in its ground vibrational state

✓ MMW spectroscopy:

 $-12 \le N' \le 35$, $K_a' \le 6$ between 200 - 610 GHz

- hyperfine structure due to iodine nuclear spin partly resolved

(13.3% in CH2F, 15.7% in CH2Cl, 15.8 in CH2Br)

 $F_1 = 29 \leftarrow 28$

Conclusion:

 CH_2I radical (2B_1 ground state) has been characterized in the gas phase for the first time by high-resolution molecular spectroscopy.

The observed fine and hyperfine structures have been fully interpreted in terms of geometrical and electronic structure. These results complete the spectroscopic studies in the microwave and mmw regions of the CH₂X halogen-substituted radicals.

[1] D. W. Smith & L. Andrews: *J. Chem. Phys.* 58, 5222 (1973).

- [2] L. Andrews, J. M. Dyke, . Jonathan, N. Keddar & A. Morris: *J. Phys. Chem.* 88, 1950 (1984).
- [3] S. L. Baughcum & S. R. Leone: J. Chem. Phys. 72, 6531 (1980).
- [4] V. G. Stefanopoulos, V. C. Papadimitriou, Y. G. Lazarou & P.Papagiannakopoulos: J. Phys. Chem. A 112, 1526 (2008).
- [5] D. Duflot, J.P. Flament: Private Communication (Lab. PhLAM, Université Lille 1)

