Pressure of ideal gas from the kinetic theory I

Molecule $=$ point mass
N molecules of masses $m_{i}, i=1, \ldots, N$, in a cube of edge L Velocity of molecule i is $\vec{v}_{i}=\left(v_{i, x}, v_{i, y}, v_{i, z}\right)$
After elastic reflection: $v_{i, x} \rightarrow-v_{i, x}$
A molecule hits the same wall again after time $t=2 L / v_{i, x}$
Force $=$ change of momentum in a time unit Momentum $\vec{P}=m \vec{v}$
Change of momentum $=\Delta P_{\chi}=2 m_{i} v_{i, x}$
Averaged force caused by impacts of one molecule:

$$
F_{i, x}=\frac{\Delta P_{x}}{t}=\frac{2 m_{i} v_{i, x}}{2 L / v_{i, x}}=\frac{m_{i} v_{i, x}^{2}}{L}
$$

χ

Pressure $=$ force of all N molecules, divided by the area

$$
p=\frac{\sum_{i=1}^{N} F_{i, x}}{L^{2}}=\frac{\sum_{i=1}^{N} m_{i} v_{i, x}^{2}}{L^{3}}
$$

Kinetic energy of one molecule

$$
\frac{1}{2} m_{i}\left|\vec{v}_{i}\right|^{2} \equiv \frac{1}{2} m_{i} v_{i}^{2}=\frac{1}{2} m_{i}\left(v_{i, x}^{2}+v_{i, y}^{2}+v_{i, z}^{2}\right)
$$

Pressure of ideal gas from the kinetic theory II

Kinetic energy of gas = internal energy (monoatomic gas)

$$
\begin{gathered}
E_{\mathrm{kin}}=\frac{1}{2} \sum_{i=1}^{N} m_{i} v_{i}^{2}=\frac{3}{2} \sum_{i=1}^{N} m_{i} v_{i, x}^{2} \\
p=\frac{\sum_{i=1}^{N} m_{i} v_{i, x}^{2}}{L^{3}}=\frac{2}{3} \frac{E_{\mathrm{kin}}}{V}
\end{gathered}
$$

In other words

$$
p V=\frac{2}{3} E_{\text {kin }} \stackrel{!}{=} n R T
$$

Temperature is a measure of kinetic energy
Assumptions:
Pressure is a result of averaged impacts of molecules
We used the classical mechanics

Per one molecule:

$$
\begin{gathered}
n=\frac{N}{N_{\mathrm{A}}} \\
k_{\mathrm{B}}=\frac{R}{N_{\mathrm{A}}}=1.38065 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}
\end{gathered}
$$

Equation of state:

$$
p V=n R T=N k_{\mathrm{B}} T
$$

Internal energy:

$$
U \equiv E_{\mathrm{kin}}=\frac{3 n}{2} R T=\frac{3 N}{2} k_{\mathrm{B}} T
$$

Equipartition principle

Expression $E_{\text {kin }}$ is composed of $f=3 N$ terms of the form $\frac{1}{2} m_{i} v_{i, k}^{2}$, where $k \in\{x, y, z\}$.

$$
p V=N k_{\mathrm{B}} T=\frac{f}{3} k_{\mathrm{B}} T=\frac{2}{3} E_{\text {kin }}
$$

$f=$ number of mechanical degrees of freedom.
Average energy contribution per one degree of freedom:

$$
\frac{E_{\mathrm{kin}}}{f}=\frac{1}{2} k_{\mathrm{B}} T
$$

Generalization: any quadratic function in the Hamiltonian Heat capacity in molar units $\left(N=N_{\mathrm{A}}\right)$:

$$
C_{V \mathrm{~m}}=\left(\frac{\partial U}{\partial T}\right)_{V}=\left(\frac{\partial E_{\text {kin }}}{\partial T}\right)_{V}=\frac{\frac{1}{2} f k_{\mathrm{B}} T}{N_{\mathrm{A}} T}=\frac{3}{2} R
$$

Extension:
Linear molecules: +2 rotations, $C_{V m}=\frac{5}{2} R$ (but: hydrogen)
Nonlinear molecules: +3 rotations, $C_{V m}=3 R$
(Vibrations classically: +2 for each (incl. Epot $)$ - imprecise!)

Equipartition principle - example

Calculate $C_{p m}$ for a) nitrogen, b) water vapor?

Experiment: $\mathrm{N}_{2}(300 \mathrm{~K}): 29.12 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~K}): 35.22 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Isobaric heat capacity of water vapor $\rightarrow \rightarrow \rightarrow$

O microstate (state, configuration) = instantaneous "snapshot" at given time quantum description: state $=$ eigenstate (wave function ψ) classical description: state $=$ positions and velocities* of all particles at given time, $\psi=\left(\vec{r}_{1}, \ldots, \vec{r}_{N}, \vec{v}_{1} \ldots, \vec{v}_{N}\right)$
macrostate $=$ averaged action of all microstates
ensemble $=$ set of all microstates with known probabilities $\boldsymbol{\pi}(\psi)$
trajectory $=$ record of a time development of a microstate

microstate

macrostate

ensemble

trajectory
*in fact, momenta - more later. There are ∞ states, hence we work with their probability density $\rho(\psi) \equiv \rho\left(\vec{r}_{1}, \ldots, \vec{r}_{N}, \vec{p}_{1}, \ldots, \vec{p}_{N}\right)$.

