Pressure of ideal gas from the kinetic theory I

Molecule = point mass

N molecules of masses m_i , i = 1, ..., N, in a cube of edge L Velocity of molecule *i* is $\vec{v}_i = (v_{i,X}, v_{i,Y}, v_{i,Z})$ After elastic reflection: $v_{i,X} \rightarrow -v_{i,X}$ A molecule hits the same wall again after time $t = 2L/v_{i,X}$ Force = change of momentum in a time unit Momentum $\vec{P} = m\vec{v}$ Change of momentum = $\Delta P_X = 2m_i v_{i,X}$

Averaged force caused by impacts of one molecule:

$$F_{i,x} = \frac{\Delta P_x}{t} = \frac{2m_i v_{i,x}}{2L/v_{i,x}} = \frac{m_i v_{i,x}^2}{L}$$

Pressure = force of all *N* molecules, divided by the area

$$p = \frac{\sum_{i=1}^{N} F_{i,x}}{L^2} = \frac{\sum_{i=1}^{N} m_i v_{i,x}^2}{L^3}$$

Kinetic energy of one molecule

$$\frac{1}{2}m_i|\vec{v}_i|^2 \equiv \frac{1}{2}m_iv_i^2 = \frac{1}{2}m_i(v_{i,x}^2 + v_{i,y}^2 + v_{i,z}^2)$$

y L

X

[simolant -N32

1/32

*s*01/2

Pressure of ideal gas from the kinetic theory II

Kinetic energy of gas = internal energy (monoatomic gas)

$$E_{\text{kin}} = \frac{1}{2} \sum_{i=1}^{N} m_i v_i^2 = \frac{3}{2} \sum_{i=1}^{N} m_i v_{i,x}^2$$

$$p = \frac{\sum_{i=1}^{N} m_i v_{i,x}^2}{L^3} = \frac{2E_{\text{kin}}}{3V}$$

In other words

$$pV = \frac{2}{3}E_{\rm kin} \stackrel{!}{=} nRT$$

Temperature is a measure of kinetic energy

Assumptions:

Pressure is a result of averaged impacts of molecules

We used the classical mechanics

Boltzmann constant

Per one molecule:

$$n = \frac{N}{N_{\rm A}}$$

$$k_{\rm B} = \frac{R}{N_{\rm A}} = 1.38065 \times 10^{-23} \, {\rm J} \, {\rm K}^{-1}$$

Equation of state:

$$pV = nRT = Nk_{B}T$$

Internal energy:

$$U \equiv E_{\rm kin} = \frac{3n}{2}RT = \frac{3N}{2}k_{\rm B}T$$

Ludwig Eduard Boltzmann (1844–1906)

credit: scienceworld.wolfram.com/biography/Boltzmann.html

Equipartition principle

Expression E_{kin} is composed of f = 3N terms of the form $\frac{1}{2}m_iv_{i,k}^2$, where $k \in \{x, y, z\}$.

$$pV = Nk_{\rm B}T = \frac{f}{3}k_{\rm B}T = \frac{2}{3}E_{\rm kin}$$

f = number of mechanical degrees of freedom.
Average energy contribution per one degree of freedom:

$$\frac{E_{\rm kin}}{f} = \frac{1}{2} k_{\rm B} T$$

Generalization: any quadratic function in the Hamiltonian

Heat capacity in molar units $(N = N_A)$:

$$C_{Vm} = \left(\frac{\partial U}{\partial T}\right)_{V} = \left(\frac{\partial E_{kin}}{\partial T}\right)_{V} = \frac{\frac{1}{2}fk_{B}T}{N_{A}T} = \frac{3}{2}R$$

Extension:

Linear molecules: + 2 rotations, $C_{Vm} = \frac{5}{2}R$ (but: hydrogen)

Nonlinear molecules: + 3 rotations, $C_{Vm} = 3R$

(Vibrations classically: + 2 for each (incl. *E*pot) – imprecise!)

degrees of freedom per molec.

Equipartition principle – example

Calculate C_{pm} for a) nitrogen, b) water vapor?

