
Molecular computer experiment
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Also simulation or pseudoexperiment

REAL EXPERIMENT COMPUTER EXPERIMENT

Record everything in a lab note-
book

Record everything in a lab notebook

Choose method (device, assay) Choose method (MD, MC, . . . )

Build the experimental appara-
tus (from parts)

Download/buy/write a computer program
(blocks of code)

Purchase chemicals, synthetise
if not available

Get a force field, fit/calculate parameters if not
available (e.g., partial charges)

Prepare the experiment Prepare initial configurations, etc.

Perform the experiment, watch
what’s going on

Run the code, observe time development, con-
trol quantities, etc.

Analyse and calculate Calculate mean values (with error estimates)

Clean the laboratory Make backups, erase temporary files



MD or MC?
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Often, MC and MD can be applied to similar systems.

MD

realistic models, complex molecules (bonds, angles. . . )

condensed matter in general (fluids, solutions; biochemistry)

kinetic quantities (diffusivity, viscosity. . . )

better parallelization, more packages available

MC

simple qualitative models (lattice, hard-sphere-like)

dilute systems

critical phenomena

fluid equilibria

overcoming barriers, exchange of molecules, etc. is easier with MC

fewer packages available



Is it correct?
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Systematic errors:

inaccurate molecular model (force field)

neglected quantum effects, neglected many-body forces . . .

small sample (finite-size effects)

insufficient time scale (long correlations, bottleneck problems)

method problems: integration errors (too long timestep), inappropriate ther-
mostat/barostat, not equilibrated enough, inaccurate treatment of Coulomb
forces. . .

Random (stochastic, statistical) errors are essential in stochastic methods

time-correlated

can be decreased by long calculations

Uncertainty (in metrology) includes critical assessment of both the systematic and
random errors

Warning: there is no generally adopted terminology



Simulation methodology
[sleep 3;simul/spceE.sh] 4/16
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Start (initial configuration):

experimental structure (biomolecules)

crystal → liquid (melt), gas → liquid (shrink); Packmol

random configuration (overlaps of molecules = problem in MD)
problem for “ill-defined” models (TIP4P etc.)

lattice models: crystal/chaos

MD: velocities = Maxwell–Boltzmann (approximation enough)

Equilibration → watch graphically
(convergence/time profile)

Measuring the quantities of
interest incl. estimates of errors



Boundary conditions
[simolant] 5/16
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free (vacuum) – droplet, protein in vacuum . . .

periodic (cyclic, torroidal)
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walls (hard, soft, smoothed, made of atoms), pores, slab, . . .



Periodic boundary conditions: MD + 6/16
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REAL L edge size of the cubic simulation box (cell)
VECTOR r1, r2 where vector r = (r.x,r.y,r.z)

both vectors must lie in the basic box
VECTOR dr := r2 - r1 difference of vectors

(ignoring the boundary conditions)

IF dr.x < -L/2 THEN dr.x := dr.x + L
ELSE IF dr.x > L/2 THEN dr.x := dr.x - L

IF dr.y < -L/2 THEN dr.y := dr.y + L
ELSE IF dr.y > L/2 THEN dr.y := dr.y - L

IF dr.z < -L/2 THEN dr.z := dr.z + L
ELSE IF dr.z > -L/2 THEN dr.z := dr.z - L
Vector dr now goes from r1 to the nearest image of r2

Squared distance to the nearest image:
REAL rr := dr.x**2 + dr.y**2 + dr.z**2



Periodic boundary conditions: MC + 7/16
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In MC, usually the vector ~r12 = r2− r1 is not needed, the distance is enough

REAL L edge size of the cubic simulation box (cell)
VECTOR r1, r2 where vector r = (r.x,r.y,r.z)

both vectors must lie in the basic box
VECTOR dr := r2 - r1 difference of vectors

(ignoring the boundary conditions)

REAL rr := (L/2 - abs(L/2-abs(dr.x)))**2
+ (L/2 - abs(L/2-abs(dr.y)))**2
+ (L/2 - abs(L/2-abs(dr.z)))**2



Calculations
[../simul/ar/showdrop.sh] 8/16
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Example. We simulate an argon droplet in a periodic cubic simulation cell. Let us
have 1000 atoms and temperature 85 K. The distance between surfaces of periodic
images of droplets should be equal to the droplet diameter. Calculate the size of the
box in Å. Argon density is 1.4 g cm−3. 90Å



Measurements
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Trajectory = sequence of configurations (MD: in time)

Convergence profile:

0 20 40 60 80 100 120 140 160 180 200

t/ps

25

30

35

40

45

50

P
/M

P
a

time development of a quantity
(time profile, )
problems better seen

cumulative (running average, )
can estimate the inaccuracy

Type of statistical treatment:

averaged values (← ergodic hypothesis)

less often fluctuations

Type of quantity:

mechanical (temperature, pressure, internal energy, order parameters. . . )

entropic (S, F, μ,. . . )

structure (correlation functions, number of neighbors, analysis of clusters. . . )

auxiliary or control quantities (order parameters, integrals of motion in MD)



