Molecular computer experiment

Also simulation or pseudoexperiment

REAL EXPERIMENT	COMPUTER EXPERIMENT
Record everything in a lab note- book	Record everything in a lab notebook
Choose method (device, assay)	Choose method (MD, MC, ...)
Build the experimental appara- tus (from parts)	Download/buy/write a computer program (blocks of code)
Purchase chemicals, synthetise if not available	Get a force field, fit/calculate parameters if not available (e.g., partial charges)
Prepare the experiment	Prepare initial configurations, etc.
Perform the experiment, watch what's going on	Run the code, observe time development, con- trol quantities, etc.
Analyse and calculate	Calculate mean values (with error estimates)
Clean the laboratory	Make backups, erase temporary files

MD or MC?

Often, MC and MD can be applied to similar systems.

MD

Oealistic models, complex molecules (bonds, angles. . .)
condensed matter in general (fluids, solutions; biochemistry)
kinetic quantities (diffusivity, viscosity. . .)
better parallelization, more packages available

MC

. simple qualitative models (lattice, hard-sphere-like)
dilute systems
critical phenomena

- fluid equilibria
overcoming barriers, exchange of molecules, etc. is easier with MC
fewer packages available

Systematic errors:

inaccurate molecular model (force field)
neglected quantum effects, neglected many-body forces ...
osmall sample (finite-size effects)
insufficient time scale (long correlations, bottleneck problems)
method problems: integration errors (too long timestep), inappropriate thermostat/barostat, not equilibrated enough, inaccurate treatment of Coulomb forces...

Random (stochastic, statistical) errors are essential in stochastic methods

- time-correlated
can be decreased by long calculations
Uncertainty (in metrology) includes critical assessment of both the systematic and random errors

Warning: there is no generally adopted terminology

Simulation methodology

Start (initial configuration):

- experimental structure (biomolecules)
© crystal \rightarrow liquid (melt), gas \rightarrow liquid (shrink); Packmol
random configuration (overlaps of molecules $=$ problem in MD) problem for "ill-defined" models (TIP4P etc.)
- lattice models: crystal/chaos
- MD: velocities = Maxwell-Boltzmann (approximation enough)

Equilibration \rightarrow watch graphically (convergence/time profile)

Measuring the quantities of interest incl. estimates of errors

Boundary conditions

- free (vacuum) - droplet, protein in vacuum ...
periodic (cyclic, torroidal)

walls (hard, soft, smoothed, made of atoms), pores, slab, ...

Periodic boundary conditions: MD

```
REAL L edge size of the cubic simulation box (cell)
VECTOR r1, r2 where vector r = (r.x,r.y,r.z)
                        both vectors must lie in the basic box
VECTOR dr := r2 - r1 difference of vectors
                                    (ignoring the boundary conditions)
IF dr.x< -L/2 THEN dr.x := dr.x + L
ELSE IF dr.x > L/2 THEN dr.x := dr.x - L
IF dr.y < -L/2 THEN dr.y := dr.y + L
ELSE IF dr.y > L/2 THEN dr.y := dr.y - L
IF dr.z < -L/2 THEN dr.z := dr.z + L
ELSE IF dr.z > -L/2 THEN dr.z := dr.z - L
Vector dr now goes from r1 to the nearest image of r2
Squared distance to the nearest image:
REAL rr := dr.x**2 + dr.y**2 + dr.z**2
```


Periodic boundary conditions: MC

In MC, usually the vector $\vec{r}_{12}=r 2-r 1$ is not needed, the distance is enough
REAL L edge size of the cubic simulation box (cell)
VECTOR r1, $r 2$ where vector $r=(r . x, r . y, r . z)$ both vectors must lie in the basic box
VECTOR dr := r2 - r1 difference of vectors (ignoring the boundary conditions)

REAL $\mathrm{rr}:=(\mathrm{L} / 2-\operatorname{abs}(\mathrm{L} / 2-\mathrm{abs}(\mathrm{dr} . \mathrm{x}))) * * 2$
$+(\mathrm{L} / 2-\operatorname{abs}(\mathrm{L} / 2-\mathrm{abs}(\mathrm{dr} . \mathrm{y}))) * * 2$
$+(\mathrm{L} / 2-\mathrm{abs}(\mathrm{L} / 2-\mathrm{abs}(\mathrm{dr} . \mathrm{z}))) * * 2$

Calculations

Example. We simulate an argon droplet in a periodic cubic simulation cell. Let us have 1000 atoms and temperature 85 K . The distance between surfaces of periodic images of droplets should be equal to the droplet diameter. Calculate the size of the box in \AA. Argon density is $1.4 \mathrm{~g} \mathrm{~cm}^{-3}$.

