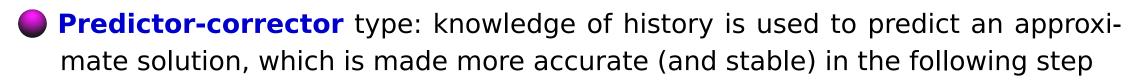
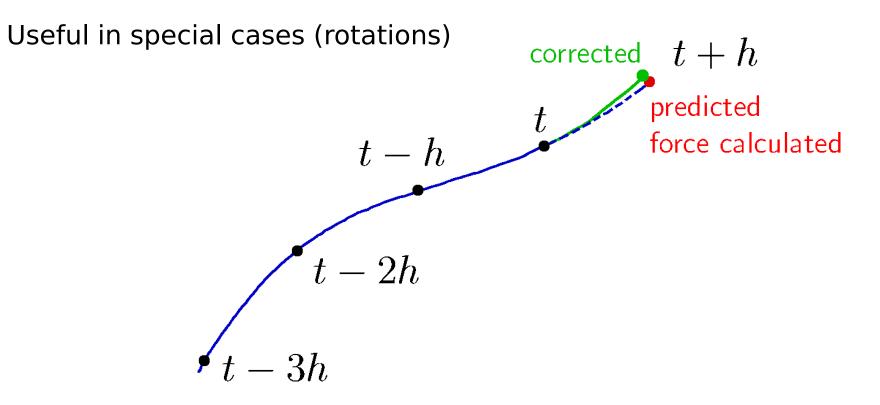
Gear methods



[uvodsim/gear.sh

- Gear uses polynomial predictor = no additional costly evaluation of the righthand side ... but poor stability
- Methods are not time reversible* but have higher order



*Except one version of the simplest singular 2nd order method

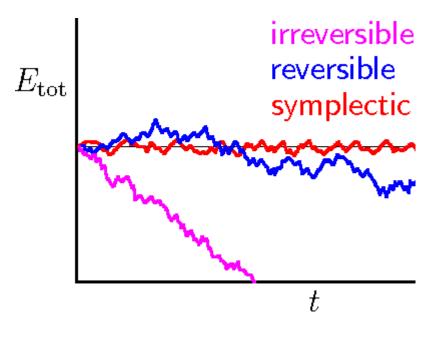
Comparison of methods

Verlet:

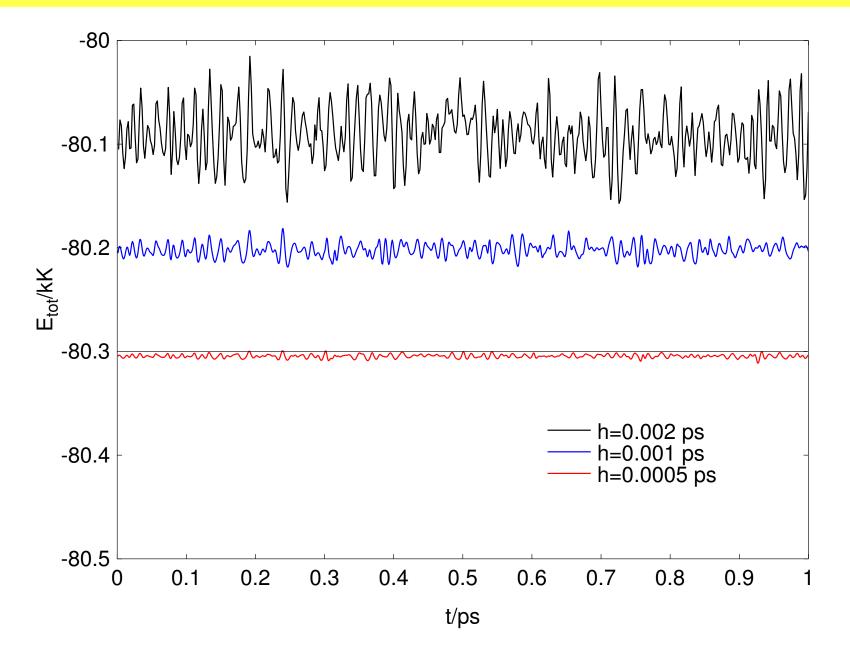
- \bigoplus is time-reversible \Rightarrow no drift in the total (potential + kinetic) energy
- \bigoplus is symplectic \Rightarrow error in the total energy is bound
- 🛟 is simple
- 😂 low order (phase error)
- (directly) not applicable to a r.h.s. containing velocities (equation $\ddot{r} = f(r, \dot{r})$: Nosé–Hoover, rotations)
- difficult change of the timestep
- Gear: and similar: just opposite