Microstate, macrostate, ensemble, trajectory

microstate (state, configuration) = instantaneous "snapshot" at given time quantum description: state = eigenstate (wave function ψ) classical description: state = positions and velocities^{*} of all particles at given time, $\psi = (\vec{r}_1, \dots, \vec{r}_N, \vec{v}_1 \dots, \vec{v}_N)$

6/32

*s*01/2

- macrostate = averaged action of all microstates
- **ensemble** = set of all microstates with known probabilities $\pi(\psi)$
- trajectory = record of a time development of a microstate

*in fact, momenta – more later. There are ∞ states, hence we work with their probability density $\rho(\psi) \equiv \rho(\vec{r}_1, \ldots, \vec{r}_N, \vec{p}_1, \ldots, \vec{p}_N)$.

[tchem/simolant1+2.sh] 7/32 **Microcanonical ensemble and ergodic hypothesis**

Microcanonical ensemble = ensemble of microstates in an isolated system (which has developed in time for a long time) for me: Also denoted as **NVE** (N = const, V = const, E = const)

Ergodic hypothesis (quantum): $\pi(\psi_i) = \text{const} = \frac{1}{W}$ (W = # of states)

e NVE ensemble

*s*01/2

- r smaller balls
- c trajectory

Ergodic hypothesis (classical):

trajectory covers the space^{\dagger} with uniform probability

In other words:

Time average (over a trajectory)

$$=\langle X\rangle_t = \lim_{t\to\infty}\frac{1}{t}\int_0^t X(t)\,\mathrm{d}t$$

= ensemble average

$$=\langle X\rangle = \frac{1}{W}\sum_{\psi}X(\psi)$$

for any quantity $X = X(\psi)$, where $\psi = \psi(t)$

[†]namely: the phase state of $\{(\vec{r}_1, \ldots, \vec{r}_N, \vec{p}_1, \ldots, \vec{p}_N)\}$

Mean value in the microcanonical ensemble

$$\langle X \rangle = \frac{\sum_{\psi} X(\psi)}{W}$$

Example. You win \$5 if you throw **I** on a dice, you loose \$1 if you throw anything else. What is your mean (expected) win in this game?

Whole thermodynamics can be built on the top of the microcanonical ensemble. But for T = const it is much easier.

We want T = const: Canonical ensemble

Also **NVT** (N = const, V = const, T = const) Ergodic hypothesis: $\pi(\psi) = \pi(\mathcal{E}(\psi))$ $E_1 + E_2 = E_{1+2}$ (do not interact) $\pi(E)$ = probability of any state with energy E

$$\pi(E_1) \cdot \pi(E_2) = \pi(E_{1+2}) = \pi(E_1 + E_2)$$

$$\Rightarrow \pi(E) = \text{const}^E = \exp(\alpha_i - \beta E)$$

) Oth Law $\Rightarrow \beta$ is empirical temperature

 $\circ \alpha_i$ is system-dependent a normalizing const. so that $\sum_{\psi} \pi(\psi) = 1$

Determining β : monoatomic perfect gas, per 1 atom $U_1 = \frac{3}{2}k_BT$

$$\langle U_1 \rangle = \frac{\sum_{\psi} \mathcal{E}(\psi) \pi(\mathcal{E}(\psi))}{\sum_{\psi} \pi(\mathcal{E}(\psi))} = \frac{\int \frac{1}{2} m \vec{v}^2 \pi(\frac{1}{2} m \vec{v}^2) \, d\vec{v}}{\int \pi(\frac{1}{2} m \vec{v}^2) \, d\vec{v}}$$

Evaluation gives: $\langle U_1 \rangle = \frac{3}{2} \frac{1}{\beta} \implies \beta = \frac{1}{k_{\rm B}T}$

9/32 *s*01/2

10/32

*s*01/2

Determining β

$$\langle U_1 \rangle = \frac{\int_{R^3} \frac{1}{2} m \vec{v}^2 \pi(\frac{1}{2} m \vec{v}^2) \, \mathrm{d}\vec{v}}{\int_{R^3} \pi(\frac{1}{2} m \vec{v}^2) \, \mathrm{d}\vec{v}}$$

