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Molecular dynamics 503/2

@ hard spheres etc. - collisions
@ ‘classical” MD - integration of the equations of motion

@ Brownian (stochastic) dynamics, dissipative particle dyjnamics = MD + random
forces

Forces:

. aur)
fi=——— (=1,...,N

or

Example - pair forces:

U= Zu(rij)

i<j

2 _ _ du(rjl) arjl N du(rji) T
j= 1 — Ji l j=1 Jt JU
j#i J#t J#l
Notation: 7y = Fi—F;, rij = |Fyjl
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Newton’s equations of motion 503/2
d?r; . i
= F==—, i=1,...,N
dt? mj

Method of finite differences, timestep h

Initial value problem: we know F and F at time tg

Methods:

@ Runge-Kutta: many evaluations of the right-hand side/step (costly!)
@ Predictor-corrector: better, but ... (more below)

@ Symplectic methods: good energy conservation

@ Multiple timestep methods: as above, more timescales



Verlet method

. 2
Taylorexpansion: ., _py = r(t)—hf(t)+h7i—'(t)—... +1x
r(t) = r(t) —2x
h2
r(t+ h) = r(t)+hf'(t)+?F(t)+... +1x

) fi(t)  Fi(t—h)—2F(t) + Fi(t + h
= numeric 2nd derivative: Fi(t) =fl( ) — ( ) i(t) +7i( )

m h?
- - - zfi(t
Verlet method: ri(t+ h)=2r(t)—ri(t—h)+ h
mj
. h2 fi(t
Initial values: Fi(to— h) =ri(tg) — hri(to) + > Jilto) + (’)(h3)
mi

@ time-reversible (= no energy drift); even symplectic

@ cannot use for 7 = f(r, F) because F(t) is not known at time t

+0O(h?)

|dentical trajectories: leap-frog, velocity Verlet, Gear (m = 3), Beeman
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Leap-frog

velocity = displacement (change in position)
per unit time (h), a vector

r(t+ h)—r(t)
h

v(t+ h/2) =

acceleration = change in velocity per unit time
V(t+h/2)—V(t—h/2) f
B h m

—

a(t)

v(t+ h/2)

V(t—h/2) + d(t)h

F(t+ h) = F(t)+ Vv(t+ h/2)h } repeated

t = t+h J

@ cquivalent to Verlet (identical trajectory)
but: velocities at different time

[start movies/leap-frog.mp4] 4/g
s03/2

credit: http://www.anagrammer.com/scrabble/leapfrog



Equivalence of Verlet and leap-frog + SSQ?Z

Leap-frog:
v(t+ h/2) = v(t—h/2)+ a(t)h

r(t+h) := r(t)+ v(t+h/2)h } repeated
t .= t+h )
2nd equation twice in 2 different times:
r(t+h) = r(t)+ v(t+ h/2)h x + 1

r(t) = r(t—h)+v(t—h/2)h x-—1
Subtract both equations:
r(t+h)—r(t)=r(t)—r(t—h)+ v(t+ h/2)h— v(t—h/2)h
insert for the difference of velocities:
r(t+h)—=2r(t) + r(t—h) = h[v(t + h/2)— v(t— h/2)] = a(t)h? =%h2

which is the Verlet method



Example: planetary orbit 503/2

| \\ [uvodsim/verlet.sh] g/g

@ energy is well conserved
@ perihelion precession O(h?)

@ harmonic oscillator: frequency shifted O(h?)



Verlet once again

By methods of theoretical mechanics:
— expressing the position and momentum propagators in operator form

— some tricks to overcome their noncommutativity
we can derive the velocity Verlet:

2
r(t+h) = r(t)+v(t)h SO
m 2
v(t+h) = v(t)+f(t)+f(t+h)g
' - r(t+h)—r(t—h)
The same trajectory as Verlet with v(t) = - o

kinetic energy differs from leap-frog by O(h?)

... but we can also learn a lot about energy conservation
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What is this good for? + 53252

exp(iLph/2) exp(il h) exp(ilLph/2) = exp(iLh + €)
@ error € can be estimated (x h3)

@ we can calculate a “perturbed Hamiltonian” (error O(h3) per step, ®(h?) glob-
ally), exactly constant with the Verlet method
l.e., Verlet is symplectic = error is bound
(time reversibility = only error o« t1/2)

@ multiple-timestep methods and higher-order methods

symplectic reversible irreversible

energy conservation error is used to set the timestep h