Notes:

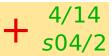
- a symplectic integerator preserves (with bounded accuracy) the phase space volume dr^Ndp^N
- the quality of energy conservation helps us to set up the timestep h

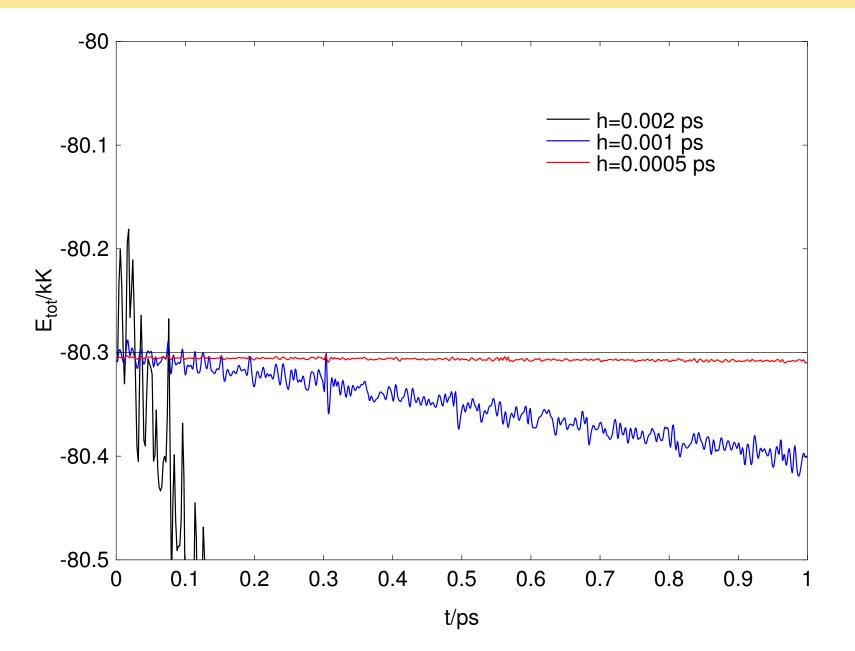


Energy conservation: Verlet

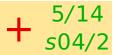


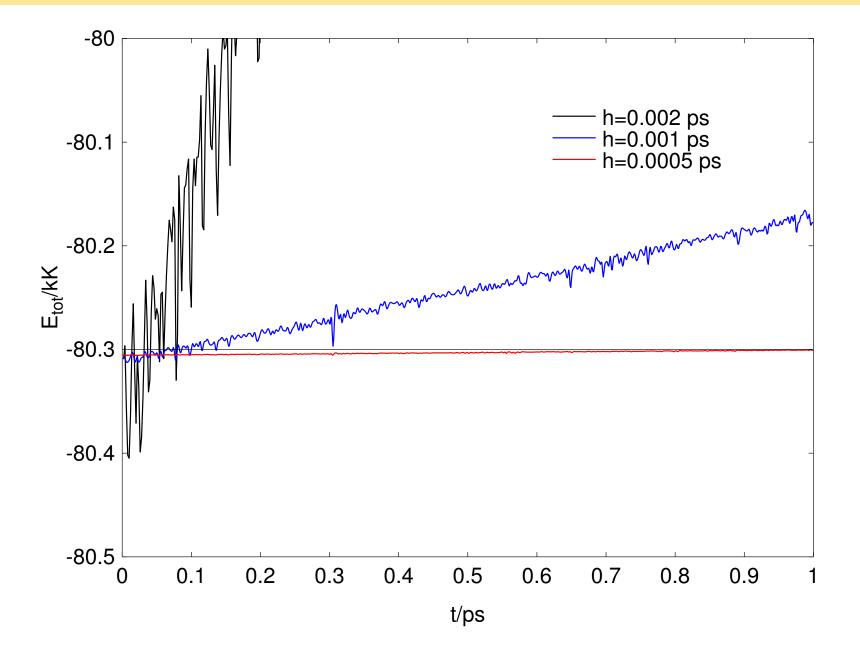
Energy conservation: Gear M = 4



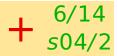


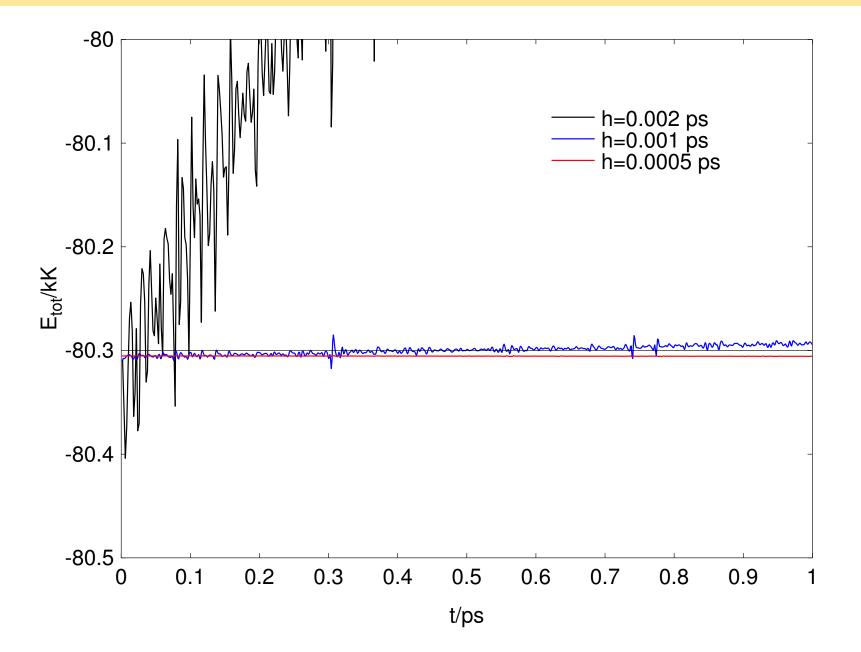
Energy conservation: Gear *M* = 5





Energy conservation: Gear M = 6



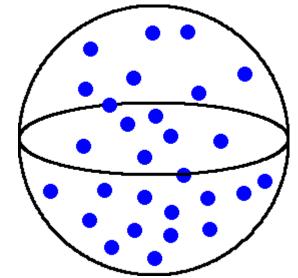


Temperature

The temperature is **measured** in the standard (microcanonical) MD.

$$T = \left\langle \frac{E_{\rm kin}}{\frac{1}{2}k_{\rm B}f} \right\rangle = \langle T_{\rm kin} \rangle$$

 $f = 3N - f_{conserved} \approx 3N$ **Example:** molecules in a spherical cavity: $f_{conserve} = 1_{energy} + 3_{rotations}$



NOTE: the averaged kinetic temperature should not depend on (a subset of) the degrees of freedom used. Typically, one may easily separate:

- \bigcirc $T_{\rm tr}$ from the velocities of the centers of mass
- \bigcirc T_{rot+in} from rotations and internal degrees of freedom.

disagreement $T_{tr} \neq T_{rot+in}$ indicates various problems (bad equilibration, too long timestep, ...).

