Pressure of ideal gas from the kinetic theory |

Molecule = point mass

N molecules of masses m;, i=1,.., N, in a cube of edge L
Velocity of molecule iis Vi = (Vjx, Viy, Vi z)

After elastic reflection: v; x = —V; x

A molecule hits the same wall again after time t = 2L/v;
Force = charlge of momentum in a time unit y
Momentum P =mv

Change of momentum = APx =2m;v;

Averaged force caused by impacts of one molecule:

[simolant -N32] 1/32
s01/2

.
APx  2mjvix m(Vl-’X

Fix=—]"=

t 2L/ Vi x L
Pressure = force of all N molecules, divided by the area

N N 2
_ 2ii=1 Fix _ 2iim1 MiV{,

P=""12 T 3
Kinetic energy of one molecule
1 1 1
=12 — 2 2 2
—mi|Vi|© = Emiv[ Eml(v +vi,+ vi’z)



Pressure of ideal gas from the kinetic theory Il

Kinetic energy of gas = internal energy (monoatomic gas)

1 N , 3 N ;
Ekin = EZ Mivy =5 Z MiVi
i=1 i=1

N 2
Q=1 MiVix _ 2Ekin
L3 3V

p:

In other words

2
Fﬂ/==E§Ek"1é=nF(T

Temperature is a measure of kinetic energy
Assumptions:
@ Pressure is a result of averaged impacts of molecules

@ We used the classical mechanics

2/32
s01/2
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Boltzmann constant s01/2

Per one molecule:

N
n=—
Na
R
kg =— =1.38065x10"23)K!
Na

Equation of state:

pV = nRT = NkgT
Internal energy:

U=E 3nRT 3NI<T
= Lkin = > — 5 B

Ludwig Eduard Boltzmann (1844-1906)

credit: scienceworld.wolfram.com/biography/Boltzmann.html
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Equipartition principle 501/2

Expression Eijn is composed of f = 3N terms of the form %mivizk, wherek e {x,y, z}.

f 2
pV = NkgT = EkBT = EEkin

f = number of mechanical degrees of freedom.
Average energy contribution per one degree of freedom:

E i 1
kin = “kgT
f 2
Generalization: any quadratic function in the Hamiltonian
Heat capacity in molar units (N = Np): degrees of freedom per molec.
/
oU 0Ekin %kaT 3
Cvm = | — = = = —R
oT Jy oT Jy  NaAT 2
Extension:

@ Linear molecules: + 2 rotations, Cym = %R (but: hydrogen)
@ Nonlinear molecules: + 3 rotations, Cym = 3R

@ (Vibrations classically: + 2 for each (incl. Epot) — imprecise!)
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Equipartition principle - example 501/2

Calculate Cpm for a) nitrogen, b) water vapor?
1—l0W ; J[9Z'EE =YV "_I0OW  I[0T'6C=YS'E

Experiment: N> (300 K): 29.12) K~ mol—1
H>0 (500 K): 35.22J K~ 1 mol~!

Shomate eq. by NIST
* Engineering toolbox

Isobaric heat capacity of water vapor -» — —

c
E Or
O

0 500 1000 1500
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Microstate, macrostate, ensemble, trajectory 501/2

@ microstate (state, configuration) = instantaneous “snapshot” at given time
quantum description: state = eigenstate (wave function ¢)
classical description: state = positions and velocities* of all particles

at given time, ¢y =(F1,...,7Nn, V1..., VN)
@ macrostate = averaged action of all microstates
@ ensemble = set of all microstates with known probabilities m(y)

@ trajectory = record of a time development of a microstate

L J . eo® % _—
. : .. ° o, . iy % ﬁ-.;“g ; !
[ ] T P, k|
e VRN
e ?|l o ®|l® ® & 0 uh
L] L] :
@ ® @ L . .. [ Y ® L] - - f ‘;' 4 K
. . . e ff’ ]
¢ o o®.% % . t
® ® o - iy _g,fﬂ'
hd o oo oo o o TR
® ® o o | |® . - &
hd e o ||® o ° A

microstate macrostate ensemble trajectory

“in fact, momenta — more later. There are oo states, hence we work with their probability density
p(yY)=p(F1, ..., N, P1, ..., Pn)-
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Microcanonical ensemble and ergodic hypothesis s01/2

