# FIRST ANALYSIS OF THE $\nu_5$ BAND OF DNO<sub>3</sub> (DEUTERATED NITRIC ACID) IN THE 11 $\mu$ m REGION J. Koubek<sup>1,2</sup>, A. Perrin<sup>2</sup>, H. Beckers<sup>3</sup>, H. Willner<sup>3</sup>



# Introduction

Nitric acid (HNO<sub>3</sub>) plays an important role as a "reservoir" molecule for both the NO<sub>x</sub> (nitrogen oxides) and  $HO_x$  (hydrogen oxides) species in the stratosphere [1]. These radicals are potentially active contributors to the ozone destruction in the stratosphere through catalytic reactions. For this reason, various isotopic species of nitric acid have been the subject of numerous spectroscopic studies [2,3]. High resolution studies on nitric acid isotopomers in the infrared, submillimeter and centimeter region are referred in the article by Drouin *et al.* [4]  $DNO_3$  isotopomer is referred particularly by Chou *et al.* [5]

In the infrared, just the  $\nu_9$  (O–D torsion) [6],  $\nu_8$  (out of plane NO<sub>2</sub> bend) [7],  $\nu_7$  (O–NO<sub>2</sub> bend) [8],  $\nu_6$  (O–NO<sub>2</sub> stretch) [8] and  $\nu_2$  (NO<sub>2</sub> a-stretch) [9] fundamental bands were subjects of high resolution FTIR studies by Tan, Looi, Lua, Maki, Johns and Noël. The present analysis describes the first analysis of the  $\nu_5$  (NO<sub>2</sub> planar bend) band of DNO<sub>3</sub> in the 11  $\mu$ m spectral region.

### 2 Experimental

 $DNO_3$  was synthesized from  $D_2SO_4$  and  $KNO_3$  by using vacuum techniques in Wuppertal. The sample contained traces of HNO<sub>3</sub>, H<sub>2</sub>O, HDO, D<sub>2</sub>O, NO<sub>2</sub> - these impurities served in calibration of the spectra using HITRAN database. The infrared spectrum of deuterated nitric acid was recorded on the Bruker IFS 120 HR Fourier transform spectrometer of Wuppertal in the 700–1500 cm<sup>-1</sup> region at three pressures: 1 Torr, 0.3 Torr and less then 0.1 Torr (cf Figure 1) The instrumental resolution is  $0.0022 \text{ cm}^{-1}$  and the maximal spectral resolution is  $0.0027 \text{ cm}^{-1}$ (from minimal observed spacing between two lines that is greater than the FWHM of either line).





#### 3 Theory

 $DNO_3$  is planar asymmetric molecule ( $C_S$  symmetry). The form of the Hamiltonian matrix used for DNO<sub>3</sub> is described in Table 1. The rotational operators for both the  $v = 5^1$  and  $v = 7^{1}9^{1}$  vibrational diagonal blocks include Watson-type operators written in an  $I^{r}$  representation with an A-type reduction. Due to symmetry considerations, A-type and B-type Coriolis resonances are to be considered in the  $5^1 \Leftrightarrow 7^19^1$  off-diagonal vibrational operators. The resonance between the  $5^1$  and  $7^19^1$  levels is indeed very strong.

| Table        | able I: Hamiltonian matrix |                  |  |  |  |  |  |  |  |
|--------------|----------------------------|------------------|--|--|--|--|--|--|--|
|              | $5^{1}$                    | $7^{1}9^{1}$     |  |  |  |  |  |  |  |
| $5^{1}$      | ${{H}_{5,5}}$              | complex conjugat |  |  |  |  |  |  |  |
| $7^{1}9^{1}$ | $H_{79,5} = C_A + C_B$     | $H_{79,79}$      |  |  |  |  |  |  |  |

<sup>1</sup>Institute of Chemical Technology, Department of Analytical Chemistry, Technická 5, 166 28, Prague, CZECH REPUBLIC <sup>2</sup>Laboratoire Inter-universitaire des Systèmes Atmosphériques, CNRS, Université Paris 12, 61 Av. du Général de Gaulle, 94010 Créteil Cedex, FRANCE <sup>3</sup>Anorg. Chemistry, University of Wuppertal, D-42119 Wuppertal, GERMANY

> v-diagonal operator (rotational operator):  $H_{v,v} = E_v + A_v J_z^2 + B_v J_x^2 + C_v J_y^2 + \Delta_K^v J_z^4 - \Delta_{JK}^v J^2 J_z^2 - \Delta_J^v (J^2)^2 - 2\delta_J^v J^2 J_{xy}^2 - \delta_K^v \{J_z^2, J_{xy}^2\} + \dots$ v-off-diagonal operators:  $H_{79.5} = C_A + C_B$ :  $\boldsymbol{C}_A = \boldsymbol{C}_{A1}\boldsymbol{J}_z + \boldsymbol{C}_{A2}\{\boldsymbol{i}\boldsymbol{J}_y,\boldsymbol{J}_x\}$  $C_B = C_{B1}J_x + C_{B2}\{iJ_y, J_z\} + C_{B3}J_xJ^2 + C_{B4}J_xJ_z^2 + C_{B5}(J_+^3 + J_-^3)$  $\{A, B\} = AB + BA; J_{xy}^2 = J_x^2 - J_y^2; J_{\pm} = J_x \pm iJ_y$