Microcanonical ensemble $=$ ensemble of microstates in an isolated system (which has developed in time for a long time)
Also denoted as NVE ($N=$ const, $V=$ const, $E=$ const)
Ergodic hypothesis (quantum): $\boldsymbol{\pi}\left(\psi_{i}\right)=$ const $=\frac{1}{W}$ (W = \# of states)
for me:
e NVE ensemble
r smaller balls
c trajectory

Ergodic hypothesis (classical): trajectory covers the space ${ }^{\dagger}$ with uniform probability

In other words:

Time average (over a trajectory)

$$
=\langle X\rangle_{t}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} X(t) \mathrm{d} t
$$

= ensemble average

$$
=\langle X\rangle=\frac{1}{W} \sum_{\psi} X(\psi)
$$

for any quantity $X=X(\psi)$, where $\psi=\psi(t)$
${ }^{\dagger}$ namely: the phase state of $\left\{\left(\vec{r}_{1}, \ldots, \vec{r}_{N}, \vec{p}_{1} \ldots, \vec{p}_{N}\right)\right\}$

$$
\langle X\rangle=\frac{\sum_{\psi} X(\psi)}{W}
$$

Example. You win $\$ 5$ if you throw $\%$ on dice, you loose $\$ 1$ if you throw anything else. What is your mean (expected) win in this game?

Whole thermodynamics can be built on the top of the microcanonical ensemble. But for $T=$ const it is much easier.

Also NVT ($N=$ const, $V=$ const, $T=$ const)
Ergodic hypothesis: $\boldsymbol{\pi}(\psi)=\boldsymbol{\pi}(\mathcal{E}(\psi))$
$E_{1}+E_{2}=E_{1+2}$ (do not interact)
$\boldsymbol{\pi}(E)=$ probability of any state with energy E

$$
\begin{aligned}
& \pi\left(E_{1}\right) \cdot \pi\left(E_{2}\right)=\pi\left(E_{1+2}\right)=\pi\left(E_{1}+E_{2}\right) \\
& \Rightarrow \pi(E)=\mathrm{const}^{E}=\exp \left(\alpha_{i}-\beta E\right)
\end{aligned}
$$

Oth Law $\Rightarrow \beta$ is empirical temperature
α_{i} is system-dependent a normalizing const. so that $\sum_{\psi} \pi(\psi)=1$
Determining β : monoatomic perfect gas, per 1 atom $U_{1}=\frac{3}{2} k_{\mathrm{B}} T$

$$
\left\langle U_{1}\right\rangle=\frac{\sum_{\psi} \mathcal{E}(\psi) \pi(\mathcal{E}(\psi))}{\sum_{\psi} \pi(\mathcal{E}(\psi))}=\frac{\int \frac{1}{2} m \vec{v}^{2} \pi\left(\frac{1}{2} m \vec{v}^{2}\right) \mathrm{d} \vec{v}}{\int \pi\left(\frac{1}{2} m \vec{v}^{2}\right) \mathrm{d} \vec{v}}
$$

Evaluation gives: $\left\langle U_{1}\right\rangle=\frac{3}{2} \frac{1}{\beta} \Rightarrow \beta=\frac{1}{k_{\mathrm{B}} T}$

Determining β

$$
\begin{gathered}
\left\langle U_{1}\right\rangle=\frac{\int_{R^{3}} \frac{1}{2} m \vec{v}^{2} \pi\left(\frac{1}{2} m \vec{v}^{2}\right) \mathrm{d} \vec{v}}{\int_{R^{3}} \pi\left(\frac{1}{2} m \vec{v}^{2}\right) \mathrm{d} \vec{v}} \\
=\frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x} \mathrm{e}^{-\frac{1}{2} \beta m v_{y}^{2}} \mathrm{~d} v_{y} \mathrm{e}^{-\frac{1}{2} \beta m v_{z}^{2}} \mathrm{~d} v_{z}}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x} \mathrm{e}^{-\frac{1}{2} \beta m v_{y}^{2}} \mathrm{~d} v_{y} \mathrm{e}^{-\frac{1}{2} \beta m v_{z}^{2}} \mathrm{~d} v_{z}} \\
=3 \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} m v_{x}^{2} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x} \mathrm{e}^{-\frac{1}{2} \beta m v_{y}^{2}} \mathrm{~d} v_{y} \mathrm{e}^{-\frac{1}{2} \beta m v_{z}^{2}} \mathrm{~d} v_{z}}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2} \mathrm{~d} v_{x} \mathrm{e}^{-\frac{1}{2} \beta m v_{y}^{2}} \mathrm{~d} v_{y} \mathrm{e}^{-\frac{1}{2} \beta m v_{z}^{2}} \mathrm{~d} v_{z}}} \\
=3 \frac{\int_{-\infty}^{\infty} \frac{1}{2} m v_{x}^{2} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x}}{\int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x}}=3 \frac{\frac{1}{2} m \frac{1}{2 \frac{1}{2} \beta m} \sqrt{\frac{\pi}{\frac{1}{2} \beta m}}}{\sqrt{\frac{\pi}{\frac{1}{2} \beta m}}}=\frac{3}{2} \frac{1}{\beta}
\end{gathered}
$$