Random errors
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quantity = (estimate of the mean value) ± (estimate of the error)

Arithmetic average (example of a statistic*):

X =
1

m

m
∑

=1
X

Standard error = standard deviation of the statistic, usually denoted as σ

σX =

√

√

­

�

X − 〈X〉
�2
·

For uncorrelated (independent) X and large m, X has Gaussian distribution

〈X〉 ∈ (X − σX, X + σX) with probability ≈ 68%

〈X〉 ∈ (X − 2σX, X + 2σX) with probability ≈ 95%

The estimate of the standard error of uncorrelated data:

σestim
X =

√

√

√

√

∑m
=1ΔX

2


m(m − 1)
, where ΔX = X − X

*also statistical functional, in metrology measurement function



Customs and terminology
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Physics: σphysics
X = σX (of course, estimated)

σestim
X = estimated standard error/uncertainty; loosely (estimated) error/uncertainty,

standard deviation (= of the average or other statistic).

Common notation: 123.4 ± 0.5 ≡ 123.4(5) ≡ 123.45

Custom certainty level = 5σX (confidence level 0.999 999 43)

Biology, economy, engineering: level of confidence 95 % (data are with the prob-
ability of 95 % in the interval given). In case of a Gaussian distribution:

σbiology
X ≈ 2σphysics

X

Chemistry: mostly ignored, if given, nobody knows whether σchemistry
X = σX or 2σX

The type of error/uncertainty must be specified



Analysis of time series and error estimation
[cd simul; corelrnd.sh 2000]12/16
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Problem: correlations

block method: Xj =
1
B
∑B
=1X+(j−1)B

analysis of correlations ⇒

σX =

√

√

√

√

∑m
=1ΔX

2


m(m − 1)
(1 + 2τ) τ =

∞
∑

k=1
ck ck =

〈ΔX0ΔXk〉

〈(ΔX)2〉

MC: ck is monotonously decreasing [ex.: ck =
∑

λ 6=1 cλλ
k, λ ∈ (−1,1)]

MD: ck → c(t) (time autocorrelation function): damped oscillations

even better = both approaches combined:
first to block a bit, then τ ≈ c1

from running average (roughly ≈ 10 blocks):

σestim
X ≈ 0.6[max2nd half(X) −min2nd half(X)]

or to be on the safe side (this formula is approximate):
errX ≈max2nd half(X) −min2nd half(X)

⇒ 〈X〉 ∈ (X − errX, X + errX) with probability ≈ 85% (for long enough time series)



Exercise/Example
[simul/errplot.sh 4096 0.9]13/16
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Generate random correlated data (1st order process):

Xk+1 = qXk + 

where  = [0,1) or Gauss etc., and |q| < 1.

Calculate the arithmetic average incl. error by different methods

Note: it is known analytically,

σX =

√

√

√

1 + q

1 − q

√

√

√VarX

m
=

1

1 − q

√

√

√
Var

m

where the variance, or fluctuation, is defined by VarX = 〈(X − X)2〉



Time autocorrelation function + 14/16
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Velocity-velocity autocorrelation func-
tion of liquid argon:
— 150 K, 1344 kg m−3,
— 120 K, 1680 kg m−3.
Results from a 100 ps trajectory for
216 Lennard-Jones particles

0 0.5 1 1.5

t/ps

0

0.5

1

cv(t)

Typical behavior (MC + MD):

fluid: limt→∞ c(t) = const t−3/2 (hydrodynamic tail)

jumps between states: c(t) ∝ λt (λ just below 1)



Error analysis
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Sum of independent measurements: squares of standard deviations are additive

Example. Let us perform thermodynamic integration  =
∫ 1
0 ƒ ()d approximately

by the Simpson’s formula:

 =
∫ 1

0
ƒ ()d ≈

1

6
[ƒ (0) + 4ƒ (0.5) + ƒ (1)]

For ƒ () we have measured the following data with standard errors:

 0 0.5 1

ƒ () 1.34(5) 1.57(3) 1.77(6)

Calculate  including the error estimate.

=1
6[1.34+4×1.57+1.77]=1.565

σ()2=(0.05/6)2+(0.03×4/6)2+(0.06/6)2=0.000569⇒σ()=0.024
=1.565(24)

For division and multiplication, the same holds true for the relative errors

Example. Calculate 3.46(7)/0.934(13). 3.70(9)



Error analysis
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Error of function ƒ of a variable with error is (linearized; i.e., for small σ):

ƒ ( ± σ) = ƒ () ± ƒ ′()σ

ln( ± σ) = ln ±
σ


, exp( ± σ) = exp ± σ exp,

1

 ± σ
=
1


±

σ

||2

Example. Calculate the activity of H+ from pH = 2.125(5). (H+)=0.00750(9)