Microcanonical ensemble = ensemble of microstates in an isolated system (which

has developed in time for a long time) for me:

Also denoted as NVE (N = const, V = const, E = const) e NVE ensemble
I - : N — _ 1 r smaller balls
@ Ergodic hypothesis (quantum): m(y;) = const = v ¢ trajectory

(W = # of states)

@ Ergodic hypothesis (classical):
trajectory covers the spacel with uniform probability

In other words:
Time average (over a trajectory)

. 1 t
= (X)t = tmo?JO X(t)dt

= ensemble average
1
= (X) = — X
(X) W% ()

for any quantity X = X(¢), where ¢ = ¢(t)

d
FOSUIL T e
PR L

namely: the phase state of {(F, ..., n, P1...,Pn)}
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Mean value in the microcanonical ensemble s01/2
D XW)
) ==

Example. You win $5 if you throw &3 on a dice, you loose $1 if you throw anything
else. What is your mean (expected) win in this game? 0

Whole thermodynamics can be built on the top of the microcanonical ensemble.
But for T = const it is much easier.



9/32

We want 7 = const: Canonical ensemble s01/2
Also NVT (N = const, V = const, T = const) el 0% ® e ..o .thgrn:o;t.at.
Ergodic hypothesis: (y) = w(E(Y)) .:0 '. o :0 '. .’:’ oo.: o ° .°..° .’
Ei1+ E> =E714> (do not interact) 00.’ 0.:0 il Tt 0: e :.0 o.°
m(E) = probability of any state :.o.. AR o....2 .o.:.:

) 00 o |0 0® ®|® 0700|® o .0 4
with energy E ®e 00| 00® 0 [6” 00| ® " o

(E1) - m(Ex) =m(E142) =m(E1 + E2) 0 %00 .: ..°:o:. °s %o e 0°.°0.

o %0 _0%0 0, %70 o
= 7(E) = constf = exp(a;— BE) .".0.. ':': .o.! :’.: o :: o

@ Oth Law = B is empirical temperature

@ o, is system-dependent a normalizing const. so that Z¢ ny)=1

Determining (3: monoatomic perfect gas, per 1 atom Uj = %kBT

) = SyEWREW)) [ 5mv2u(zmv?)dv
VTS EW) T [a@mvdydv

Evaluation gives: (U1) = >3 = [B=—




[start /home/jiri/vyuka/maple/beta.mw] 10/3>

Determining

[r33mV2m(3mv2)dv

(U1) = Y
[r3 m(zmV2)dV
f_ =, _oozm(v +v}2/+v2)e 2ﬁm"xdv e —3Pm de e 2Bm"zdvz

—2BmV3 xdvy e —36m ydv e ZBmVZde

f— f— —ooZm
oS o

ZBm xdvy e —36m ydvye_iﬁmvgdvz

—3BmVZ dvy e —36m dey jﬁm"gdvz

_15my2 11 T
_, [2 3mv2e™2PMVadvy _3 251 25mY 36m 31
Bl o —lpmy2 B T 2
f—oo e XdVX %,Bm

0.0

T
We have used the Gauss integral: f e_axzdx = \l; (where a = %,Bm)
—00

and its derivate by parameter a:

00 , 5 d 00 N T
J e gy —_ 4 [T raxtg o AT 1Y
oo da J_« da \a 2a

s01/2
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Determining + 012

1 2
oo 1 2 —5LBmv
Jamvie™? xdvx 1

1
f_OOOO e_jﬁmvid\/x Zﬁ

File Edit View Insert Format Table Drawing Plot Spreadsheet Tools Window Help

DERSE X ¢ BETPX EE &«f@a= M1 OFd ¢ &F[E @ [search for help, tasks, apps...

