
Random numbers in algorithms
1/8
s05/2

A deterministic algorithm is a sequence of operations giving the correct answer
(or failing to do so in such a way that we know about the failure).
Example: matrix inversion by the Gauss–Jordan elimination with full pivoting.

A Monte Carlo algorithm as a procedure using (pseudo)random number to ob-
tain a result, which is correct with certain probability; typically, a numerical result
subject to a stochastic error.
Example: Solving the traveling salesman problem by simulated annealing.

A Las Vegas algorithm uses random numbers to obtain a deterministic result.
Example: matrix inversion by the Gauss–Jordan elimination with the pivot ele-
ment selected at random from several (large enough) pivot candidates.

Example of pseudo random number generator +

n = 75n−1 mod (231 − 1), r = n/231

0 500 1000

i

0

0.5

1

ri



Monte Carlo integration (naive Monte Carlo)
[xpi] 2/8

s05/2

Example: Calculate π by MC integration

INTEGER n total # of points
INTEGER i
INTEGER nu # of points in a circle
REAL x,y coordinates of a point in a sphere
REAL rnd(-1,1) function returning a random number in interval [−1,1)

nu := 0
FOR i := 1 TO n DO

x := rnd(-1,1)
y := rnd(-1,1)
IF x*x+y*y < 1 THEN nu := nu + 1

PRINT "pi=", 4*nu/n area of square = 4

PRINT "std. error=", 4*sqrt((1-nu/n)*(nu/n)/(n-1))

Also “random shooting”. Generally
∫

Ω
ƒ (1, . . . , D)d1 . . .dD ≈

|Ω|

K

K
∑

k=1
ƒ ((k)1 , . . . , (k)D )

where ((k)1 , . . . , (k)D ) is a random vector from region Ω
(|Ω| = area, volume, . . . ; calculation of π: Ω = (−1,1)2, |Ω| = 4)



Exercise – Buffon’s needle
3/8
s05/2

Let a needle of length  be tossed randomly on a plane with parallel
lines d units apart,  ≤ d. The probability that the needle crosses a
line is p = 2/πd. [Georges-Louis Leclerc, Comte de Buffon, 1707–1788]

Proof:

expression ( < b)
gives 1 if the in-
equality holds true,
0 otherwise

p =
1

d/2

∫ d/2

0
dz

1

π/2

∫ π/2

0
dθ

�

z <


2
cosθ

�

=
1

d/2

1

π/2

∫ π/2

0



2
cosθdθ =

2

πd

Usage (δp is the standard error of p)
↙

rel. error

π ≈
2

pd
, where p =

ncrosses

ntotal
, δp ≈

√

√

√
p(1 − p)

n − 1
, δπ =

2

pd

δp

p
for me: grid: pic/buffon-grid.pdf and buffon.sh / https://www.youtube.com/watch?v=6jkXBqBOR6o



Importance sampling
4/8
s05/2

∑

e−βU(~r
N)ƒ (~rN) →

1

K

K
∑

k=1
ƒ (~rN,(k))

where ~rN,(k) is a random vector with a probability density ∝ e−βU(~r
N).

Metropolis algorithm: ~rN,(k+1) generated sequentially from ~rN,(k)

naive MC importance sampling



Metropolis method (intuitively)
5/8
s05/2

Choose a particle,  (e.g., randomly)

Try to move it, e.g.:

or in/on sphere,
Gaussian,. . .

tr
 =  + (−d,d) ,

ytr
 = y + (−d,d) ,

ztr
 = z + (−d,d)

so that the probability of the reversed move is the same

Calculate the change in the potential energy, ΔU = Utr − U

If ΔU ≤ 0, the change is accepted
If ΔU ≥ 0, the change is accepted with probability exp(−βΔU), otherwise rejected

Because then it holds for the probability ratio:

new : old = ptr : p = exp(−βΔU)

(moves there and back are compared, always
the probability of one move = 1, and of the
other = Boltzmann probability)



Algorithm – details
6/8
s05/2

Choose a particle (lattice site, . . . ) to move

Atr := A(k) + random move (spin) of the chosen particle

ΔU := U(Atr) − U(A(k)) ≡ Utr − U(k)

The configuration is accepted (A(k+1) := Atr) with probability min{1,e−βΔU} oth-
erwise rejected:

Version 1 Version 2 Version 3

 := (0,1)  := (0,1) IF ΔU < 0

IF  < min{1,e−βΔU} IF  < e−βΔU THEN A(k+1) := Atr

THEN A(k+1) := Atr THEN A(k+1) := Atr ELSE

ELSE A(k+1) := A(k) ELSE A(k+1) := A(k)  := (0,1)
IF  < e−βΔU

THEN A(k+1) := Atr

ELSE A(k+1) := A(k)

k := k + 1 and again and again



How to choose a particle to move
[start z-vitezneho-oblouku.mov] 7/8

s05/2

In a cycle – check the reversibility!
Deterring examples of microreversibility violation:
Three species A, B, C in a ternary mixture moved sequentially in the order of
A–B–C–A–B–C– · · ·
Sequence: move molecule A – move molecule B – change volume – · · ·

Randomly

Chaos is better than bad control



Acceptance ratio
8/8
s05/2

χ =
number of accepted configurations

number of all configurations

χ depends on the displament d. Optimal χ depends on the system, quantity, algo-
rithm. Often 0.3 is a good choice. Exception: diluted systems. . .

0.005

0.010

0.015

0.020

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

δP

d

•

•

•
•
•••
•
•
•

•

0.005

0.010

0.015

0.020

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

χ

•

•

•
•

•••
•
•
•

•

LJ (reduced units): T = 1.2, ρ = 0.8


