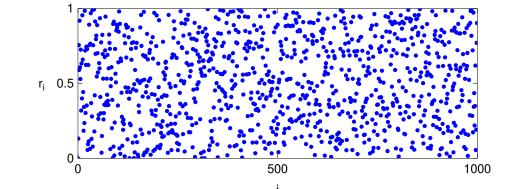
Random numbers in algorithms

- A deterministic algorithm is a sequence of operations giving the correct answer (or failing to do so in such a way that we know about the failure). Example: matrix inversion by the Gauss–Jordan elimination with full pivoting.
- A Monte Carlo algorithm as a procedure using (pseudo)random number to obtain a result, which is correct with certain probability; typically, a numerical result subject to a stochastic error.
 Example: Solving the traveling salesman problem by simulated annealing.
- A Las Vegas algorithm uses random numbers to obtain a deterministic result. Example: matrix inversion by the Gauss–Jordan elimination with the pivot element selected at random from several (large enough) pivot candidates.

Example of pseudo random number generator

$$n_i = 7^5 n_{i-1} \mod (2^{31} - 1), r_i = n_i / 2^{31}$$



Monte Carlo integration (naive Monte Carlo)

Example: Calculate π by MC integration

```
INTEGER n total # of points
INTEGER i
INTEGER nu # of points in a circle
REAL x,y coordinates of a point in a sphere
REAL rnd(-1,1) function returning a random number in interval [-1,1)
nu := 0
FOR i := 1 TO n DO
    x := rnd(-1,1)
    y := rnd(-1,1)
    IF x*x+y*y < 1 THEN nu := nu + 1
PRINT "pi=", 4*nu/n area of square = 4
PRINT "std. error=", 4*sqrt((1-nu/n)*(nu/n)/(n-1))
```

[xpi] 2/8

*s*05/2

Also "random shooting". Generally

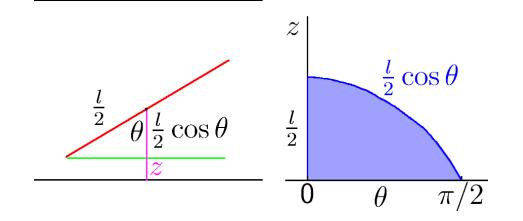
$$\int_{\Omega} f(x_1, \dots, x_D) \, \mathrm{d} x_1 \dots \, \mathrm{d} x_D \approx \frac{|\Omega|}{\kappa} \sum_{k=1}^{\kappa} f(x_1^{(k)}, \dots, x_D^{(k)})$$

where $(x_1^{(k)}, \ldots, x_D^{(k)})$ is a random vector from region Ω $(|\Omega| = \text{area, volume, } \ldots; \text{ calculation of } \pi: \Omega = (-1, 1)^2, |\Omega| = 4)$

Exercise – Buffon's needle

Let a needle of length l be tossed randomly on a plane with parallel lines d units apart, $l \le d$. The probability that the needle crosses a line is $p = 2l/\pi d$. [Georges-Louis Leclerc, Comte de Buffon, 1707–1788]

Proof:



expression (a < b) gives 1 if the inequality holds true, 0 otherwise

rel. error

$$p = \frac{1}{d/2} \int_0^{d/2} dz \frac{1}{\pi/2} \int_0^{\pi/2} d\theta \left(z < \frac{l}{2} \cos \theta \right) = \frac{1}{d/2} \frac{1}{\pi/2} \int_0^{\pi/2} \frac{l}{2} \cos \theta d\theta = \frac{2l}{\pi d}$$

Usage (δp is the standard error of p)

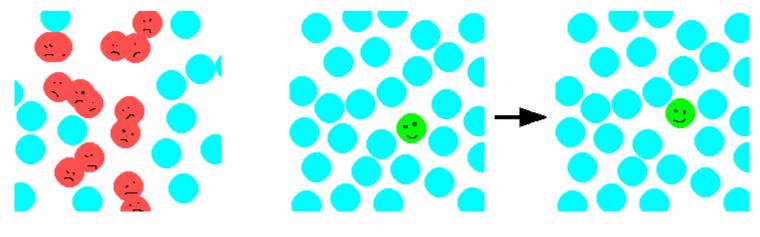
$$\pi \approx \frac{2l}{pd}$$
, where $p = \frac{n_{\text{crosses}}}{n_{\text{total}}}$, $\delta p \approx \sqrt{\frac{p(1-p)}{n-1}}$, $\delta \pi = \frac{2l}{pd} \frac{\delta p}{p}$

for me: grid: pic/buffon-grid.pdf and buffon.sh / https://www.youtube.com/watch?v=6jkXBqBOR6o