$$= \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2}m(v_{x}^{2} + v_{y}^{2} + v_{z}^{2}) e^{-\frac{1}{2}\beta m v_{x}^{2}} dv_{x} e^{-\frac{1}{2}\beta m v_{y}^{2}} dv_{y} e^{-\frac{1}{2}\beta m v_{z}^{2}} dv_{z}}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\beta m v_{x}^{2}} dv_{x} e^{-\frac{1}{2}\beta m v_{y}^{2}} dv_{y} e^{-\frac{1}{2}\beta m v_{z}^{2}} dv_{z}}$$
$$= 3 \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2}m v_{x}^{2} e^{-\frac{1}{2}\beta m v_{x}^{2}} dv_{x} e^{-\frac{1}{2}\beta m v_{y}^{2}} dv_{y} e^{-\frac{1}{2}\beta m v_{z}^{2}} dv_{z}}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\beta m v_{x}^{2}} dv_{x} e^{-\frac{1}{2}\beta m v_{y}^{2}} dv_{y} e^{-\frac{1}{2}\beta m v_{z}^{2}} dv_{z}}$$
$$= 3 \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\beta m v_{x}^{2}} dv_{x}}{\int_{-\infty}^{\infty} e^{-\frac{1}{2}\beta m v_{x}^{2}} dv_{x}} = 3 \frac{\frac{1}{2}m \int_{-\infty}^{\frac{\pi}{2}\beta m v_{x}^{2}} dv_{z}}{\sqrt{\frac{\pi}{\frac{1}{2}\beta m}}} = \frac{3}{2} \frac{1}{\beta}$$
We have used the **Gauss integral**:
$$\int_{-\infty}^{\infty} e^{-ax^{2}} dx = \sqrt{\frac{\pi}{a}} \text{ (where } a = \frac{1}{2}\beta m)$$

and its derivate by parameter *a*:

$$\int_{-\infty}^{\infty} x^2 e^{-ax^2} dx = -\frac{d}{da} \int_{-\infty}^{\infty} e^{-ax^2} dx = -\frac{d}{da} \sqrt{\frac{\pi}{a}} = \frac{1}{2a} \sqrt{\frac{\pi}{a}}$$

Determining β

Mean value in the canonical ensemble

Generalization of the mean value (= expectation value):

$$\langle X \rangle = \sum_{\psi} X(\psi) \pi(\mathcal{E}(\psi)) = \sum_{\psi} X(\psi) e^{\alpha - \beta \mathcal{E}(\psi)} = \frac{\sum_{\psi} X(\psi) e^{-\beta \mathcal{E}(\psi)}}{\sum_{\psi} e^{-\beta \mathcal{E}(\psi)}}$$

Boltzmann factor: $e^{-\mathcal{E}(\psi)/k_{B}T}$

Example. You win \$5 if you throw $\textcircledightarrow and the discrete states on a dice, you loose $1 if you throw anything else. However, you have drilled a small lead weight under <math>\boxdot$ (opposite to $\textcircledightarrow b)$) so that the probabilities are $\pi(\textcircledightarrow b) = 0.2$ and $\pi(\boxdotightarrow b) = \pi(\textcircledightarrow b) = \pi(\textcircledightarrow b) = 0.16$. What is your mean (expected) win in this game?

Boltzmann probability

... or the first half of statistical thermodynamics.

Probability of finding a state with energy \mathcal{E} is proportional to

$$\boldsymbol{\pi}(\mathcal{E}) = \operatorname{const} \cdot \exp\left[-\frac{\mathcal{E}(\psi)}{k_{\mathrm{B}}T}\right] = \operatorname{const} \cdot \exp\left(-\frac{E_{\mathrm{m}}}{RT}\right)$$

• a reacting system can overcome the activation energy E^* with probability ~ $\exp\left(-\frac{E^*}{RT}\right) \Rightarrow$ Arrhenius formula

$$k = A \exp\left(-\frac{E^*}{RT}\right)$$

The energy needed for transfering a molecule from liquid to gas is $\Delta_{vap}H_m$ (per mole), probability of finding a molecule in vapor is proportional to $\sim \exp\left(-\frac{\Delta_{vap}H_m}{RT}\right) \Rightarrow$ Clausius–Clapeyron equation (integrated)

$$p = p_0 \exp\left[-\frac{\Delta_{\text{vap}} H_{\text{m}}}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right] = \text{const} \cdot \exp\left(-\frac{\Delta_{\text{vap}} H_{\text{m}}}{RT}\right)$$