F illilpleln:ul v;a:"n:nospa::: ITTTIT; v) IU E== ;G == e y
; > Int(1/2%m* (vxA2)*exp (-beta*m*vxA2/2), vx=-infinity..infinity) / |
2 int(exp(-1/2%beta*m*(vxA2)), vx=-infinity..infinity)
assuming m>0,beta>0;
1
2P
>
< |>|z
o[Ready

| /home/jiri/vyuka/maple |Memory: 4.18M |Time: 0.04s |Text Mode
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Mean value in the canonical ensemble s01/2

Generalization of the mean value (= expectation value):

wa(¢)e—ﬁg(¢)
Z‘/f e—BEY)

(X) =D X(W)mEW)) = D X(y)e*FEW) =
g Y

Boltzmann factor: e ¢(W)/ksel

Example. You win $5 if you throw &3 on a dice, you loose $1 if you throw anything
else. However, you have drilled a small lead weight under (*J (opposite to E3) so that
the probabilities are n(3) = 0.2 and n(()) = n(L)) = n()) = n(CI) = n((J) = 0.16.

What is your mean (expected) win in this game? 2'0%



Boltzmann probability igﬁ;

... or the first half of statistical thermodynamics.

Probability of finding a state with energy £ is proportional to o
3 E
n(E) = const - exp [—M] = const - exp (__m)
ksl RT

@ o reacting system can overcome the activation energy E* with probability ~

*

exp (_W) = Arrhenius formula
E*
k=A exp (_ﬁ)

@ the energy needed for transfering a molecule from liquid to gas is AvapHm
(per mole), probability of finding a molecule in vapor is proportional to ~

exp(—A";pTl_lm) = Clausius-Clapeyron equation (integrated)

BN I TE S| IO G 1
P =Ppoexp R \T To/l . RT

Examples:
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Barometric formula T 01,2

... Boltzmann probability once again

Potential energy of a molecule in a homogeneous gravitational field Upot = mgh.
Probability of finding a molecule in height h:

Upot magh Mgh
(-4 -oo{ ) ool 1)
kgl kgl RT

Probability o density « pressure:
Mgh
P = Po eXP (_F)
The same formula can be derived from the condition of mechanical equilibrium +
Ideal gas equation of state

Mp

dp = —dhpg, p=—
p g, P =

Which “leads to” the Boltzmann probability
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Boltzmann probability s01/2

Example Energy of the gauche conformation of butane is by AE = 0.9 kcal/mol
higher than anti. Calculate the population of molecules which are in the gauche
state at temperature 272.6 K (boiling point). (1 cal = 4.184 )).

Solution:
_ AE
nt(gauche) : (anti) = exp (_ﬁ) =0.190
Don’t forget that there are two gauche states!

2nt(gauche) + (anti) =1

2 exp(—AE/RT) 2 x 0.190

m= = =0.275
2exp(—AE/RT)+1 2x0.190+1

Note: we assumed that both minima are well separated and their shapes are iden-
tical. Better formula would be with AG instead of AE
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Thermodynamics 501/2

Internal energy

U= EW)m(y)
Y

Its small change is

dU = > m(g)-dEW) + D, dm(y) - E(Y)
¢ ¢

dé(Y): energy level changed
dn(y): probability of state ¢ changed

Thermodynamics:
dU=—pdV + TdS

@ —pdV: A “piston” moved by dx. Change in energy = d£(¢) = mechanical work
= —Fdx =—F/A-d(Ax) = —p($) dV
p(Y) = “pressure of state ¢”, pressure = p = Zw t(Y)p(yY).

@ 7ds: Change n(¢) [V] = change of the population of states with varying energies
= heat
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Boltzmann equation for entropy s01/2

... 0or the 2nd half of the statistical thermodynamics

1
n(E) = exp(a;—BE) = 5(!/!)=E[O!i—|nﬂ(l/!)]