We have used the Gauss integral: $\int_{-\infty}^{\infty} \mathrm{e}^{-a x^{2}} \mathrm{~d} x=\sqrt{\frac{\pi}{a}}$ (where $a=\frac{1}{2} \beta m$) and its derivate by parameter a :

$$
\int_{-\infty}^{\infty} x^{2} \mathrm{e}^{-a x^{2}} \mathrm{~d} x=-\frac{\mathrm{d}}{\mathrm{~d} a} \int_{-\infty}^{\infty} \mathrm{e}^{-a x^{2}} \mathrm{~d} x=-\frac{\mathrm{d}}{\mathrm{~d} a} \sqrt{\frac{\pi}{a}}=\frac{1}{2 a} \sqrt{\frac{\pi}{a}}
$$

Determining β

$$
\frac{\int_{-\infty}^{\infty} \frac{1}{2} m v_{x}^{2} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x}}{\int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} \beta m v_{x}^{2}} \mathrm{~d} v_{x}}=\frac{1}{2 \beta}
$$

File Edit View Insert Format Tabble Drawing Plot Spreadsheet Tools Window Help

> int ($1 / 2^{*} \mathrm{~m}^{*}(\mathrm{vx} \wedge 2) * \exp \left(-b e t a{ }^{*} \mathrm{~m}^{*} \mathrm{vx} \wedge 2 / 2\right), \mathrm{vx}=-$ infinity.. infinity) / int(exp ($-1 / 2^{*}$ beta* $\mathrm{m}^{*}(\mathrm{vx} \wedge 2)$), vx=-infinity..infinity) assuming $m>0$,beta >0;

$$
\frac{1}{2 \beta}
$$

Mean value in the canonical ensemble

Generalization of the mean value (= expectation value):

$$
\langle X\rangle=\sum_{\psi} X(\psi) \pi(\mathcal{E}(\psi))=\sum_{\psi} X(\psi) \mathrm{e}^{\alpha-\beta \mathcal{E}(\psi)}=\frac{\sum_{\psi} X(\psi) \mathrm{e}^{-\beta \mathcal{E}(\psi)}}{\sum_{\psi} \mathrm{e}^{-\beta \mathcal{E}(\psi)}}
$$

Boltzmann factor: $\mathrm{e}^{-\mathcal{E}(\psi) / k_{\mathrm{B}} T}$

Example. You win $\$ 5$ if you throw $: 8$ on dice, you loose $\$ 1$ if you throw anything else. However, you have drilled a small lead weight under \square (opposite to ${ }^{\circ}$) so that
 What is your mean (expected) win in this game?
... or the first half of statistical thermodynamics.
Probability of finding a state with energy \mathcal{E} is proportional to

$$
\pi(\mathcal{E})=\text { const } \cdot \exp \left[-\frac{\mathcal{E}(\psi)}{k_{\mathrm{B}} T}\right]=\text { const } \cdot \exp \left(-\frac{E_{\mathrm{m}}}{R T}\right)
$$

Examples:

a reacting system can overcome the activation energy E^{*} with probability \sim $\exp \left(-\frac{E^{*}}{R T}\right) \Rightarrow$ Arrhenius formula

$$
k=A \exp \left(-\frac{E^{*}}{R T}\right)
$$

the energy needed for transfering a molecule from liquid to gas is $\Delta_{\text {vap }} H_{m}$ (per mole), probability of finding a molecule in vapor is proportional to \sim $\exp \left(-\frac{\Delta_{\mathrm{vap}} H_{m}}{R T}\right) \Rightarrow$ Clausius-Clapeyron equation (integrated)

$$
p=p_{0} \exp \left[-\frac{\Delta_{\mathrm{vap}} H_{\mathrm{m}}}{R}\left(\frac{1}{T}-\frac{1}{T_{0}}\right)\right]=\text { const } \cdot \exp \left(-\frac{\Delta_{\mathrm{vap}} H_{\mathrm{m}}}{R T}\right)
$$