Boltzmann probability once again

Potential energy of a molecule in a homogeneous gravitational field $U_{pot} = mgh$. Probability of finding a molecule in height *h*:

$$\pi \propto \exp\left(-\frac{U_{\text{pot}}}{k_{\text{B}}T}\right) = \exp\left(-\frac{mgh}{k_{\text{B}}T}\right) = \exp\left(-\frac{Mgh}{RT}\right)$$

Probability \propto density \propto pressure:

$$p = p_0 \exp\left(-\frac{Mgh}{RT}\right)$$

The same formula can be derived from the condition of mechanical equilibrium + ideal gas equation of state

$$d\rho = -dh\rho g, \ \rho = \frac{M\rho}{RT}$$

Which "leads to" the Boltzmann probability

Boltzmann probability

Example Energy of the *gauche* conformation of butane is by $\Delta E = 0.9$ kcal/mol higher than *anti*. Calculate the population of molecules which are in the *gauche* state at temperature 272.6 K (boiling point). (1 cal = 4.184 J).

[cd tchem; blend -g butane]_{15/32}

*s*01/2

Solution:

$$\pi$$
(gauche): π (anti) = exp $\left(-\frac{\Delta E}{RT}\right) = 0.190$

Don't forget that there are two gauche states!

 $2\pi(gauche) + \pi(anti) = 1$

\Rightarrow

$$\pi = \frac{2 \exp(-\Delta E/RT)}{2 \exp(-\Delta E/RT) + 1} = \frac{2 \times 0.190}{2 \times 0.190 + 1} = 0.275$$

Note: we assumed that both minima are well separated and their shapes are identical. Better formula would be with ΔG instead of ΔE

Thermodynamics

Internal energy

$$U = \sum_{\psi} \mathcal{E}(\psi) \pi(\psi)$$

Its small change is

$$\mathrm{d} U = \sum_{\psi} \pi(\psi) \cdot \mathrm{d} \mathcal{E}(\psi) + \sum_{\psi} \mathrm{d} \pi(\psi) \cdot \mathcal{E}(\psi)$$

 $d\mathcal{E}(\psi)$: energy level changed

 $d\pi(\psi)$: probability of state ψ changed

Thermodynamics:

$$\mathrm{d}U = -p\,\mathrm{d}V + T\,\mathrm{d}S$$

 -p dV: A "piston" moved by dx. Change in energy = d𝔅(ψ) = mechanical work = -Fdx = -F/𝔄 · d(𝔄x) = -p(ψ) dV p(ψ) = "pressure of state ψ", pressure = p = Σ_ψ π(ψ)p(ψ).
 TdS: Change π(ψ) [V] = change of the population of states with varying energies = heat

[jkv pic/BoltzmannTomb.jpg]_{17/32} *s*01/2

Boltzmann equation for entropy

... or the 2nd half of the statistical thermodynamics

$$\pi(E) = \exp(\alpha_i - \beta E) \implies \mathcal{E}(\psi) = \frac{1}{\beta} [\alpha_i - \ln \pi(\psi)]$$
$$\sum_{\psi} d\pi(\psi) \mathcal{E}(\psi) = \sum_{\psi} d\pi(\psi) \frac{1}{\beta} [\alpha_i - \ln \pi(\psi)] = -\frac{1}{\beta} \sum_{\psi} d\pi(\psi) \cdot \ln \pi(\psi)$$

$$= -k_{\rm B}T \,\mathrm{d}\left[\sum_{\psi} \pi(\psi) \ln \pi(\psi)\right]$$

On comparing with *T*d*S*:

$$S = -k_{\rm B} \sum_{\psi} \pi(\psi) \ln \pi(\psi)$$

Microcanonical ensemble: $\pi(\psi) = \begin{cases} 1/W & \text{for } E = \mathcal{E}(\psi) \\ 0 & \text{for } E \neq \mathcal{E}(\psi) \end{cases}$

Boltzmann equation: $S = k_{\rm B} \ln W$

Property: $S_{1+2} = S_1 + S_2 = k_B \ln(W_1 W_2) = k_B \ln(W_{1+2})$

Example: Ideal solution

Energies of neighbors: $\bullet - \bullet = \bullet - \bullet = \bullet - \bullet$ All configurations have the same energy

