Bod tání modelu NaCl

Úkol:

Stanovte bod tání modelu NaCl metodou zonální tavby (*slab geometry*)

Model:

Lennard-Jones + náboje¹

Postup:

připravte nanokrystalek 2 × 2 × 2 (Na₄Cl₄)

Evropský sociální fond "Praha & EU: Investujeme do vaší budoucnosti"

Inovace předmětu Počítačová chemie je podporována projektem CHEMnote (Inovace bakalářského studijního programu Chemie – moderní vzdělávání podpořené použitím notebooků – CZ.2.17/3.1.00/33248) v rámci Operačního programu PRAHA – ADAPTABILITA.

- replikujte tento motiv 3 × 3 × 3 krát a simulujte krystal v periodických okrajových podmínkách
- stanovte hustotu a radiální distribuční funkce krystalu
- roztavte a stanovte hustotu a radiální distribuční funkci taveniny
- replikujte krystal 1 × 1 × 3 krát a roztavte polovinu boxu
- simulujte za dané teploty a sledujte, zda krystal narůstá či se taví

¹In Suk Joung and Thomas E. Cheatham, III: *J. Phys. Chem. B* **112**, 9020–9041 (2008)

Počítačový klastr

- Několik výkonných počítačů připojených k jednomu serveru
- Často GPU (Graphic Processing Unit) nebo GPGPU (General Purpose GPU = výpočetní)
- Dávkový (frontový) systém zpracování jobů

Linux:

- základní ovládání pomocí CLI (command-line interface, příkazový řádek)
- grafika pomocí X11 (X window system, od r. 1987 zpětně kompatibilní)
- Připojení z uživatelského počítače (např. Windows):
 - terminál (pro vzdálené spouštění příkazů a skriptů)
 - X11 server (zobrazující grafiku zpracovanou na vzdáleném klientu)

403-a324-01.vscht.cz (Argon) $\rightarrow \rightarrow \rightarrow \rightarrow$

Připojení na vzdálený počítač metoda 1 – MobaXterm

- Jednoduché, ale **nedoporučuji** pro mnoho lidí v učebně grafy padají
- MobaXterm v sobě zahrnuje terminál i X-server.
- Na disku "scratch" (S:) najděte složku /pocitacova_chemie/Connect/ a spusťte MobaXterm_Personal_22.1.exe

případně najděte na webu a stáhněte "MobaXterm Home Edition – Portable"

- 🔵 Rozbalte, spusťte, potvrďte vše
- 🕒 Klikněte na 🕂 Start local terminal

počítače: Argon=403-a324-01 Wolfram=403-a325-05 (~6 lidí) Neon=403-as67-01

V okně terminálu spusťte vybranou relaci, např. (Argon): [2021-11-11 11:11.11] ssh -X guest@403-a324-01.vscht.cz Heslo řeknu na místě. Během psaní hesla se nic nezobrazuje! Máte-li vlastní účet na klastru, můžete ho použít (viz dále), ale vaše výsledky, jako křivky tuhnutí/tavení, nebudou snadno dostupné ostatním.

- Alternativně/v některých verzích MobaXtermu se jméno počítače (403-a324-01.vscht.cz) a uživatele (guest) napíše do dialogu.
- Viz též dále metoda 2 = PuTTY + XMing (je instalované v některých počítačových učebnách)

Připojení na vzdálený počítač metoda 1 – MobaXterm

Připojení na vzdálený počítač metoda 2: PuTTY + XMing

Spolehlivější než MobaXterm

Terminál s příkazovým řádkem (PuTTY)

- Windows Start \rightarrow hledat \rightarrow putty, spustit nebo S:pocitacova_chemie/Connect/putty64bit.exe
- Host name \rightarrow 403-a324-01.vscht.cz (nebo jiný počítač)
- Connection \rightarrow + SSH \rightarrow Tunnels \rightarrow X11 \rightarrow x Enable X11 forwarding (nutné pro zobrazení grafiky)
- \bigcirc zpět Session \rightarrow Open
- Login as: guest máte-li, použijte vlastní účet viz dále
- Password: (sdělím)

X server pro zobrazení grafiky (Xming)

Windows Start \rightarrow hledat \rightarrow xming a spust'te nebo S:pocitacova_chemie/Connect/XLaunch.exe - Shortcut.lnk případně S:pocitacova_chemie/Connect/Xming-6-9-0-31-setup.exe a instalovat (např. na plochu)

Dotazy potvrdit další, firewall zamítnout. Ve stavovém řádku se musí objevit ikona 🐼.