Barometric formula

Potential energy of a molecule in a homogeneous gravitational field $U_{\text {pot }}=m g h$. Probability of finding a molecule in height h :

$$
\pi \propto \exp \left(-\frac{U_{\mathrm{pot}}}{k_{\mathrm{B}} T}\right)=\exp \left(-\frac{m g h}{k_{\mathrm{B}} T}\right)=\exp \left(-\frac{M g h}{R T}\right)
$$

Probability \propto density \propto pressure:

$$
p=p_{0} \exp \left(-\frac{M g h}{R T}\right)
$$

The same formula can be derived from the condition of mechanical equilibrium + ideal gas equation of state

$$
\mathrm{d} p=-\mathrm{d} h \rho g, \quad \rho=\frac{M p}{R T}
$$

Which "leads to" the Boltzmann probability

Boltzmann probability

Example Energy of the gauche conformation of butane is by $\Delta E=0.9 \mathrm{kcal} / \mathrm{mol}$ higher than anti. Calculate the population of molecules which are in the gauche state at temperature 272.6 K (boiling point). ($1 \mathrm{cal}=4.184 \mathrm{~J}$).

Solution:

$$
\pi(\text { gauche }): \pi(\text { anti })=\exp \left(-\frac{\Delta E}{R T}\right)=0.190
$$

Don't forget that there are two gauche states!

$$
\Rightarrow
$$

$$
\begin{gathered}
2 \pi(\text { gauche })+\pi(\text { anti })=1 \\
\pi=\frac{2 \exp (-\Delta E / R T)}{2 \exp (-\Delta E / R T)+1}=\frac{2 \times 0.190}{2 \times 0.190+1}=0.275
\end{gathered}
$$

Note: we assumed that both minima are well separated and their shapes are identical. Better formula would be with ΔG instead of ΔE

Thermodynamics

Internal energy

$$
U=\sum_{\psi} \mathcal{E}(\psi) \pi(\psi)
$$

Its small change is

$$
\mathrm{d} U=\sum_{\psi} \pi(\psi) \cdot \mathrm{d} \mathcal{E}(\psi)+\sum_{\psi} \mathrm{d} \pi(\psi) \cdot \mathcal{E}(\psi)
$$

$\mathrm{d} \mathcal{E}(\psi)$: energy level changed $\mathrm{d} \pi(\psi)$: probability of state ψ changed

Thermodynamics:

$$
\mathrm{d} U=-p \mathrm{~d} V+T \mathrm{~d} S
$$

$-p \mathrm{~d} V$: A "piston" moved by $\mathrm{d} x$. Change in energy $=\mathrm{d} \mathcal{E}(\psi)=$ mechanical work $=-F \mathrm{~d} x=-F / \mathcal{A} \cdot \mathrm{d}(\mathcal{A} x)=-p(\psi) \mathrm{d} V$ $p(\psi)=$ "pressure of state $\psi "$, pressure $=p=\sum_{\psi} \pi(\psi) p(\psi)$.
$T \mathrm{dS}$: Change $\boldsymbol{\pi}(\psi)[V]=$ change of the population of states with varying energies = heat

Boltzmann equation for entropy

... or the 2 nd half of the statistical thermodynamics

$$
\begin{aligned}
\pi(E) & =\exp \left(\alpha_{i}-\beta E\right) \Rightarrow \mathcal{E}(\psi)=\frac{1}{\beta}\left[\alpha_{i}-\ln \pi(\psi)\right] \\
\sum_{\psi} \mathrm{d} \boldsymbol{\pi}(\psi) \mathcal{E}(\psi) & =\sum_{\psi} \mathrm{d} \pi(\psi) \frac{1}{\beta}\left[\alpha_{i}-\ln \pi(\psi)\right]=-\frac{1}{\beta} \sum_{\psi} \mathrm{d} \boldsymbol{\pi}(\psi) \cdot \ln \pi(\psi)
\end{aligned}
$$

$$
=-k_{\mathrm{B}} T \mathrm{~d}\left[\sum_{\psi} \pi(\psi) \ln \pi(\psi)\right]
$$

On comparing with $T \mathrm{~d} S$:

$$
S=-k_{\mathrm{B}} \sum_{\psi} \pi(\psi) \ln \pi(\psi)
$$

Microcanonical ensemble: $\pi(\psi)= \begin{cases}1 / W & \text { for } E=\mathcal{E}(\psi) \\ 0 & \text { for } E \neq \mathcal{E}(\psi)\end{cases}$
Boltzmann equation: $S=k_{\mathrm{B}} \ln W$
Property: $S_{1+2}=S_{1}+S_{2}=k_{\mathrm{B}} \ln \left(W_{1} W_{2}\right)=k_{\mathrm{B}} \ln \left(W_{1+2}\right)$