Mix N_1 molecules of $1 + N_2$ molecules of 2:

$$W = \binom{N}{N_1} = \frac{N!}{N_1!N_2!}$$

$$S = k_{\rm B} \ln W \approx -k_{\rm B} \left(N_1 \ln \frac{N_1}{N} + N_2 \ln \frac{N_2}{N} \right)$$

$$S_{\rm m} = -R \left(x_1 \ln x_1 + x_2 \ln x_2 \right)$$

cf. $S = -k_{\rm B} \sum_{\psi} \pi(\psi) \ln \pi(\psi)$

We used the Stirling formula, $\ln N! \approx N \ln N - N$:

$$\ln N! = \sum_{i=1}^{N} \ln i \approx \int_{0}^{N} \ln x \, dx \stackrel{\text{by parts}}{=} [x \ln x - x]_{0}^{N} = N \ln N - N$$

More accurately:

$$\ln N! \stackrel{\text{asympt.}}{=} N \ln N - N + \ln \sqrt{2\pi N} + \frac{1}{12N} - \frac{1}{360N^3} + \frac{1}{1260N^5} - + \cdots$$

18/32

Example: Residual entropy of crystals at $T \rightarrow 0$

[traj/ice.sh]19/32 *s*01/2

Crystal: 1 microstate $\Rightarrow S = k_B \ln 1 = 0$ (3rd Law)

3rd Law violation: CO, N_2O , H_2O . Not in the true equilibrium, but "frozen" because of high barriers

Example 1: Entropy of a crystal of CO at 0 K

 $S_{\rm m} = k_{\rm B} \ln 2^{N_{\rm A}} = R \ln 2$

Example 2: Entropy of ice at 0 K

 $S_{\rm m} = k_{\rm B} \ln 1.507^{N_{\rm A}} = 3.41 \, {\rm J} \, {\rm K}^{-1} \, {\rm mol}^{-1}$

Pauling's derivation:

• $6 = \binom{4}{2}$ orientations of a water molecule

• then an H-bond is wrong with prob.= $\frac{1}{2}$

 $> 2N_A$ bonds in a mole

$$\Rightarrow S_{\rm m} = k_{\rm B} \ln\left(\frac{6^{N_{\rm A}}}{2^{2N_{\rm A}}}\right) = 3.37 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$$

Example: Information entropy of DNA

Assuming random and equal distribution of base pairs.

Per one base pair: $S = k_B \ln 4$, per mole: $S_m = R \ln 4$.

Corresponding Gibbs energy (at 37 °C):

$$\Delta G_{\rm m} = -RT \ln 4 = -3.6 \, \text{kJ} \, \text{mol}^{-1}$$

To be compared to: $ATP \rightarrow ADP$

- standard: $\Delta_r G_m^{\diamond} = -31 \text{ kJ mol}^{-1}$

– in usual conditions in a cell: $\Delta_r G_m = -57 \text{ kJ mol}^{-1}$

Boltzmann H-theorem (Second Law)

Fermi golden rule for the transition probability $\phi \rightarrow \psi$ caused by a perturbing Hamiltonian \mathcal{H}_{pert} (in an isolated system):

21/32

$$\frac{d\pi(\phi \to \psi)}{dt} \equiv W(\phi \to \psi) = \frac{2\pi}{\hbar} |\langle \phi | \mathcal{H}_{pert} | \psi \rangle|^2 \rho_{final} = W(\psi \to \phi) = W_{\psi\phi}$$

Change of the population of state ψ (master equation):

$$\frac{\mathrm{d}\pi(\psi)}{\mathrm{d}t} = \sum_{\phi} \pi(\phi) W(\phi \to \psi) - \pi(\psi) \sum_{\phi} W(\psi \to \phi) = \sum_{\phi} W_{\phi\psi}[\pi(\phi) - \pi(\psi)]$$

Rate of entropy change:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -k\frac{\mathrm{d}}{\mathrm{d}t}\sum_{\psi}\pi(\psi)\ln\pi(\psi) = -k\sum_{\psi}\ln\pi(\psi)\sum_{\phi}W_{\phi\psi}[\pi(\phi) - \pi(\psi)]$$

Trick: swap $\phi \leftrightarrow \psi$ and sum:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{1}{2} k \sum_{\psi,\phi} W_{\psi\phi} [\ln \pi(\phi) - \ln \pi(\psi)] [\pi(\phi) - \pi(\psi)] \ge 0$$