3/8 *s*05/2

$$\sum \mathrm{e}^{-\beta U(\vec{r}^N)} f(\vec{r}^N) \rightarrow \frac{1}{K} \sum_{k=1}^K f(\vec{r}^{N,(k)})$$

where $\vec{r}^{N,(k)}$ is a random vector with a probability density $\propto e^{-\beta U(\vec{r}^N)}$. Metropolis algorithm: $\vec{r}^{N,(k+1)}$ generated sequentially from $\vec{r}^{N,(k)}$



naive MC

importance sampling

Metropolis method (intuitively)

5/8 *s*05/2

Choose a particle, *i* (e.g., randomly)

Try to move it, e.g.:

 $x_{i}^{tr} = x_{i} + u_{(-d,d)},$ $y_{i}^{tr} = y_{i} + u_{(-d,d)},$ $z_{i}^{tr} = z_{i} + u_{(-d,d)}$

or in/on sphere, Gaussian,...

so that the **probability of the reversed move is the same**

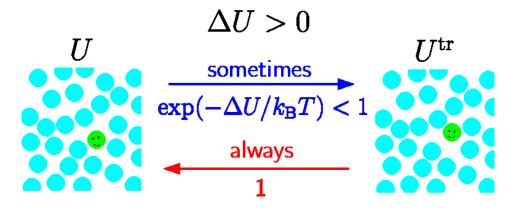
Calculate the change in the potential energy, $\Delta U = U^{tr} - U$

If $\Delta U \leq 0$, the change is accepted **If** $\Delta U \geq 0$, the change is accepted with probability exp($-\beta \Delta U$), otherwise rejected

Because then it holds for the probability ratio:

new : old = p^{tr} : $p = \exp(-\beta \Delta U)$

(moves there and back are compared, always the probability of one move = 1, and of the other = Boltzmann probability)



Algorithm – details

- Choose a particle (lattice site, . . .) to move
- $A^{tr} := A^{(k)} + random move (spin) of the chosen particle$

$$\bigcirc \Delta U := U(A^{\mathrm{tr}}) - U(A^{(k)}) \equiv U^{\mathrm{tr}} - U^{(k)}$$

The configuration is accepted ($A^{(k+1)} := A^{tr}$) with probability min{1, $e^{-\beta\Delta U}$ } otherwise rejected:

Version 1	Version 2	Version 3
$u := u_{(0,1)}$	$u := u_{(0,1)}$	IF $\Delta U < 0$
IF $u < \min\{1, e^{-\beta \Delta U}\}$	IF $u < e^{-\beta \Delta U}$	THEN $A^{(k+1)} := A^{tr}$
THEN $A^{(k+1)} := A^{tr}$	THEN $A^{(k+1)} := A^{tr}$	ELSE
ELSE $A^{(k+1)} := A^{(k)}$	ELSE $A^{(k+1)} := A^{(k)}$	$u := u_{(0,1)}$
		IF $u < e^{-\beta \Delta U}$
		THEN $A^{(k+1)} := A^{tr}$
		$ELSE A^{(k+1)} := A^{(k)}$

k := k + 1 and again and again

How to choose a particle to move

In a cycle – check the reversibility!

Deterring examples of microreversibility violation:

Three species A, B, C in a ternary mixture moved sequentially in the order of $A-B-C-A-B-C-\cdots$

[start z-vitezneho-oblouku.mov] 7/8

*s*05/2

Sequence: move molecule A – move molecule B – change volume – \cdots

Randomly

Chaos is better than bad control

number of all configurations

 χ depends on the displament d. Optimal χ depends on the system, quantity, algorithm. Often **0.3 is a good choice**. Exception: diluted systems...