Example: Ideal solution

Energies of neighbors: $\bullet-\bullet=\bullet-\bullet=\bullet \bullet$ All configurations have the same energy $\operatorname{Mix} N_{1}$ molecules of $1+N_{2}$ molecules of 2 :

$$
W=\binom{N}{N_{1}}=\frac{N!}{N_{1}!N_{2}!}
$$

$$
S=k_{\mathrm{B}} \ln W \approx-k_{\mathrm{B}}\left(N_{1} \ln \frac{N_{1}}{N}+N_{2} \ln \frac{N_{2}}{N}\right)
$$

$$
S_{m}=-R\left(x_{1} \ln x_{1}+x_{2} \ln x_{2}\right)
$$

cf. $S=-k_{\mathrm{B}} \sum_{\psi} \pi(\psi) \ln \pi(\psi)$

We used the Stirling formula, $\ln N!\approx N \ln N-N$:

$$
\ln N!=\sum_{i=1}^{N} \ln i \approx \int_{0}^{N} \ln x \mathrm{~d} x \stackrel{\text { by parts }}{=}[x \ln x-x]_{0}^{N}=N \ln N-N
$$

More accurately:

$$
\ln N!\stackrel{\text { asympt. }}{=} N \ln N-N+\ln \sqrt{2 \pi N}+\frac{1}{12 N}-\frac{1}{360 N^{3}}+\frac{1}{1260 N^{5}}-\cdots
$$

Crystal: 1 microstate $\Rightarrow S=k_{\mathrm{B}} \ln 1=0$ (3rd Law)
3rd Law violation: $\mathrm{CO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$.
Not in the true equilibrium, but "frozen" because of high barriers

Example 1: Entropy of a crystal of CO at 0 K

$$
S_{\mathrm{m}}=k_{\mathrm{B}} \ln 2^{N_{\mathrm{A}}}=R \ln 2
$$

Example 2: Entropy of ice at 0 K

$$
S_{\mathrm{m}}=k_{\mathrm{B}} \ln 1.507^{N_{\mathrm{A}}}=3.41 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Pauling's derivation:

$6=\binom{4}{2}$ orientations of a water molecule
then an H -bond is wrong with prob. $=\frac{1}{2}$
$-2 N_{\mathrm{A}}$ bonds in a mole
$\Rightarrow S_{\mathrm{m}}=k_{\mathrm{B}} \ln \left(\frac{6^{N_{\mathrm{A}}}}{2^{2 N_{\mathrm{A}}}}\right)=3.37 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Example: Information entropy of DNA

Assuming random and equal distribution of base pairs.
Per one base pair: $S=k_{\mathrm{B}} \ln 4$, per mole: $S_{m}=R \ln 4$.
Corresponding Gibbs energy (at $37^{\circ} \mathrm{C}$):

$$
\Delta G_{\mathrm{m}}=-R T \ln 4=-3.6 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

To be compared to: ATP \rightarrow ADP

- standard: $\Delta_{\mathrm{r}} G_{\mathrm{m}}^{\ominus}=-31 \mathrm{~kJ} \mathrm{~mol}^{-1}$
- in usual conditions in a cell: $\Delta_{r} G_{m}=-57 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Boltzmann H-theorem (Second Law)

Fermi golden rule for the transition probability $\phi \rightarrow \psi$ caused by a perturbing Hamiltonian $\mathcal{H}_{\text {pert }}$ (in an isolated system):

$$
\left.\frac{\mathrm{d} \pi(\phi \rightarrow \psi)}{\mathrm{d} t} \equiv W(\phi \rightarrow \psi)=\frac{2 \pi}{\hbar}\left|\langle\phi| \mathcal{H}_{\text {pert }}\right| \psi\right\rangle\left.\right|^{2} \rho_{\text {final }}=W(\psi \rightarrow \phi)=W_{\psi \phi}
$$

Change of the population of state ψ (master equation):

$$
\frac{\mathrm{d} \pi(\psi)}{\mathrm{d} t}=\sum_{\phi} \boldsymbol{\pi}(\phi) W(\phi \rightarrow \psi)-\pi(\psi) \sum_{\phi} W(\psi \rightarrow \phi)=\sum_{\phi} W_{\phi \psi}[\pi(\phi)-\pi(\psi)]
$$

Rate of entropy change:

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}=-k \frac{\mathrm{~d}}{\mathrm{~d} t} \sum_{\psi} \pi(\psi) \ln \pi(\psi)=-k \sum_{\psi} \ln \pi(\psi) \sum_{\phi} W_{\phi \psi}[\pi(\phi)-\pi(\psi)]
$$

Trick: swap $\phi \leftrightarrow \psi$ and sum:

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}=\frac{1}{2} k \sum_{\psi, \phi} W_{\psi \phi}[\ln \pi(\phi)-\ln \pi(\psi)][\pi(\phi)-\pi(\psi)] \geq 0
$$