The entropy of an isolated system never decreases

Loschmidt paradox: Irreversibility from reversible microscopic laws

Maxwell(-Boltzmann) distribution of velocities

The probability that a molecule is found in:

a tiny box dxdydz with coordinates in intervals [x, x + dx), [y, y + dy) a [z, z + dz)AND

22/32

*s*01/2

with velocities in intervals $[v_x, v_x + dv_x)$, $[v_y, v_y + dv_y)$, $[v_z, v_z + dv_z)$,

is proportional to the Boltzmann factor

$$\exp\left(-\frac{E_{\text{pot}} + E_{\text{kin}}}{k_{\text{B}}T}\right)$$
$$= \exp\left(\frac{-E_{\text{pot}}}{k_{\text{B}}T}\right) \exp\left(\frac{-\frac{1}{2}mv_{x}^{2}}{k_{\text{B}}T}\right) \exp\left(\frac{-\frac{1}{2}mv_{y}^{2}}{k_{\text{B}}T}\right) \exp\left(\frac{-\frac{1}{2}mv_{z}^{2}}{k_{\text{B}}T}\right)$$

The probability that a molecule is found with velocities in intervals $[v_x, v_x + dv_x)$, $[v_y, v_y + dv_y)$, $[v_z, v_z + dv_z)$ (irrespective of E_{pot}) is proportional to

$$\exp\left(\frac{-\frac{1}{2}mv_{\chi}^{2}}{k_{\mathrm{B}}T}\right)\exp\left(\frac{-\frac{1}{2}mv_{y}^{2}}{k_{\mathrm{B}}T}\right)\exp\left(\frac{-\frac{1}{2}mv_{z}^{2}}{k_{\mathrm{B}}T}\right)$$

Maxwell distribution – historical approach

Assumptions:

– π is isotropic

– π is composed of independent contributions of coordinates,

$$\pi(v_X, v_Y, v_Z) = \pi(v_X)\pi(v_Y)\pi(v_Z)$$

itchem/MBfunkce.s

 $-\lim_{\nu\to\infty}\pi(\nu_X,\nu_Y,\nu_Z)=0$

The only function satisfying these conditions is

$$\pi(v_x) = \text{const} \times \exp(-\text{const} \cdot v_x^2)$$

Examples of functions:

1.
$$x^2 + y^2$$
 – is isotropic, but is not a product, bad limit
2. x^2y^2 – is a product, is not isotropic, bad limit
3. $\frac{3}{(1+x^2)(1+y^2)}$ – is a product, is not isotropic, good limit

4.
$$3 \exp(-x^2/2 - y^2/2) - \text{good}!$$

Assumption:

– velocity is a sum of many small random "hits" Central limit theorem \Rightarrow Gauss distribution

Experimental verification

Doppler broadening of spectral lines

$$\frac{\lambda - \lambda_0}{\lambda} = \frac{v_X}{c}$$

molecular beam:

Stern, Zartman (1920):

$$1 = Pt$$
 wire covered by Ag^a

2 = slit

3 = screen

 $credit:\ http://encyclopedia2.thefreedictionary.com/Stern-Zartman+Experiment$

^aother literature: Sn oven

Lammert (1929) vapor of Bi or Hg (?)

[tchem/MBexpE.sh]25/32 **Pseudoexperimental verification and consequences**

Normalized distribution in one coordinate:

$$\pi(v_X) = \frac{1}{\sigma_V \sqrt{2\pi}} \exp\left(\frac{-v_X^2}{2\sigma_V^2}\right), \quad \sigma_V^2 = \langle v_X^2 \rangle = \frac{k_B T}{m} = \frac{RT}{M}$$

*s*01/2

Distribution of velocities, i.e., probability density that a particle is found with $v = |\vec{v}|$ in interval [v, v + dv]:

$$\pi(v) = 4\pi v^2 \pi(v_X) \pi(v_Y) \pi(v_Z) = \sqrt{\frac{2}{\pi} \frac{v^2}{\sigma_v^3}} \exp\left(\frac{-v^2}{2\sigma_v^2}\right)$$

Consequences

Mean velocity

$$\overline{v} = \int_0^\infty v \, \pi(v) dv = \sqrt{\frac{8}{\pi}} \sigma_v = \sqrt{\frac{8RT}{\pi M}} = \sqrt{\frac{8k_{\rm B}T}{\pi m}}$$