PuTTY a Xming jsou instalovány v některých počítačových učebnách

Real Putty Configuration						
Category:						
⊡ Session		Basic options for your PuTTY session				
□ Logging □ Terminal □ Keyboard □ Bell		Specify the destination y Host <u>N</u> ame (or IP addre as67-1.vscht.cz	ou want to connect ss)	to <u>P</u> ort 22		
- Features ⊡ Window - Appearance		Connection type: ○ Raw ○ Ielnet ○ Rlogin ● SSH ○ Serial Load, save or delete a stored session Saved Sessions a11-11				
Behaviour Translation Selection Colours						
Connection Data Proxy Telnet		Default Settings a325-1 as67-1		Load Sa <u>v</u> e		
- X11 - Tunnels Bugs	•	Close window on e <u>x</u> it O Always O Neve	er 💿 Only on o	clean exit		
About			<u>O</u> pen	Cancel		

5/23

pch04

* Mám vlastní účet na klastru

6/23 pch04

Budu předpokládat, že používáte výchozí shell bash. Jsou dvě možnosti:

- Použiji instalaci, která je pod uživatelem guest. Nastavení prostředí (lze umístit např. do vašeho .bashrc nebo .profile): guest@403-a324-01:~/VY\$ source /home/guest/env.sh příkaz source (nebo jen .) načte soubor a nezapomene nastavení.
- Instaluji si MACSIMUS sám/sama. Instalátor vám vysvětlí, co dělat, které balíčky předem instalovat, jak nastavit prostředí a provede test.

Pro cvičení "Zonální tavba NaCl" a "Struktura vody okolo rozpuštěnce" si zkopíruji do své domovské složky soubory /home/guest/A.zip a /home/guest/A.sh a (rovněž ze své domovské složky) spustím skript A.sh.

Test připojení

Základním způsobem práce pod Unixem/Linuxem je **příkazový řádek**, což je vstup interpretu příkazů (**shell**u): napíšete příkaz a stisknete Enter.

- Začátek řádku (např. guest@403-a324-01:~\$) se nazývá prompt.
- Celé okno s promptem a výstupem se nazývá terminál.
- Pokud chcete předchozí příkaz opravit a spustit znova, použijte kurzorovou šipku nahoru a opravte.
- Jako test, že připojení je v pořádku, zkuste: guest@403-a324-01:~\$ xclock Zobrazí se hodiny. Hodiny zrušte buď myší ×, nebo stiskem Ctrl-C v okně terminálu.

Nevidíte hodiny???

- Nejsou ikonizované? Hledejte dole na liště.
- Restartujte PuTTY + XMing / MobaXterm
- Restartujte Windows...
- Zkuste jinou metodu (PuTTY + XMing / MobaXterm)

zábavnější je xeyes

7/23

pch04

* Start: pro ty, kdo mají vlastní účet na klastru

Založte si složku a rozbalte data: mkdir vase_slozka cd vase_slozka unzip /home/guest/A.zip

Pak musíte nastavit prostředí: Pokud používáte bash (většina): source env.sh Pokud používáte tcsh: source env.csh Pokud nevíte, jaký shell máte: ps x

Midnight Commander (mc)

je nadstavba shellu podobná aplikaci Total Commander (Windows Commander). Je vhodná pro uživatele zvyklé na Windows.