The entropy of an isolated system never decreases

Maxwell(-Boltzmann) distribution of velocities

The probability that a molecule is found in:
a tiny box $\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$ with coordinates in intervals $[x, x+\mathrm{d} x),[y, y+\mathrm{d} y)$ a $[z, z+\mathrm{d} z)$ AND
with velocities in intervals [$\left.v_{x}, v_{x}+d v_{x}\right),\left[v_{y}, v_{y}+d v_{y}\right),\left[v_{z}, v_{z}+d v_{z}\right)$, is proportional to the Boltzmann factor

$$
\begin{aligned}
& \exp \left(-\frac{E_{\text {pot }}+E_{\text {kin }}}{k_{\mathrm{B}} T}\right) \\
= & \exp \left(\frac{-E_{\text {pot }}}{k_{\mathrm{B}} T}\right) \exp \left(\frac{-\frac{1}{2} m v_{x}^{2}}{k_{\mathrm{B}} T}\right) \exp \left(\frac{-\frac{1}{2} m v_{y}^{2}}{k_{\mathrm{B}} T}\right) \exp \left(\frac{-\frac{1}{2} m v_{z}^{2}}{k_{\mathrm{B}} T}\right)
\end{aligned}
$$

The probability that a molecule is found with velocities in intervals [$v_{x}, v_{x}+d v_{x}$), [$v_{y}, v_{y}+d v_{y}$), [$v_{z}, v_{z}+d v_{z}$) (irrespective of $E_{\text {pot }}$) is proportional to

$$
\exp \left(\frac{-\frac{1}{2} m v_{x}^{2}}{k_{\mathrm{B}} T}\right) \exp \left(\frac{-\frac{1}{2} m v_{y}^{2}}{k_{\mathrm{B}} T}\right) \exp \left(\frac{-\frac{1}{2} m v_{z}^{2}}{k_{\mathrm{B}} T}\right)
$$

Maxwell distribution - historical approach

- Assumptions:
$-\pi$ is isotropic
$-\pi$ is composed of independent contributions of coordinates,

$$
\pi\left(v_{x}, v_{y}, v_{z}\right)=\pi\left(v_{x}\right) \pi\left(v_{y}\right) \pi\left(v_{z}\right)
$$

$-\lim _{v \rightarrow \infty} \pi\left(v_{x}, v_{y}, v_{z}\right)=0$
The only function satisfying these conditions is

$$
\pi\left(v_{x}\right)=\text { const } \times \exp \left(- \text { const } \cdot v_{x}^{2}\right)
$$

Examples of functions:

1. $x^{2}+y^{2}-$ is isotropic, but is not a product, bad limit
2. $x^{2} y^{2}$ - is a product, is not isotropic, bad limit 3
3. $\frac{1}{\left(1+x^{2}\right)\left(1+y^{2}\right)}$ - is a product, is not isotropic, good limit 4. $3 \exp \left(-x^{2} / 2-y^{2} / 2\right)-$ good!

Assumption:

- velocity is a sum of many small random "hits"

Central limit theorem \Rightarrow Gauss distribution

Experimental verification

Doppler broadening of spectral lines

$$
\frac{\lambda-\lambda_{0}}{\lambda}=\frac{v_{x}}{c}
$$

molecular beam:
Stern, Zartman (1920):
$1=$ Pt wire covered by Ag^{a}
2 = slit
3 = screen

Lammert (1929)
vapor of Bi or Hg (?)

credit: http://encyclopedia2.thefreedictionary.com/Stern-Zartman+Experiment
${ }^{\text {a }}$ other literature: Sn oven

Normalized distribution in one coordinate:

$$
\pi\left(v_{x}\right)=\frac{1}{\sigma_{v} \sqrt{2 \pi}} \exp \left(\frac{-v_{x}^{2}}{2 \sigma_{v}^{2}}\right), \quad \sigma_{v}^{2}=\left\langle v_{x}^{2}\right\rangle=\frac{k_{\mathrm{B}} T}{m}=\frac{R T}{M}
$$

Distribution of velocities, i.e., probability density that a particle is found with $v=|\vec{v}|$ in interval [$v, v+d v$):

$$
\pi(v)=4 \pi v^{2} \pi\left(v_{x}\right) \pi\left(v_{y}\right) \pi\left(v_{z}\right)=\sqrt{\frac{2}{\pi}} \frac{v^{2}}{\sigma_{v}^{3}} \exp \left(\frac{-v^{2}}{2 \sigma_{v}^{2}}\right)
$$

for me (tchem/MBexpE.sh):

Consequences

Mean velocity

$$
\bar{v}=\int_{0}^{\infty} v \pi(v) \mathrm{d} v=\sqrt{\frac{8}{\pi}} \sigma_{v}=\sqrt{\frac{8 R T}{\pi M}}=\sqrt{\frac{8 k_{\mathrm{B}} T}{\pi m}}
$$

Mean quadratic velocity

$$
\bar{v}_{q}=\sqrt{\int_{0}^{\infty} v^{2} \pi(v) \mathrm{d} v}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 k_{\mathrm{B}} T}{m}}
$$

