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Microspectroscopy

* Detailed chemical information about the sample — chemical maps
e group of points collected over the entire area of interest
* points can be collected in series (mapping — scanning the surface, single
channel detection) or in parallel (imaging — multichannel detection)

* Generate maps from peak heights, areas, peak ratios, correlation, results
of principal component analysis etc.

* Monitoring changes in chemical composition in a sample:
* inhomogeneities, defects, composite materials




Microspectroscopy — Examples
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database spectral correlation
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Microspectroscopy — Examples

Spectral maps generated by peak height and PCA

Peak height PCA




Microspectroscopy — Resolution

e Spatial Resolution

* the ability to view two closely spaced points as distinct objects
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e Diffraction

* the bending (or “scattering”) of light/energy by an opening of
an optical element (lens, aperture)

* the wavelength of the light approaches the size of the opening
 for infrared spectroscopy ~ 10 pm (1000 cm™ is 10 um)

» for Raman spectroscopy better than 1 um (excitation in visible
range)



Microspectroscopy — Resolution
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Microspectroscopy — Resolution

* Rayleigh criterion — generally accepted criterion for the
minimum resolvable detail

 Diffraction-limited imaging process — the first diffraction
minimum of the image of one source point coincides with the
maximum of another
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Microspectroscopy — Resolution

Simulation of the Idealized resolution of
effect of diffraction a small circular image
on the image. on a CCD detector

Unresolved

Resolved Rayleigh
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Atternpt to simulate In the ideal case, two
the Rayleigh Criterion such images would
for just resolved image. be resolved.

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/diflim.html



http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/diflim.html

Microspectroscopy — Resolution

* Dual remote aperture

* first aperture placed between infrared source and sample — limits
beam to desired sample area

e second aperture placed between sample and detector — reduces
amount of diffracted light detected
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IR Microspectroscopy Sampling Modes
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IR Microspectroscopy Sampling Modes

Transmission Reflection
* transparent samples * non-transparent samples
* thin layers * ATR — attenuated total reflection
e 5-15 pum thickness e specular reflection

* large and uniform surface < grazing angle

e compression cells
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IR Microspectroscopy Sampling Modes

» Attenuated Total Reflection — ATR
* simplifies sample preparation
* solves sample thickness problem (0.4-2.0 um penetration depth)
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IR Microspectroscopy Sampling Modes

» Reflection — grazing angle microscope, angle of incidence: 55—-85°

* Different lenses/modes — glass lenses for viewing, reflection for
measurement
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Raman Microspectroscopy Modes

Dispersive
visible excitation
higher spatial resolution
higher Raman signal

possibility of confocal mode
to enhance depth resolution
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Raman Microspectroscopy
Confocal Mode

* Confocal microscope — uses a very narrow pinhole to greatly
improve the depth resolution
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Raman Microspectroscopy — Examples

Medicine — tablets
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Raman Microspectroscopy — Examples

Life science — Cells, 3D volume scan, PCA




Microspectroscopy — Applications

Small samples
Large Samples
Plastics

Packaging materials
Pharmaceuticals
Fibers

Trace evidence
Contaminants
Forensic analysis

Failure analysis
Coatings & inks
Electronic materials

Migration, diffusion and aging
studies

Reverse engineering
Art conservation
Geology

Archeology



Microspectroscopy vs. Nanospectroscopy

Microspectroscopy Nanospectroscopy
* techniques of far field e techniques of near field
* averaged signal over a large e ,coupling” of a probe and
area surface
* spatial resolution limited by  spatial resolution limited by

the diffraction of light probe aperture
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Vibrational Nanospectroscopy

based on scanning probe microscopy (SPM) — AFM, STM, ...
probe near the surface (,near-field techniques®)
probe—sample distance lower than used wavelength
,hon-destructive” approach

easy sample preparation

vacuum is not required (compared to SEM)
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Vibrational Nanospectroscopy

SNOM (NSOM) s-SNOM
e scanning near-field optical » ,scattering reflection SNOM,
microscopy, hollow optical ,full“ SPM tip interferes with
fibre with miniature aperture and modulates the incoming
(aperture mode) radiation (apertureless mode)
* IR-SNOM * SNIM (IR-sSNOM) — scanning
e« Raman-SNOM near-field infrared microscopy
* nano-FTIR
* TERS —tip-enhanced Raman
spectroscopy
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IR-SNOM

near-field technique

construction of spectroscopic image by scanning of
the surface

probe scans the surface — point by point

critical parameters — probe aperture (smaller than
used wavelength) and its distance from surface

diffracted
light

=y

near field
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IR-SNOM

distance of probe = 10 nm

aperture of probe 10-100 nm
optical coupling of the tip of the probe and the sample surface
the probe responses on changes of dielectric function in its surroundings

optical modes of spectra collection
* transmission (only for transparent samples) — transmitter, receiver