Constant temperature in MD: methods

simolant] 8/14] /2082 s

not canonical (do not give the canonical ensemble)

• velocity rescaling: $\vec{v}_{i,\text{new}} = \vec{v}_i (T/T_{\text{kin}})^{1/2}$ • Berendsen (friction): $\vec{v}_{i,\text{new}} = \vec{v}_i (T/T_{\text{kin}})^q$, q < 1/2, is equivalent to: $\ddot{\vec{r}}_i = \frac{\vec{f}_i}{m_i} - \eta (T_{\text{kin}} - T)\dot{\vec{r}}_i$, $\eta = \frac{q}{Th}$

canonical deterministic:

Nosé–Hoover: one (or more) degrees of freedom added, averaging it \Rightarrow canonical ensemble. Problem: tricks needed with Verlet (r.h.s. depends on velocities)

Modified Berendsen

canonical stochastic:

- Maxwell–Boltzmann: once a while the velocties of particles are drawn from the Maxwell–Boltzmann distribution, $\pi(\dot{x}_i) = \exp(-\dot{x}^2/2\sigma^2)/\sigma\sqrt{2\pi}$, $\sigma^2 = k_B T/m_i$
- Andersen: randomly visit particles (usually better)
- Langevin: small random force added to all particles at every step
- Canonical sampling through velocity rescaling (Bussi, Donadio, Parrinello)
- Gaussian rescaling: E_{kin} = const, canonical in the configurational space only

Nosé-Hoover thermostat

one degree of freedom added: "position" s and "velocity" s

- + kinetic energy $\frac{M_s}{2}\dot{s}^2$
- \mathbf{D} + potential energy $-fk_{B}T\ln s$

:

Equations of motion ($\xi = \ln s$):

$$\ddot{\vec{r}}_{i} = \frac{\tilde{f}_{i}}{m_{i}} - \dot{\vec{r}}_{i}\dot{\xi}$$
$$\ddot{\xi} = \left(\frac{T_{\text{kin}}}{T} - 1\right)\tau^{-2}$$

Thermostat time constant:

$$\tau = \sqrt{\frac{M_s}{fk_{\rm B}T}}$$

Provided that the system is ergodic, it can be proven that we get the canonical ensemble

Thermostats

Nosé-Hoover

- 🕀 canonical
- 🛟 high quality
- good also for small systems (N-H chain)

Berendsen

- 🛟 simple
- exponential relaxation (i.e., good also for start)

Maxwell-Boltzmann etc.

- 🕂 canonical
- exponential relaxation

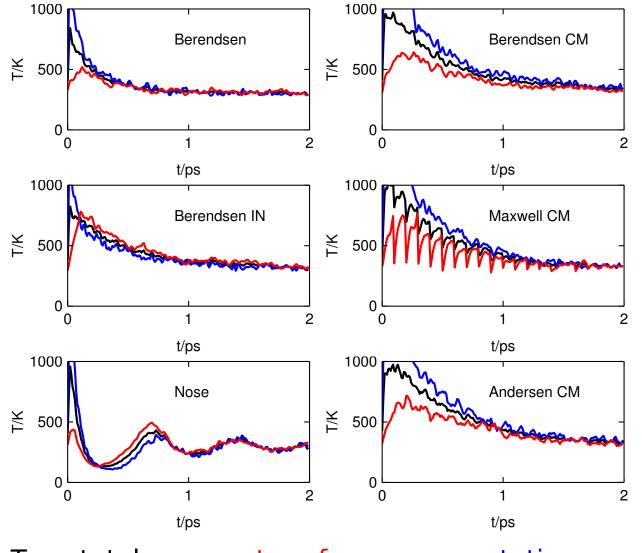
- oscillations, decoupling
- (fine tuning of au)
- 😑 worse for start
- equations of motion w. velocities