- nastartujte Midnight Commander příkazem guest@403-a324-01:~\$ mc
- Z důvodu ostatních uživatelů může být obrazovka v nestandardní pozici. Pak pomocí Tab přejděte na panel, který má nahoře vlnovku (~)². Základní ovládání:

Soubory jsou asociovány s aplikacemi, a to i soubory simulačního balíku MACSIMUS ²Vlnovka značí domovskou složku uživatele, zde ~ = /home/guest

Midnight Commander: problémy

V některých distribucích je F10 zablokováno funkcí menu terminálu, pak použijte příkaz exit nebo zrušte přiřazení F10 v nastavení terminálu

10/23

pch04

- V Midnight Commanderu nefunguje posuvník okna
- Jste-li v Midnight Commanderu a na obrazovce je smetí, stiskněte Ctrl-L
- Nevíte-li, kde jste, pak Ctrl-O Ctrl-O
- 🔵 Pokud jste omylem stiskli Ctrl-S (stop výstupu na terminál), napravíte to pomocí Ctrl-Q
- Někdy pomůže Ctrl-C = přerušení
- **V nouzi** Ctrl-Z, příkaz jobs a pak kill %1 atd. podle počtu jobů

Start: guest

Skript je sada příkazů v interpretovaném programovacím jazyce.

Simulační cvičení je připraveno ve formě skriptů v jazyce **bash** (stejný, jaký interpretuje příkazy vašeho shellu). Konvenční koncovka bash-skriptu je .sh, často je označen hvězdičkou *, což značí spustitelnost. Skripty budete postupně spouštět, např. z prostředí Midnight Commanderu.

Nastavení prostředí uživatele:

Spusťte skript A. sh z Midnight Commanderu případně příkazem: guest@403-a324-01:~\$./A.sh Protože jste všichni jeden uživatel guest, musíte pracovat každý ve vlastní složce. Skript se vás proto zeptá na jméno složky, kterou založí a do které zkopíruje potřebné soubory. V této složce budete dále pracovat.

Po skončení skriptu A.sh najděte svou složku a přejděte do ní. Objeví se sada skriptů: A01-Na4Cl4.sh A02-repl.sh

Hack: Je-li spojení na vzdálený počítač příliš pomalé, proveď te příkaz (před startem Midnight Commanderu): guest@403-a324-01:~/VY\$ export SIZE=3

```
Animace molekul se zmenší (default SIZE=5).
```

A01-Na4Cl4.sh (nanokrystalek)

- **Úkol:** Hustota modelu NaCl je 2.1 g cm⁻³, *M*(NaCl) = 58.4 g mol⁻¹. Vypočtěte velikost hrany *L* krychličky obsahující Na₄Cl₄, převeďte na Å.
- Spust'te skript A01-Na4Cl4.sh a vložte vypočtené číslo do programu. Prohlédněte si vytvořený krystalek.

Návod pro show:

- le kontextový návod: stiskni tlačítko pravým tlačítkem myši
- kliknutí označuje molekuly (nebudete potřebovat)
- tažení rotuje a pohybuje konfigurací:
 - levé tlačítko: rotace okolo \hat{x} , \hat{y}
 - prostřední tlačítko: přesun
 - pravé tlačítko: rotace okolo \hat{z}
- 🔵 kolečko myši = zoom

Start trajektorie (až budete nějakou mít): ||>

Pokud se budete nudit: NFF nebo ZBUF + one frame + render

A02-repl.sh (příprava krystalku Na₁₀₈Cl₁₀₈)

V dalším kroku pomnožíme krystalek 3× v každém směru a necháme chvilku simulovat za teploty 300 K a tlaku 1 atm.

13/23

pch04

Zařídí to skript A02-repl.sh.

K tomu je potřeba jednak definice silového pole (připraví se sama), jednak definiční soubor simulace. Pro zvýšení uměleckého dojmu si ho můžete prohlédnout na následující stránce.