1 1
2, dnWIEW) = D dn()plai—Inm(y)] = —5 > dn(y) - Inm(y)
¢ ¢ ¢

=—kgTd | > 7(¢) Inm(y)
Y

On comparing with TdS:
S=—kg ) m(y)Inm(y)
¢

1/W for E=£(Y)

Microcanonical ensemble: t(¢) = {O for E # £()

Boltzmann equation: S = kg In W

Property: S142 =51+ S> =kgIn(W1W>) =kgIn(W14+2)
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Example: Ideal solution s01/2

Energies of neighbors: e-e = e—-e = e-e
All configurations have the same energy

Mix N1 molecules of 1 + N> molecules of 2:

(N) N!
W = =
N1 Nq1!'N>!

S=krlnW k (N I N1 N> | NZ)
= nNW=~a— n—+ n—
B B 1 N 2 N

Sm=—R(X1lnXx1+Xx2InXx3)
cf. S=—I<BZ¢, () In(yY)
We used the Stirling formula, InN!'~NInN — N:
N N by parts
InN!=ZIni~J Inxdx 7 & [xlnx—x]g’=NInN—N
i=1 0

More accurately:

. 1 1 1
INN! 2P NInN =N+ In V271N +

— + — +
12N  360N3 1260N>
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Example: Residual entropy of crystals at 7 — 0 s01/2

Crystal: 1 microstate = S=kgIn1l =0 (3rd Law)

3rd Law violation: CO, N»>O, H>O.
Not in the true equilibrium, but “frozen”
because of high barriers

Example 1: Entropy of a crystal of CO at 0K
Sm=kgIn2NA=RIn2

Example 2: Entropy of ice at 0 K
Sm=kgIn1.507NA =3.41)K 1 mol~1

Pauling’s derivation:

@ 6 = (5) orientations of a water molecule

@ then an H-bond is wrong with prob.=
@ 2N bonds in a mole

N
® = Sn=kgln (262,\, ) =3.37) K1 mol—1



Example: Information entropy of DNA igﬁ;

Assuming random and equal distribution of base pairs.
Per one base pair: S=kglIn4, per mole: S;m =R In4.

Corresponding Gibbs energy (at 37 °C):
AGm =—RTIn4 =—-3.6k]mol—1

To be compared to: ATP — ADP
- standard: ArGY. =—31kJmol~!
— in usual conditions in a cell: A\Gm =—=57 k] mol~1

credit: www.pbs.org/wgbh/nova/sciencenow/3214,/01-coll-04.html



Boltzmann H-theorem (Second Law) + iéﬁ;

Fermi golden rule for the transition probability ¢ — ¢ caused by a perturbing
Hamiltonian Hpert (in an isolated system):

dmu(¢p — 2m
(q;t 2 =W(¢p—¢) = F|(¢|Hpert|¢)|zpﬁnal =Wy — ¢)=Wyy

Change of the population of state ¢ (master equation):;

dm(y)
dt

Rate of entropy change:

ds d
— = —kaz n(@) INT(Y) =—k > InT(Y) D> Weyl m(¢) — m(y)]
v v b

= > (OIW(P — Y)— T(Y) > WY — ¢) = > Wey[m(¢) — m(§)]
b 5 s

Trick: swap ¢ «— ¢ and sum:
ds 1

= = Sk > WyglIn (@)~ Inm(Y)I[1(9) — m(¥)] 2 0
v, ¢

The entropy of an isolated system never decreases

Loschmidt paradox: Irreversibility from reversible microscopic laws
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Maxwell(-Boltzmann) distribution of velocities s01/2

The probability that a molecule is found in:

@ a tiny box dxdydz with coordinates in intervals [x, x+dx), [y, y+dy) a [z, z+ dz)
AND

@ with velocities in intervals [ vx, vx + dvx), [ vy, vy + dvy), [Vz, vz + dVvz),