Most probable velocity

$$
\frac{\mathrm{d} \pi}{\mathrm{~d} v}=0 \Rightarrow v_{\max }=\sqrt{\frac{2 R T}{M}}=\sqrt{\frac{2 k_{\mathrm{B}} T}{m}}
$$

Speed of sound ($\kappa=C_{p} / C_{V}$)

$$
v_{\text {sound }}=\sqrt{\frac{\kappa R T}{M}}=\sqrt{\frac{\kappa k_{\mathrm{B}} T}{m}}
$$

[> restart; assume($s>0$);
$>\mathrm{p}:=\mathrm{x}->1 / \mathrm{s} / \mathrm{sqrt}(2 * \mathrm{Pi}) * \exp (-\mathrm{x} \wedge 2 / \mathrm{s} \wedge 2 / 2) ;$
$p:=x \rightarrow \frac{\mathrm{e}^{-\frac{1}{2} \frac{x^{2}}{s^{2}}}}{s \sqrt{2 \pi}}$
> int $(p(x), x=-$ infinity..infinity) ;
$>\mathrm{ppp}:=\mathrm{x}->\operatorname{sqrt}(2 / \mathrm{Pi}) * \mathrm{x} \wedge 2 / \mathrm{s} \wedge 3 * \exp (-\mathrm{x} \wedge 2 / \mathrm{s} \wedge 2 / 2)$;

$$
p p p:=x \rightarrow \frac{\sqrt{\frac{2}{\pi}} x^{2} \mathrm{e}^{-\frac{1}{2} \frac{x^{2}}{s^{2}}}}{s^{3}}
$$

> simplify(int(ppp(x),x=0..infinity));
mean velocity
$>\operatorname{int}(v * p p p(v), v=0 .$. infinity);

$$
\frac{2 \sqrt{2} s \sim}{\sqrt{\pi}}
$$

mean quadratic velocity
> sqrt(simplify(int(v^2*ppp(v),v=0..infinity))); $\sqrt{3} s \sim$
most probable velocity
> eq:=diff(ppp(v),v)=0; solve(\{eq,v>0\},v);

$$
\begin{gathered}
e q:=\frac{2 \sqrt{2} v \mathrm{e}^{-\frac{1}{2} \frac{v^{2}}{s \sim^{2}}}}{\sqrt{\pi} s \sim^{3}}-\frac{\sqrt{2} v^{3} \mathrm{e}^{-\frac{1}{2} \frac{v^{2}}{s \sim^{2}}}}{\sqrt{\pi} s \sim^{5}}=0 \\
\{v=\sqrt{2} s \sim\}
\end{gathered}
$$

$$
\alpha=?
$$

$$
\begin{array}{r}
\pi(\psi)=\exp [\alpha-\beta \mathcal{E}(\psi)] \\
\sum \pi(\psi)=1 \Rightarrow \sum \mathrm{~d} \pi(\psi)=0 \\
S=-k_{\mathrm{B}} \sum_{\psi} \pi(\psi) \ln \pi(\psi)=-k_{\mathrm{B}} \sum_{\psi} \pi(\psi)[\alpha-\beta \mathcal{E}(\psi)]=-\left(k_{\mathrm{B}} \alpha-\frac{U}{T}\right) \\
\Rightarrow \alpha=\frac{U-T S}{k_{\mathrm{B}} T}=\frac{F}{k_{\mathrm{B}} T} \Rightarrow F=-k_{\mathrm{B}} T \ln \left[\sum_{\psi} \mathrm{e}^{-\beta \mathcal{E}(\psi)}\right]
\end{array}
$$

[...] = canonical partition function = statistical sum (Q or Z)

Interpretation: number of "accessible" states (low-energy states are easily accessible, high-energy states are not)

From the Helmholtz energy F we can obtain all quantities:

$$
\begin{aligned}
& p=-\frac{\partial F}{\partial V} \\
& U=F+T S \\
& S=-\frac{\partial F}{\partial T} \\
& H=U+p V \\
& G=F+p V
\end{aligned}
$$

Semiclassical partition function

Hamilton formalism: positions of atoms $=\vec{r}_{i}$, momenta $=\vec{p}_{i}$.

$$
\mathcal{E}=\mathcal{H}=E_{\text {pot }}+E_{\text {kin }}, \quad E_{\text {pot }}=U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right), \quad E_{\text {kin }}=\sum_{i} \frac{\vec{p}_{i}^{2}}{2 m}
$$

Sum over states replaced by integrals:

$$
Z=\sum_{\psi} \mathrm{e}^{-\beta \mathcal{E}(\psi)}=\frac{1}{N!h^{3 N}} \int \exp \left[-\beta \mathcal{H}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, \vec{p}_{1}, \ldots, \vec{p}_{N}\right)\right] \mathrm{d} \vec{r}_{1} \cdots \mathrm{~d} \vec{p}_{N}
$$

where $h=2 \pi \hbar=$ Planck constant.

Why the factorial?