Due to the close proximity of the  $5^1$  and  $7^19^1$  energy levels of 14–DNO<sub>3</sub>, strong perturbations are observed in the spectrum. Due to the relative symmetry of the  $5^1 \Leftrightarrow 7^19^1$  interacting states  $(A' \Leftrightarrow A'')$ , A-type and B-type Coriolis resonances are to be considered for the energy levels calculation. Through these interactions, the  $7^{1}9^{1}$  "dark" state is populated on behalf of the 5<sup>1</sup> state. Thanks to this *line mixing*, many  $\nu_7 + \nu_9$  transitions become observable.

This differs completely from the scheme of resonance observed for 14–HNO<sub>3</sub> and 15–HNO<sub>3</sub>, since Fermi and C-type Coriolis resonances are coupling the  $5^1 \Leftrightarrow 9^2$  (A'  $\Leftrightarrow$  A') resonating



Figure 2: Energy level ladder for  $HNO_3$  and  $DNO_3$ 

# Analysis of the $D^{14}N^{16}O_3$ infrared spectra

### 4.1 Assignment

states.

3000 rovibrational transitions, approximately, of  $\nu_5$  band and cca 300 rovibrational transitions of  $\nu_7 + \nu_9$  were assigned using ground state combination differences with rotational ground state parameters achieved by Drouin *et al.* [4]. Least squares fit of molecular parameters enabled to synthesize satisfactorily the spectrum. Following figures demonstrate sufficient conformity between observed and calculated spectrum.



Figure 3: Hotbands' region

Figure 3 shows the region where three hot bands occur:  $\nu_5 + \nu_6 - \nu_6$ ,  $\nu_5 + \nu_7 - \nu_7$  and  $\nu_5 + \nu_9 - \nu_9$ located at cca 881, 883 and 884  $\rm cm^{-1}$ , respectively. These bands were not considered in the analysis.



Figures 5 and 6 show detailed part of the spectrum. In Figure 5, P lines and Q lines belonging to the  $\nu_5$  band together with lines from the resonating  $\nu_7 + \nu_9$  dark bands are evidenced. Figure 6 shows the central part of the  $\nu_5$  Q branch.



Figure 4:  $\nu_5$  Q branch region

Figure 4 shows the  $\nu_5$  region of the very dense Q branch, severely mixed with  $\nu_7 + \nu_9$  transitions. Several  $J(K_c'')$  packets of  $\nu_5$  transitions (green colour labels) and  $\nu_7 + \nu_9$  transitions (red colour labels) are sorted with following selection for upper and lower states:  $J \quad K_a' = J - K_c' \quad K_c' \quad \longleftarrow \quad J \quad K_a'' \quad K_c''.$ 



Figure 5: Hotbands' region - detail



# 4.2 Fit

Line positions and intensities were determined from least squares fit on a rather large set of experimental data as shows Table 2. All values of parameters are in  $cm^{-1}$ , the uncertainty in the last digits (one standard deviation) is given in the parenthesis.

The rms deviation of the fit with all weighted lines was about  $0.51 \times 10^{-3}$  cm<sup>-1</sup>. Still, the assignment of some  $\nu_7 + \nu_9$  transitions in the  $\nu_5$  Q branch is problematic.

# Acknowledgements

The work of J.K. was supported through the Ministry of Education, Youth and Sports of the Czech Republic (research program LC06071) and a scholarship of the French government (Bourse du Gouvernement Français - Bourse de Doctorat en co-tutelle).

# References

- [1] World Meteorological Organization, in "Scientific Assessment of Ozone Depletion: 2006" (WMO, Ed.), Geneva, 2007.
- [2] A. Goldman, C. P. Rinsland, A. Perrin, and J.-M. Flaud, J. Quant. Spectrosc. Radiat. Transfer **60**, 851–861 (1998).
- [4] B. J. Drouin, C. E. Miller, J. L. Fry, D. T. Petkie, P. Helminger, and I. R. Medvedev, J. Mol. Spectrosc. 236, 29–34 (2006).
- [5] S. G. Chou, D. T. Petkie, R. A. H. Butler, and C. E. Miller, J. Mol. Spectrosc. 211, 284-285 (2002).
- [6] T. L. Tan, E. C. Looi, K. T. Lua, A. G. Maki, J. W. C. Johns, and M. Noël, J. Mol. Spectrosc. 150, 486–492 (1993).
- [7] T. L. Tan, E. C. Looi, K. T. Lua, A. G. Maki, J. W. C. Johns, and M. Noël, J. Mol. Spectrosc. **149**, 425–434 (1991).
- [8] A. G. Maki, T. L. Tan, E. C. Looi, K. T. Lua, J. W. C. Johns, and M. Noel, J. Mol. Spectrosc. 157, 248–253 (1993).
- [9] T. L. Tan, E. C. Looi, K. T. Lua, A. G. Maki, J. W. C. Johns, and M. Noel, J. Mol. Spectrosc. 166, 97–106 (1994).