IS proportional to the Boltzmann factor

( Epot + Ekin)
exp| —

kgl
1
—Epot)__[—3mV3 —2mvy —5mV?
= exp exp exp exp
kgl kgl kgl kgl

The probability that a molecule is found with velocities in intervals [ vx, vx + dvx),
[ vy, vy + dVvy), [Vz vz + dV;) (irrespective of Epot) is proportional to

1 2 1 2 1 2
—>MVy vay —>MV;
exp exp exp

kgl kgl kgl
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Maxwell distribution - historical approach + 012

@ Assumptions:
— T IS Isotropic
— 1 is composed of independent contributions of coordinates,

m(Vx, Vy, Vz) = T(Vx)T(vy)n(vz)
- liMy =0 T[(Vx, Vy, Vz) =0
The only function satisfying these conditions is

1(vx) = const x exp(—const - v>2<)

Examples of functions:
1. x? +y2 — is isotropic, but is not a product, bad limit

2. x%y? —is a product, is not isotropic, bad limit
3

3.
(1+x2)(1+y?2)
4. 3 exp(—x2/2 —y2/2) — good!

@ Assumption:
— velocity is a sum of many small random “hits”
Central limit theorem = Gauss distribution

—is a product, is not isotropic, good limit
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Experimental verification 501/2

@ Doppler broadening of spectral lines

A —)\O Vx
A C
@ molecular beam:
Stern, Zartman (1920): Lammert (1929)
1 = Pt wire covered by Ag? vapor of Bi or Hg (?)
2 = slit
3 = screen OVER  collimator

detector

3//)\ --------------
U

credit: http://encyclopedia2.thefreedictionary.com/Stern-Zartman+Experiment

dother literature: Sn oven
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Pseudoexperimental verification and consequences s01/2

Normalized distribution in one coordinate:
1 —v?2 keT RT
X 2 2
m(vy) = ——ex , 0f=(V) = —= —
(¥ ovV2m p(Zo\z/) v =V m M

Distribution of velocities, i.e., probability density that a particle is found with v = | V|
in interval [v, v+ dv):

, 2 v2 —v?2
(V) = 4nven(vx)m(vy)m(vz) = ;gexp 502

0.001 - — 0.0005
L TE
for me (tchem/MBexpE.sh): = S
QR R
2 switch to NVE
F record
F stop recording
. 0 | l l 0
ESC ESC  quit ~1000 -500 0 500 100 0 500 1000

v,/ ms™ v/ms™



Consequences

Mean velocity

B o0 8 S8RT 8kgl
V=J vr(v)dv=\|—0oy=\|—=\|——
0 T M mm

Mean quadratic velocity

_ 0 5 3RT 3kgl
Vg = f vem(v)dv =A\—=\|——
0 M m

Most probable velocity

dm |2RT |2/<|3T
d_ =0 = Vmax =

Speed of sound (k = Cp/Cy)

KRT Kkgl

M m

Vsound =

[cd ../maple; xmaple maxwell.mws] 26/32

+ s01/2

;> restart; assume(s>0);

> p 1= X -> 1/s/sqrt(2*Pi)*exp(-xA2/sA2/2);
10X
2 2

pi=XxX—
SJZTR

> int(p(x),x=-infinity..infinity);

1

> ppp := X -> sqrt(2/Pi)#*xA2/sA3%exp(-xA2/sA2/2);

1x2

2 X e_? 2
ppp = x— :
hY

s simplify(int(ppp(x),x=0..infinity));

1

mean velocity

> int(v¥ppp(v),v=0..infinity);
2 ﬁ S
/=

'mean quadratic velocity

> sqri(simplify(int(vA2¥ppp(v),v=0..infinity)));

J3 s~

‘most probable velocity

> eq:=diff(ppp(v),v)=0; solve({eq,v>0},v);