* reflection — transmitter, receiver, both
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IR-SNOM setup
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IR-SNOM

ADVANTAGES DISADVANTAGES
overcome the diffraction * technological demands on
limit — ,,nanoresolution” design and construction of
chemical information SNOM probe
based on IR spectra * low intensity of detected

radiation

non-destructive method

flexible modes of data  demands on sensitivity of
collection the detector



Raman SNOM — Example
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SNIM — scattering reflection IR-sSNOM

REVIEW www.rsc.org/annrepc | Annual Reports C

SNIM: Scanning near-field infrared microscopy

Erik Briindermann*® and Martina Havenith*?
DOIL: 10.1039/b703982b
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Fig. 3 (Online in colour): Experimental set-up for the detection of near-field signals. The
nano-tip oscillates with a frequency frwhich leads to a modulation of the sample-tip distance of
z = Az(l + cos(2nf71))/2. Using an interferometer for detection, the laser beam is separated
with a beam splitter (BS) into two beams. One beam is reflected at a mirror (M). If this mirror is
placed on an actuator, e.g. piczoelectric actuator, the mirror can oscillate at a frequency f, for
phase modulation of the reference beam (£g). The remaining laser light is focused via an
objective on the tip-sample region. The background field (£5) and the near-field (£y)
contribution of the scattered light are both reflected at the probe. The interference of both
fields with the reference beam is recorded at the detector. The detector signal is then processed
during the data acquisition (DAQ).



SNIM — Examples

Nanocomposite organic materials — polystyrene and poly-2-vinylpyridine
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SNIM — Examples
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Figure 2 | Grain morphology and lateral distribution of two coexisting
phases. (a) AFM topography (13.5 pm % 13.5 pm) showing a 40-nm thick
0.0 pentacene film on Si0O2/Si substrate, after storage at room temperature
for 20 months. (b) s-SNOM amplitude image at 907.1cm ', recorded

880 simultaneously, proves the coexistence of two phases of pentacene, which
obviously persist across grain boundaries. The dashed square marks the

-1
Frequency (cm™) section shown in Fig. 4. Scale bar, 2 um.
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Nano-FTIR spectroscopy

Topography AFM mech. phase Nano-FTIR Absorption ﬁg:::::f:l
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Chemical identification of nanoscale sample contaminations with nano-FTIR. In the
topography image (left), a small sample contaminant (B) can be found next to a thin film
of PMMA (A) on a Si substrate (dark region). In the mechanical phase image (middle) the
contrast already indicates that the particle consists of a different material than the film
and the substrate. Comparing the nano-FTIR absorption spectra at the positions A and B
(right panel) with standard IR databases reveals the chemical identity of the film and the
particle. Each spectrum was taken in 7 min with a spectral resolution of 13 cm-".
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Tip-Enhanced Raman Spectroscopy — TERS

e scanning probe microscopy (AFM, STM) + surface-enhanced
Raman spectroscopy (SERS)

 spatial resolution below diffraction limit — defined by the tip
diameter

* enhanced sensitivity and lower detection limits (vs. Raman)
* ,hon-destructive” analysis

* novacuum required
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Tip-Enhanced Raman Spectroscopy — TERS

* nanometre-sized plasmonic tips + plasmonic substrate -
localized, strong EM field

 commonly used plasmonic metals — Au, Ag

* important tip parameters: sharpness and purity
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Tip-Enhanced Raman Spectroscopy — TERS
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Tip-Enhanced Raman Spectroscopy — TERS

* Finite-difference time-domain simulations - the enhancement
and distribution of the EM field around the metalic tip or
between the tip and substrate
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(a) Single Au Tip (b) Au Tip on Au Substrate

Figure 2. FOTD simulations of the electric field distribution for a single Au tip (al, and a gold tip held at distance @ = 2 nm from a gold substrate surface.
The polarization E and wave vector k of the incoming light are displayed in the schematics. M stands for the maximum.
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Summary

Microspectroscopy

* spectral maps — points collected in series (mapping — single channel
detection) or in parallel (imaging — multichannel detection)

. . . . A
» diffraction limited resolution: d = >

* |[R—transmission/reflection — ATR, specular reflection, grazing angle

 Raman — usually reflection mode
» dispersive — lower wavelength, higher spatial resolution (confocal mode)

* FT - higher wavelength, lower spatial resolution, lower risk of damage

Nanospectroscopy

* based on scanning probe microscopy — resolution limited by aperture or tip
diameter (sharpness)

* non-destructive, no high vacuum or cryogenic temperatures
* aperture mode — SNOM - IR, Raman, visible, fluorescence, ...
e apertureless mode — s-SNOM — SNIM, nano-FTIR, TERS