cryst300.def - definiční soubor první simulace

n=108 N[0]=n N[1]=n	! !	pomocna promenna pocet Na+ a Cl-
rho=2050	ļ	referencni hustota [kg/m3]
<pre>cutoff=8.607 LJcutoff=cutoff rdf.grid=20 el.epsk=2 el.epsr=0.4 el.diff=0.3 noint=30 h=0.1/noint no=100 dt.plb=1</pre>		<pre>elst cutoff (pro Ewaldovu sumaci) [AA] Lennard-Jones cutoff [AA] mereni struktury (rad. distr. f.) [1/AA] presnost vypoctu elst. sil [K/AA] omezi urcita varovani o presnosti pocet kroku/cyklus a delka kroku [ps] pocet cyklu jak casto se bude zapisovat "playback" [ps]</pre>
thermostat="Andersen" T=300 tau.T=1	! ! !	nahodne stouchance (Maxwell-Boltzmann) teplota [K] (bude zmeneno) casova konstanta termostatu [ps]
P=101325 bulkmodulus=2e13/(T+30 tau.P=2	! (0(!	tlak [Pa]) ! odhad modulu pruznosti (pro barostat) konstanta barostatu [ps]
init="start"	ļ	start z predch. konfig.; nove mereni a zaznam
<pre>! TOHLE BUDE SMAZANO P load.n[0]=3 load.n[1]=3 load.n[2]=3 .</pre>	0 ! ! !	PRVNIM KROKU: pomnozit 3x ve smeru x pomnozit 3x ve smeru y pomnozit 3x ve smeru z
1	1	

A03-cr-ini.sh (počáteční relaxace)

Skript se vás zeptá na teplotu, kterou dostanete od vyučujícího. Vhodný interval teplot je 1200– 1400 K. Stejná teplota pak bude použita i v kroku A09.

Na grafech veličin v závislosti na čase vidíme, zda máme systém zrelaxovaný do rovnováhy.

Zobrazeny jsou závislosti teploty, potenciální energie a hustoty na čase.

Všechny grafy zrušíte nejrychleji pomocí kill all

Pokud grafy stále vykazují trend, nutno tento krok opakovat.

Na dotaz "Opakovat michani s init="append"(A/n)?" odpovídáme buď a Enter nebo A Enter nebo n Enter nebo N Enter. Jak je zvykem ve světě unixu, velké A znamená default, tedy jen Enter znamená také ano.

Nejpomaleji konverguje hustota; pokud se mění jen o \pm 10 kg m⁻³, je to OK.

A04-cr-sim.sh **simulace v rovnováze**

16/23 pch04

Spustíme simulaci s vytvořeným krystalem ještě jednou a budeme měřit.

Protože simulace bude delší, bude spuštěna nikoliv na serveru, ale dávkově na některém z klientů klastru (neplatí pro a325-1).

A05-cr-view.sh prohlížení výsledků

- 1=show (video trajektorie)
- 2=konvergenční profily (veličiny v závislosti na čase)
- 3=radiální distribuční funkce (kliknutím do grafu pravou myší si zobrazíte význam barev)
- 4=kumulativní distribuční funkce (running coordination number) = počet sousedů daného iontu do dané vzdálenosti (kliknutím do grafu pravou myší si zobrazíte význam barev)

Teplota je nastavena na 1900 K.

Opět sledujte, zda je systém v rovnováze.

A07-melt-sim.sh simulace taveniny

Simulace zrelaxované taveniny bude provedena dávkově na klastru.

A08-melt-view.sh prohlížení výsledků

Podobné jako v případě krystalu.

(Body A06–A08 můžete přeskočit a pokračovat bodem A09.)

A09-zone-ini.sh **Příprava zonální tavby**

Krystal připravený v bodech A03 až A05 bude zreplikován třikrát ve směru osy z. Výsledný krystal bude ještě trochu protažen ve směru z.

18/23

pch04

- Bude zapnut speciální typ termostatu, který bude prostředek krystalu zahřívat a "konce" (jsou periodicky spojeny) chladit. Tím dostaneme vrstvu ve směry osy z krystalu a vrstvu taveniny (tzv. "slab geometry").
- Velikost boxu ve směrech x a y je konstatní a dána průměrnou hodnotou ze simulace krychlového krystalu.
- Tento krok je opět spuštěn dávkově.
- **Trik**: strukturu lépe uvidíte, pokud použijete rovnoběžné promítání (tlačítko proj nebo =) a menší koule (view: nebo r)

A10-zone-sim.sh Zonální tavba

Konfigurace z předchozího kroku bude simulována za konstantní teploty a konstantního tlaku ve směru osy z. Ve směrech x,y se velikost simulační buňky nemění.

19/23

pch04

Simulace bude spuštěna na některém z klientů klastru.

A11-zone-show.sh prohlížení trajektorie

- Trajektorii zapisovanou běžící simulací je možné prohlížet.
- Sledujte, zda krystal taje nebo narůstá.
- Po zavření programu show budete dotázáni, zda přerušit simulaci.