| <b>▲</b> |
|----------|
|----------|

| Parameter                                                    | $5^{1}$                       | $7^{1}9^{1}$               |  |  |  |  |  |  |  |
|--------------------------------------------------------------|-------------------------------|----------------------------|--|--|--|--|--|--|--|
| $E_v$                                                        | 887.657124(81)                | 882.21072(49)              |  |  |  |  |  |  |  |
| 4                                                            | 0.43244023(96)                | 0.4317699(37)              |  |  |  |  |  |  |  |
| В                                                            | 0.3765583(20)                 | 0.3757854(37)              |  |  |  |  |  |  |  |
| 2                                                            | 0.20048282(20)                | 0.2001817(30)              |  |  |  |  |  |  |  |
| $\Delta_K$                                                   | $1.629(46) \times 10^{-7}$    | $2.85(12) \times 10^{-7}$  |  |  |  |  |  |  |  |
| $\Delta_{JK}$                                                | $0.262(46) \times 10^{-7}$    | $-0.43(11) \times 10^{-7}$ |  |  |  |  |  |  |  |
| $\Delta_J$                                                   | $2.1928(53) \times 10^{-7}$   | $2.258(17) \times 10^{-7}$ |  |  |  |  |  |  |  |
| $\mathfrak{H}_K$                                             | $3.478(17) \times 10^{-7}$    | $1.881(59) \times 10^{-7}$ |  |  |  |  |  |  |  |
| $\mathfrak{H}_J$                                             | $0.8929(28) \times 10^{-7}$   | $1.209(19) \times 10^{-7}$ |  |  |  |  |  |  |  |
| $5^1 \Leftrightarrow 7^19^1$ Coriolis interaction parameters |                               |                            |  |  |  |  |  |  |  |
| Operator, Constant                                           | Value                         |                            |  |  |  |  |  |  |  |
| $J_z, C_{A1}$                                                | $3.4523(51) \times 10^{-2}$   |                            |  |  |  |  |  |  |  |
| $\{iJ_y, J_x\}, C_{A2}$                                      | $3.997(12) \times 10^{-4}$    |                            |  |  |  |  |  |  |  |
| $J_x, C_{B1}$                                                | $7.1521(68)\!\times\!10^{-2}$ |                            |  |  |  |  |  |  |  |
| $\{iJ_y, J_z\}, C_{B2}$                                      | $1.3064(22) \times 10^{-3}$   |                            |  |  |  |  |  |  |  |
| $J_x \mathrm{J}^2,C_{B3}$                                    | $-6.15(23) \times 10^{-7}$    |                            |  |  |  |  |  |  |  |
| $J_x J_z^2,  C_{B4}$                                         | $6.128(62) \times 10^{-6}$    |                            |  |  |  |  |  |  |  |
| $J_{+}^{3} + J_{-}^{3}, C_{B5}$                              | $1.322(27) \times 10^{-6}$    |                            |  |  |  |  |  |  |  |

| Table 3: Statistics of the fit                               |   |        |           |   |                    |                         |  |  |  |  |
|--------------------------------------------------------------|---|--------|-----------|---|--------------------|-------------------------|--|--|--|--|
| fit of 1096 experimental energy levels                       |   |        |           |   |                    |                         |  |  |  |  |
| (979 levels for $\nu_5$ and 117 levels for $\nu_7 + \nu_9$ ) |   |        |           |   |                    |                         |  |  |  |  |
| 0. $10^{-3}$ cm <sup>-1</sup>                                | < | 92.7 % | of levels | < | 1. 10-             | $^{3}$ cm <sup>-</sup>  |  |  |  |  |
| 1. $10^{-3}$ cm <sup>-1</sup>                                | < | 4.6~%  | of levels | < | 2. 10 <sup>-</sup> | $^{3}$ cm <sup>-1</sup> |  |  |  |  |
| 2. $10^{-3}$ cm <sup>-1</sup>                                | < | 2.3~%  | of levels | < | 4. 10 <sup>-</sup> | $^{3}$ cm <sup>-1</sup> |  |  |  |  |
| 4. $10^{-3} \text{cm}^{-1}$                                  | < | 0.4~%  | of levels | < | 10. 10-            | $^{3}$ cm <sup>-1</sup> |  |  |  |  |

[3] A. Perrin, Spectrochim. Acta 54, 375–394 (1998).