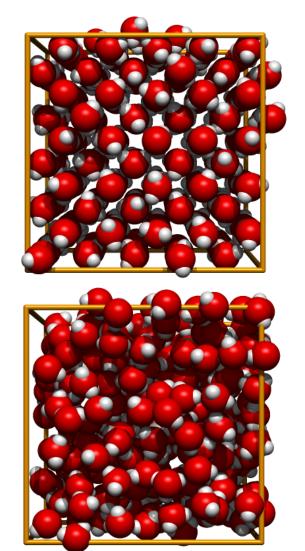
- flying icecube
 - 🔵 not canonical
- poor for small systems
- kinetics lost
 problematic with constrained dynamics

for me: Show flying icecube simolant: periodic b.c., $\tau = \min$, lower ρ , max. speed old simolant: periodic b.c., N=100, L=40, hot key '=', tau=0.2

Thermostats: application to water

250 molecules of SPC/E water started from an fcc lattice of randomly oriented molecules, $\tau = 0.1$ ps





see simul/spce/water.*

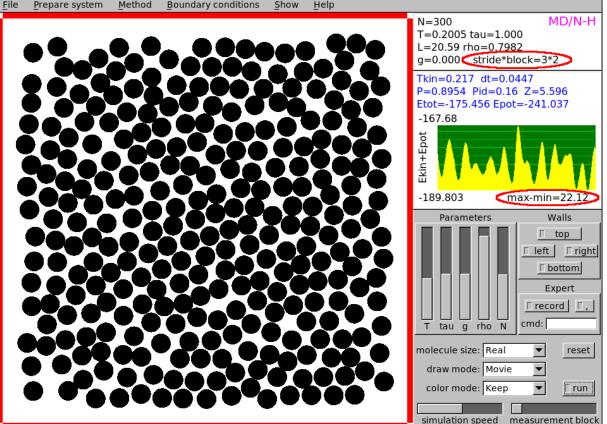
T: — total — center-of-mass — rotations

Try molecular dynamics by yourself

Installation of SIMOLANT (Windows):

- http://old.vscht.cz/fch/software/simolant
- Download simolant-win32.zip
- Create a folder and unpack SIMOLANT there.
 Do not run directly from
 simolant-win32.zip
 help would not work
 you could not find saved files

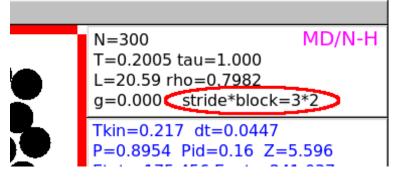
Run simolant.exe.



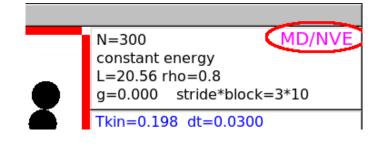
Watch energy conservation by yourself

13/14 *s*04/2

- Slider "measurement block" to the left (1–3 values averaged per 1 point shown)
- The default is one energy calculated per 3 MD steps (stride). This can be changed by slider "simulation speed".



-) if still too slow, decrease the number of particles by slider "N"
 - Menu: \underline{S} how $\rightarrow \underline{E}$ nergy convergence profile
 - The time development of energy is always scaled from minimum to maximum: Note the value of max-min reported Reset the graph by button reset
- Menu: Method \rightarrow Molecular dynamics (NVE)
 - write "dt=0.01" to the cmd: field
 - write "dt=0.02" to the cmd: field and observe the difference
 - for too long dt, the simulation will switch to MC to avoid crash
 - do not forget to return the default (automatic setup) by "dt=0"



Try thermostats by yourself

- Menu: Method \rightarrow Molecular dynamics (Berendsen thermostat)
 - observe the total energy
 - what happens if you change temperature?
 - what happens if you change the correlation time (slider τ)? Do not change the parameters too fast!

14/14

*s*04/2

- Repeat for other thermostats.
- Repeat for different samples; e.g., liquid: slider "T": $T \approx 0.2$ slider " ρ ": $\rho \approx 0.6$