N[0]=1000

```
x=90 ! [\AÅ]
L[0]=x L[1]=x L[2]=x
dt.prt=1 dt.plb=1 ! [ps]
LJcutoff=11 ! [\AA]
cutoff=LJcutoff
```

;
$\mathrm{T}=85$
$\mathrm{h}=0.005$ noint=200 ! po 1 ps
thermostat="Berendsen" tau. T=1
$\mathrm{x}=1$! [K*k_B]
center. $\mathrm{K}[0]=\mathrm{x}$ center. $\mathrm{K}[1]=\mathrm{x}$ center. $\mathrm{K}[2]=\mathrm{x}$
init="crystal" no=10 ! 10 ps
;
thermostat="Andersen"
;
thermostat="Berendsen"
no=80
center.K[0]=0 center.K[1]=0 center.K[2]=0
;

Trajectory = sequence of configurations (MD: in time)

Convergence profile:

time development of a quantity (time profile, 一) problems better seen

- cumulative (running average, 一) can estimate the inaccuracy

Type of statistical treatment:

averaged values (\leftarrow ergodic hypothesis)

- less often fluctuations

Type of quantity:

- mechanical (temperature, pressure, internal energy, order parameters...)
entropic (S, F, μ, \ldots)
- structure (correlation functions, number of neighbors, analysis of clusters....)
auxiliary or control quantities (order parameters, integrals of motion in MD)

Random errors

$$
\text { quantity }=\text { (estimate of the mean value) } \pm \text { (estimate of the error) }
$$

Arithmetic average (example of a statistic*):

$$
\bar{x}=\frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

Standard error $=$ standard deviation of the statistic, usually denoted as σ

$$
\sigma_{X}=\sqrt{\left\langle(\bar{x}-\langle X\rangle)^{2}\right\rangle}
$$

For uncorrelated (independent) X_{i} and large m, \bar{X} has Gaussian distribution
$\langle X\rangle \in\left(\bar{X}-\sigma_{X}, \bar{X}+\sigma_{X}\right)$ with probability $\approx 68 \%$
$\langle X\rangle \in\left(\bar{X}-2 \sigma_{X}, \bar{X}+2 \sigma_{X}\right)$ with probability $\approx 95 \%$
The estimate of the standard error of uncorrelated data:

$$
\sigma_{X}^{\text {estim }}=\sqrt{\frac{\sum_{i=1}^{m} \Delta X_{i}^{2}}{m(m-1)}}, \quad \text { where } \Delta X_{i}=X_{i}-\bar{X}
$$

*also statistical functional, in metrology measurement function

Physics: $\sigma_{X}^{\text {physics }}=\sigma_{X}$ (of course, estimated)
$\sigma_{X}^{\text {estim }}=$ estimated standard error/uncertainty; loosely (estimated) error/uncertainty, standard deviation (= of the average or other statistic).

Common notation: $123.4 \pm 0.5 \equiv 123.4(5) \equiv 123.45$
Custom certainty level $=5 \sigma_{X}$ (confidence level 0.99999943$)$
Biology, economy, engineering: level of confidence 95 \% (data are with the probability of 95% in the interval given). In case of a Gaussian distribution:

$$
\sigma_{X}^{\text {biology }} \approx 2 \sigma_{X}^{\text {physics }}
$$

Chemistry: mostly ignored, if given, nobody knows whether $\sigma_{X}^{\text {chemistry }}=\sigma_{X}$ or $2 \sigma_{X}$
The type of error/uncertainty must be specified

Problem: correlations

block method: $\bar{X}_{j}=\frac{1}{B} \sum_{i=1}^{B} X_{i+(j-1) B}$
analysis of correlations \Rightarrow

$$
\sigma_{X}=\sqrt{\frac{\sum_{i=1}^{m} \Delta X_{i}^{2}}{m(m-1)}(1+2 \tau)} \quad \tau=\sum_{k=1}^{\infty} c_{k} \quad c_{k}=\frac{\left\langle\Delta X_{0} \Delta X_{k}\right\rangle}{\left\langle(\Delta X)^{2}\right\rangle}
$$