1 1

2 2 2 2
. _2J2ve %7 J2 Ve T ¥ _0
T R s J7 s

(v=J7 s-)
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Thermodynamics finished 501/2

n(Y) =expla—BE(Y)]

a=7

Yu(y)=1= Xdn(¢)=0
U
S=—kg ) m(y)Inm(y)=—kp > w)[a—BEW)] =— (ksa— ;)
Y Y

a = —— = F=—kerTln e—BE(Y)
kgl kgl B %:

[...] = canonical partition function = statistical sum (Q or 2)

Interpretation: number of “accessible” states (low-energy states are easily accessi-
ble, high-energy states are not)

From the Helmholtz energy F we can obtain all quantities: dF = —pdV —-5dT
oF
p = Y U = F+TS
3F H = U+ pV
S = G = F+pV

aT
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Semiclassical partition function s01/2

Hamilton formalism: positions of atoms = F;, momenta = p;.
B2
& =H =Epot+ Ekin, Epot=U(r1,...,7n), Ekin =Zﬁ
[

Sum over states replaced by integrals:

1
_ S e BEW)
Z_%:e ~ N!h3N

where h = 2mth = Planck constant.

feXp[_BH(FllFZI'"IFNIﬁll"'IﬁN)] dFl'“dﬁN

Why the factorial?

@ Particles are indistinguishable ... but appear in different quantum states
Why Planck constant?

@ Has the correct dimension (Z must be dimensionless)

@ We get the same result for noninteracting quantum particles in a box
(vide infra)
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Semiclassical partition function s01/2

Integrals over positions and momenta are separated

Integrals over momenta can be evaluated:

J exp(—pix/ZkBTm) = \/anBTm

After 3N integrations we get:

Q h
= , de Broglie thermal wavelength: A=
NIA3N v 2mmkgT

N\ = de Broglie wavelength at typical particle velocity at given T

Z

requirement: A < typical atom-atom separation ~ (V/N)1/3

Configurational integral:
do not confuse:
Q= J exp[—BU(r1,...,Fn)]dr1...dFfy U = internal energy

. U(ry,...) = potential
Mean value of a static quantity (observable):

1
(X) =5JX(Fl,...,fN)exp[—ﬁU(Fl,...,FN)] dry...dry
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Thermal de Broglie wavelength s01/2

Example

a) Calculate A for helium at T =2 K.
b) Compare to the typical distance of atoms in liquid helium (density 0.125gcm™3).

yg8e(q:ycoale

credit: hight3ch.com/superfluid-liquid-helium/



- - . = 31/32
Semiclassical monoatomic ideal gas s01/2

Q=fexp[0]d?1...dFN=J dFl---J dry = VN
"4 "4
Q VN VN Ve

= N!/\3N = N!/\3N ~ NNe_N/\3N’ F = —/<BT|nZ = —/(BTN|n—N/\3

b =_(3F) _k8TN _nRT e = Euler number

Z

avV)r Vv V e = elementary charge
oF 3NkgTl
U=F+TS=F—T(—) =
ol Jy 2

oF NA3 pA3
u=(—) = kgTIn| — | = kgTIn| —
oN /T v 4 kgl

(with respect to the standard state of a free molecule at zero temperature)

And verification:

NA3
G=F+pV=I<BTNInV—+NI<BT=Nu
e
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Monoatomic ideal gas + 01,2

Or quantum calculation of the translational partition function:

Eigenvalues of energy of a point massin a a x b x ¢ box:

2 2 n2 2
o h nX+ y+ n;
8m\ a2 b2 (2

Maxwell-Boltzmann statistics: high enough temperature so that a few particles
compete for the same quantum state - it does not matter whether we have fermions
or bosons; equivalently, A <€ distance between particles.

Partition function:

®© o o P 0 00 ~ 0O vV
Zi= ». > > exp(—BE) meO JO fo exp(—ﬁé’)dnxdnyd”ﬁp

nx=1ny=1nz=1

N
— , —_ 7N
E = El:El = Z= N!Z1
=

Yes, it is the same! The choice of factor 1/h3N in the semiclassical Z was correct.