A12-prubeh.sh Průběh tavby

- Zobrazí se graf závislosti hustoty na čase pro všechny studenty na stejném počítači (po skončení simulací – musí existovat soubory T=*.cpa).
- Popis křivek dostaneš kliknutím pravým tlačítkem myši.
- Výsledky pro čtyři teploty vidíte vpravo ⇒ bod tání JC modelu NaCl = 1300(25) K.³
- Přesnější výsledek z větších simulací a s extrapolací $N \rightarrow \infty$ je 1287(3) K.^a

^aV závorce je odhad standardní chyby.

Po provedení všech cvičení: úklid

- 🔵 Smažte svou složku pomocí F8
- Pečlivě zkontrolujte, zda nemažete složku někoho jiného!
- Vyskočte z Midnight Commanderu (F10) a shellu (exit Enter)

Dodatek: Linux command prompt survival kit

odhlášení	exit
přehled nedávno zadaných příkazů	history
změna složky (adresáře)	cd SLOŽKA
— zpět	cd
výpis souborů ve složce	ls
— podrobně některých	ls -l a*.g
výpis obsahu (krátkého ASCII) souboru	cat SOUBOR
smazání souboru	rm SOUBOR
kopírování souboru (KAM=soubor n. složka)	cp SOUBOR KAM
přesun či přejmenování souboru	mv SOUBOR KAM
editace (nového nebo starého) souboru	mcedit SOUBOR, nano SOUBOR
přerušení běžícího programu	Ctrl-C

Nevidíte-li prompt, protože ho překryl text, stiskněte Enter (Midnight Commander: Ctrl-O Ctrl-O)

Ctrl-C v terminálu není "Copy", Copy-Paste je Ctrl-Shift-C, Ctrl-Shift-V

Text v terminálu se po označení myší kopíruje prostředním (MobaXterm) nebo pravým (PuTTY) tlačítkem myši (nastavení lze změnit)

Dodatek: typy MACSIMUS souborů a asociace aplikací v mc

- 22/23 pch04
- Asociovaná aplikace se spustí z Midnight Commanderu (mc) dvojklikem nebo Enter. Prohlížení souboru (smysl má pro ASCII) je F3 s výjimkou . rdf
- Z příkazového řádku příkazem start, další pak starts.

typ	obsah	aplikace	Midnight Commander akce
.che	chem. vzorec	blend	editace, optimalizace s použitím silového pole, vibrační módy
.mol	mol. topologie	blend	editace, optimalizace s použitím silového pole
.plb	trajektorie	show	prohlížeč trajektorie
.cp	konvergenční profil	showcp+plot	zobrazí konvergenční profily
.cfg	konfigurace	showcfg+plot	zobrazí konfiguraci
.sta	naměřená data	staprt	statistická analýza výsledků (F3=podrobně)
.rdf	párový histogram	rdfg+plot	zobrazí radiální distribuční funkce
			F3 = kumulativní distr. f. (koordinační číslo)
.g	RDF	plot	zobrazí radiální distribuční funkci
.cn	kumulativní RDF	plot	zobrazí (kumulativní) distribuční funkci
.def	parametry simulace	go	provede příkaz v 1. řádku souboru
.get	řízení simulace	go	provede příkaz v 1. řádku souboru
.loc	lock-file	stop.sh	přeruší simulaci (bez ztráty dat)

Méně používané asociace:

typ	obsah	aplikace	Midnight Commander akce
.nff	data scény	ray	raytracer vyrenderuje a zobrazí scénu
.zbuf	z-buffer	stereo	stereogram
.cpz	komprimovaný .cp	showcp+plot	zobrazí konvergenční profily
.cpa	ASCII obraz .cp	showcpa+plot	zobrazí vybrané sloupce
.atm	molekula	showatm+show	zobrazí

Formát .atm (vhodný např. pro Gaussian) je:

```
počet_atomů
prázdný řádek (příp. velikost boxu x y z)
Atom x y z
Atom x y z
...
Atom x y z
```

kde Atom = značka prvku nebo jeho atomové číslo a údaje jsou v Å