MC: c_{k} is monotonously decreasing [ex.: $c_{k}=\sum_{\lambda \neq 1} c_{\lambda} \lambda^{k}, \lambda \in(-1,1)$] MD: $c_{k} \rightarrow c(t)$ (time autocorrelation function): damped oscillations

- even better $=$ both approaches combined:
first to block a bit, then $\tau \approx c_{1}$
- from running average (roughly ≈ 10 blocks):

$$
\sigma_{X}^{\mathrm{estim}} \approx 0.6\left[\max _{2 \mathrm{nd}} \text { half }(X)-\min _{2 \mathrm{nd}} \text { half }(X)\right]
$$

or to be on the safe side (this formula is approximate):

$$
\operatorname{err}_{X} \approx \max _{2 \mathrm{nd}} \operatorname{half}(X)-\min _{2 \mathrm{nd}} \text { half }(X)
$$

$\Rightarrow\langle X\rangle \in\left(\bar{X}-\operatorname{err}_{X}, \bar{X}+\right.$ err $\left.X\right)$ with probability $\approx 85 \%$ (for long enough time series)

Exercise/Example

Generate random correlated data (1st order process):

$$
X_{k+1}=q X_{k}+u
$$

where $u=u_{[0,1)}$ or $u_{\text {Gauss }}$ etc., and $|q|<1$.

- Calculate the arithmetic average incl. error by different methods Note: it is known analytically,

$$
\sigma_{X}=\sqrt{\frac{1+q}{1-q}} \sqrt{\frac{\operatorname{Var} X}{m}}=\frac{1}{1-q} \sqrt{\frac{\operatorname{Var} u}{m}}
$$

where the variance, or fluctuation, is defined by $\operatorname{Var} X=\left\langle(X-\bar{X})^{2}\right\rangle$

Velocity-velocity autocorrelation function of liquid argon:
$-150 \mathrm{~K}, 1344 \mathrm{~kg} \mathrm{~m}^{-3}$,
$-120 \mathrm{~K}, 1680 \mathrm{~kg} \mathrm{~m}^{-3}$.
Results from a 100 ps trajectory for 216 Lennard-Jones particles

Typical behavior (MC + MD):
fluid: $\lim _{t \rightarrow \infty} c(t)=$ const $t^{-3 / 2}$ (hydrodynamic tail)
jumps between states: $c(t) \propto \lambda^{t}(\lambda$ just below 1$)$

Error analysis

Sum of independent measurements: squares of standard deviations are additive
Example. Let us perform thermodynamic integration $I=\int_{0}^{1} f(x) \mathrm{d} x$ approximately by the Simpson's formula:

$$
I=\int_{0}^{1} f(x) \mathrm{d} x \approx \frac{1}{6}[f(0)+4 f(0.5)+f(1)]
$$

For $f(x)$ we have measured the following data with standard errors:

x	0	0.5	1
$f(x)$	$1.34(5)$	$1.57(3)$	$1.77(6)$

Calculate I including the error estimate.

> (七乙)ऽ9s'L=I

$$
\begin{aligned}
& \text { S9G'L }=\left[L L^{\prime} \mathrm{L}+\angle \mathrm{S}^{\prime} \mathrm{L} \times \downarrow+\nabla \mathcal{E}^{\prime} \mathrm{L}\right] \frac{9}{\mathrm{~L}}=I
\end{aligned}
$$

For division and multiplication, the same holds true for the relative errors
Example. Calculate $3.46(7) / 0.934(13)$.

Error analysis

Error of function f of a variable with error is (linearized; i.e., for small σ):

$$
f\left(x \pm \sigma_{x}\right)=f(x) \pm f^{\prime}(x) \sigma_{x}
$$

$$
\ln \left(x \pm \sigma_{x}\right)=\ln x \pm \frac{\sigma_{x}}{x}, \quad \exp \left(x \pm \sigma_{x}\right)=\exp x \pm \sigma_{x} \exp x, \quad \frac{1}{x \pm \sigma_{x}}=\frac{1}{x} \pm \frac{\sigma_{x}}{|x|^{2}}
$$

Example. Calculate the activity of H^{+}from $\mathrm{pH}=2.125(5)$.