Mean quadratic velocity

$$\overline{v}_q = \sqrt{\int_0^\infty v^2 \pi(v) dv} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_BT}{m}}$$

Most probable velocity

$$\frac{\mathrm{d}\pi}{\mathrm{d}\nu} = 0 \quad \Rightarrow \nu_{\max} = \sqrt{\frac{2RT}{M}} = \sqrt{\frac{2k_{\mathrm{B}}T}{m}}$$

Speed of sound ($\kappa = C_p/C_V$)

$$v_{\text{sound}} = \sqrt{\frac{\kappa RT}{M}} = \sqrt{\frac{\kappa k_{\text{B}}T}{m}}$$

> restart; assume(s>0); > p := x -> 1/s/sqrt(2*Pi)*exp(-x^2/s^2/2); $p := x \rightarrow \frac{e^{-\frac{1}{2}\frac{x^2}{s^2}}}{s\sqrt{2\pi}}$ > ppp := x -> sqrt(2/Pi)*x^2/s^3*exp(-x^2/s^2/2); $ppp := x \rightarrow \frac{\sqrt{\frac{2}{\pi}} x^2 e^{-\frac{1}{2} \frac{x^2}{s^2}}}{s^3}$ > simplify(int(ppp(x),x=0..infinity)); mean velocity > int(v*ppp(v),v=0..infinity); $\frac{2\sqrt{2} s}{\sqrt{\pi}}$ mean quadratic velocity > sqrt(simplify(int(v^2*ppp(v),v=0..infinity))); $\sqrt{3} s \sim$ most probable velocity > eq:=diff(ppp(v),v)=0; solve({eq,v>0},v); $eq := \frac{2\sqrt{2} v e^{-\frac{1}{2} \frac{v^2}{s^2}}}{\sqrt{\pi} s^2} - \frac{\sqrt{2} v^3 e^{-\frac{1}{2} \frac{v^2}{s^2}}}{\sqrt{\pi} s^5} = 0$ $\{v=\sqrt{2} \ s\sim\}$

Thermodynamics finished $\alpha = ?$ $\pi(\psi) = \exp[\alpha - \beta \mathcal{E}(\psi)]$ $\sum \pi(\psi) = 1 \Rightarrow \sum d\pi(\psi) = 0$ $S = -k_{B} \sum_{\psi} \pi(\psi) \ln \pi(\psi) = -k_{B} \sum_{\psi} \pi(\psi) [\alpha - \beta \mathcal{E}(\psi)] = -\left(k_{B}\alpha - \frac{U}{T}\right)$ $\Rightarrow \alpha = \frac{U - TS}{k_{B}T} = \frac{F}{k_{B}T} \Rightarrow F = -k_{B}T \ln\left[\sum_{\psi} e^{-\beta \mathcal{E}(\psi)}\right]$

[...] = canonical partition function = statistical sum (Q or Z)

Interpretation: number of "accessible" states (low-energy states are easily accessible, high-energy states are not)

From the Helmholtz energy F we can obtain all quantities:

$$p = -\frac{\partial F}{\partial V} \qquad \qquad U = F + TS \\ H = U + pV \\ G = F + pV \end{cases}$$

$$dF = -pdV - SdT$$

Semiclassical partition function

Hamilton formalism: positions of atoms = \vec{r}_i , momenta = \vec{p}_i .

$$\mathcal{E} = \mathcal{H} = E_{\text{pot}} + E_{\text{kin}}, \quad E_{\text{pot}} = U(\vec{r}_1, \dots, \vec{r}_N), \quad E_{\text{kin}} = \sum_i \frac{\vec{p}_i^2}{2m}$$

Sum over states replaced by integrals:

$$Z = \sum_{\psi} e^{-\beta \mathcal{E}(\psi)} = \frac{1}{N! h^{3N}} \int \exp[-\beta \mathcal{H}(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N, \vec{p}_1, \dots, \vec{p}_N)] d\vec{r}_1 \cdots d\vec{p}_N$$

where $h = 2\pi\hbar$ = Planck constant.

Why the factorial?

Particles are indistinguishable ... but appear in different quantum states

Why Planck constant?