Particles are indistinguishable ... but appear in different quantum states

Why Planck constant?

Has the correct dimension (Z must be dimensionless)
We get the same result for noninteracting quantum particles in a box (vide infra)

Semiclassical partition function

Integrals over positions and momenta are separated
Integrals over momenta can be evaluated:

$$
\int \exp \left(-p_{1, x}^{2} / 2 k_{\mathrm{B}} T m\right)=\sqrt{2 \pi k_{\mathrm{B}} T m}
$$

After $3 N$ integrations we get:

$$
Z=\frac{Q}{N!\Lambda^{3 N}}, \quad \text { de Broglie thermal wavelength: } \Lambda=\frac{h}{\sqrt{2 \pi m k_{\mathrm{B}} T}}
$$

$\Lambda=$ de Broglie wavelength at typical particle velocity at given T

$$
\text { requirement: } \wedge \ll \text { typical atom-atom separation } \approx(V / N)^{1 / 3}
$$

Configurational integral:

$$
Q=\int \exp \left[-\beta U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)\right] \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}
$$

do not confuse:
$U=$ internal energy
$U\left(\vec{r}_{1}, \ldots\right)=$ potential
Mean value of a static quantity (observable):

$$
\langle X\rangle=\frac{1}{Q} \int X\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right) \exp \left[-\beta U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)\right] \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}
$$

Thermal de Broglie wavelength

Example

a) Calculate \wedge for helium at $T=2 \mathrm{~K}$.
b) Compare to the typical distance of atoms in liquid helium (density $0.125 \mathrm{~g} \mathrm{~cm}^{-3}$).

$$
\not \forall 8^{\prime} \varepsilon(q ؛ \forall \text { で } 9 \text { (e }
$$

Semiclassical monoatomic ideal gas

$$
\begin{gathered}
Q=\int \exp [0] \mathrm{d} \vec{r}_{1} \ldots \mathrm{~d} \vec{r}_{N}=\int_{V} \mathrm{~d} \vec{r}_{1} \cdots \int_{V} \mathrm{~d} \vec{r}_{N}=V^{N} \\
Z=\frac{Q}{N!\Lambda^{3 N}}=\frac{V^{N}}{N!\Lambda^{3 N}} \approx \frac{V^{N}}{N^{N} \mathrm{e}^{-N} \Lambda^{3 N^{\prime}}} \quad F=-k_{\mathrm{B}} T \ln Z=-k_{\mathrm{B}} T N \ln \frac{V \mathrm{e}}{N \Lambda^{3}} \\
p=-\left(\frac{\partial F}{\partial V}\right)_{T}=\frac{k_{\mathrm{B}} T N}{V}=\frac{n R T}{V} \quad \begin{array}{l}
\mathrm{e}=\text { Euler number } \\
e=\text { elementary charge }
\end{array} \\
U=F+T S=F-T\left(\frac{\partial F}{\partial T}\right)_{V}=\frac{3 N k_{\mathrm{B}} T}{2} \\
\mu=\left(\frac{\partial F}{\partial N}\right)_{T, V}=k_{\mathrm{B}} T \ln \left(\frac{N \Lambda^{3}}{V}\right)=k_{\mathrm{B}} T \ln \left(\frac{p \Lambda^{3}}{k_{B} T}\right)
\end{gathered}
$$

(with respect to the standard state of a free molecule at zero temperature)
And verification:

$$
G=F+p V=k_{\mathrm{B}} T N \ln \frac{N \Lambda^{3}}{V \mathrm{e}}+N k_{\mathrm{B}} T=N \mu
$$

Monoatomic ideal gas

Or quantum calculation of the translational partition function:
Eigenvalues of energy of a point mass in a $a \times b \times c$ box:

$$
\mathcal{E}=\frac{h^{2}}{8 m}\left(\frac{n_{x}^{2}}{a^{2}}+\frac{n_{y}^{2}}{b^{2}}+\frac{n_{z}^{2}}{c^{2}}\right)
$$

Maxwell-Boltzmann statistics: high enough temperature so that a few particles compete for the same quantum state - it does not matter whether we have fermions or bosons; equivalently, $\wedge \ll$ distance between particles.

Partition function:

$$
\begin{gathered}
Z_{1}=\sum_{n_{x}=1}^{\infty} \sum_{n_{y}=1}^{\infty} \sum_{n_{z}=1}^{\infty} \exp (-\beta \mathcal{E}) \stackrel{\sum \rightarrow}{\approx} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \exp (-\beta \mathcal{E}) \mathrm{d} n_{x} \mathrm{~d} n_{y} \mathrm{~d} n_{z}=\frac{V}{\Lambda^{3}} \\
E=\sum_{i=1}^{N} E_{i} \Rightarrow \quad Z=\frac{1}{N!} Z_{1}^{N}
\end{gathered}
$$

Yes, it is the same! The choice of factor $1 / h^{3 N}$ in the semiclassical Z was correct.