Has the correct dimension (Z must be dimensionless)

We get the same result for noninteracting quantum particles in a box (vide infra)

Semiclassical partition function

Integrals over positions and momenta are separated

Integrals over momenta can be evaluated:

$$\exp(-p_{1,x}^2/2k_{\rm B}Tm) = \sqrt{2\pi k_{\rm B}Tm}$$

After 3*N* integrations we get:

$$Z = \frac{Q}{N! \Lambda^{3N}}$$
, de Broglie thermal wavelength: $\Lambda = \frac{h}{\sqrt{2\pi m k_{B}T}}$

 Λ = de Broglie wavelength at typical particle velocity at given T

requirement: $\Lambda \ll$ typical atom-atom separation $\approx (V/N)^{1/3}$

Configurational integral:

$$Q = \int \exp[-\beta U(\vec{r}_1, \dots, \vec{r}_N)] d\vec{r}_1 \dots d\vec{r}_N$$
 do not confuse:
$$U = \text{internal energy}$$
$$U(\vec{r}_1, \dots, \vec{r}_N) = \text{potential}$$

Mean value of a **static** quantity (observable):

$$\langle X \rangle = \frac{1}{Q} \int X(\vec{r}_1, \dots, \vec{r}_N) \exp[-\beta U(\vec{r}_1, \dots, \vec{r}_N)] \, \mathrm{d}\vec{r}_1 \dots \, \mathrm{d}\vec{r}_N$$

Example

a) Calculate Λ for helium at T = 2 K.

b) Compare to the typical distance of atoms in liquid helium (density $0.125 \, \text{g cm}^{-3}$).

Å 8.5 (d ;Å 2.3 (6

30/32

*s*01/2

 $credit:\ hight 3 ch. com/superfluid-liquid-helium/$

Semiclassical monoatomic ideal gas

$$Q = \int \exp[0] d\vec{r}_1 \dots d\vec{r}_N = \int_V d\vec{r}_1 \dots \int_V d\vec{r}_N = V^N$$

$$Z = \frac{Q}{N!\Lambda^{3N}} = \frac{V^N}{N!\Lambda^{3N}} \approx \frac{V^N}{N^N e^{-N}\Lambda^{3N}}, \quad F = -k_{\rm B}T \ln Z = -k_{\rm B}T N \ln \frac{Ve}{N\Lambda^3}$$

$$p = -\left(\frac{\partial F}{\partial V}\right)_T = \frac{k_{\rm B}TN}{V} = \frac{nRT}{V}$$

e = Euler number e = elementary charge

$$U = F + TS = F - T\left(\frac{\partial F}{\partial T}\right)_{V} = \frac{3Nk_{B}T}{2}$$
$$\mu = \left(\frac{\partial F}{\partial N}\right)_{T,V} = k_{B}T \ln\left(\frac{N\Lambda^{3}}{V}\right) = k_{B}T \ln\left(\frac{p\Lambda^{3}}{k_{B}T}\right)$$

(with respect to the standard state of a free molecule at zero temperature) And verification:

$$G = F + pV = k_{\rm B}TN\ln\frac{N\Lambda^3}{Ve} + Nk_{\rm B}T = N\mu$$

Monoatomic ideal gas

 $+\frac{32/32}{s01/2}$

Or quantum calculation of the translational partition function:

Eigenvalues of energy of a point mass in a $a \times b \times c$ box:

$$\mathcal{E} = \frac{h^2}{8m} \left(\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2} \right)$$

Maxwell–Boltzmann statistics: high enough temperature so that a few particles compete for the same quantum state – it does not matter whether we have fermions or bosons; equivalently, $\Lambda \ll$ distance between particles.

Partition function:

$$Z_1 = \sum_{n_x=1}^{\infty} \sum_{n_y=1}^{\infty} \sum_{n_z=1}^{\infty} \exp(-\beta \mathcal{E}) \stackrel{\sum \to \int}{\approx} \int_0^{\infty} \int_0^{\infty} \int_0^{\infty} \exp(-\beta \mathcal{E}) \, \mathrm{d}n_x \mathrm{d}n_y \mathrm{d}n_z = \frac{V}{\Lambda^3}$$

$$E = \sum_{i=1}^{N} E_i \quad \Rightarrow \quad Z = \frac{1}{N!} Z_1^N$$

Yes, it is the same! The choice of factor $1/h^{3N}$ in the semiclassical Z was correct.