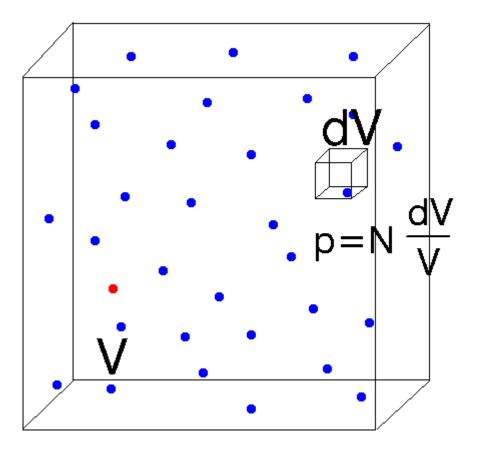
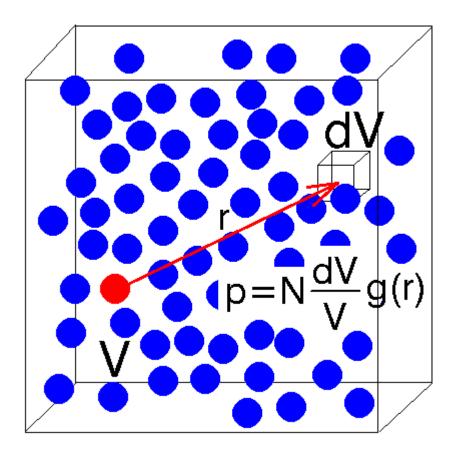
Structural quantities

Correlation functions:

- radial distribution function (RDF, also pair correlation/distribution function) $g(r) = \text{probability of finding a particle at distance r (from another particle), normalized to ideal gas$
- structure factor (diffraction \rightarrow Fourier transform of g(r))
- angular correlation function good for small nonspherical molecules
- time autocorrelation functions

Structure of fluids – correlation functions



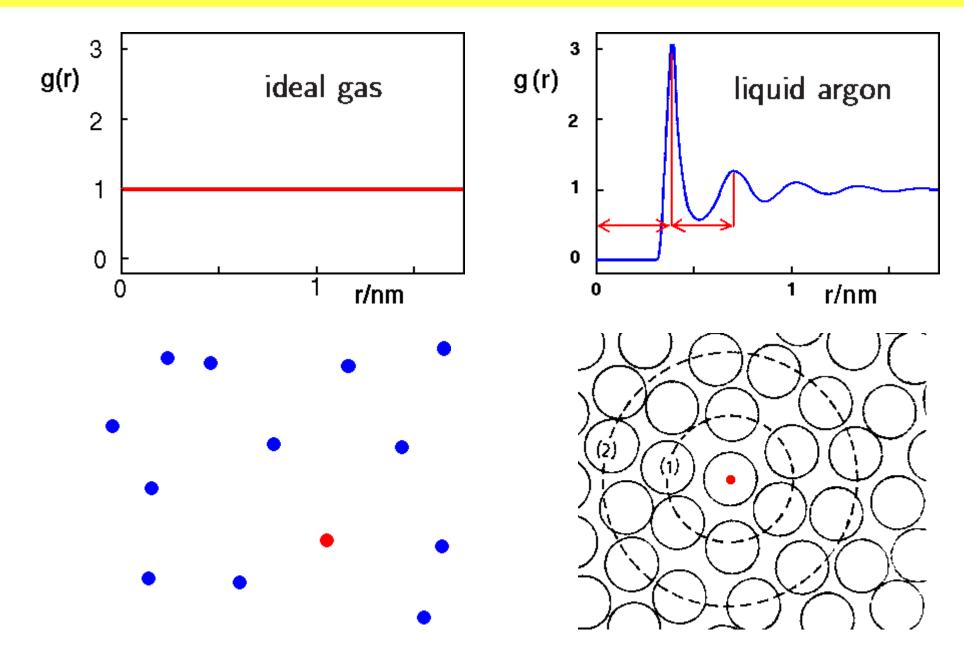


randomly distributed molecules (ideal gas)

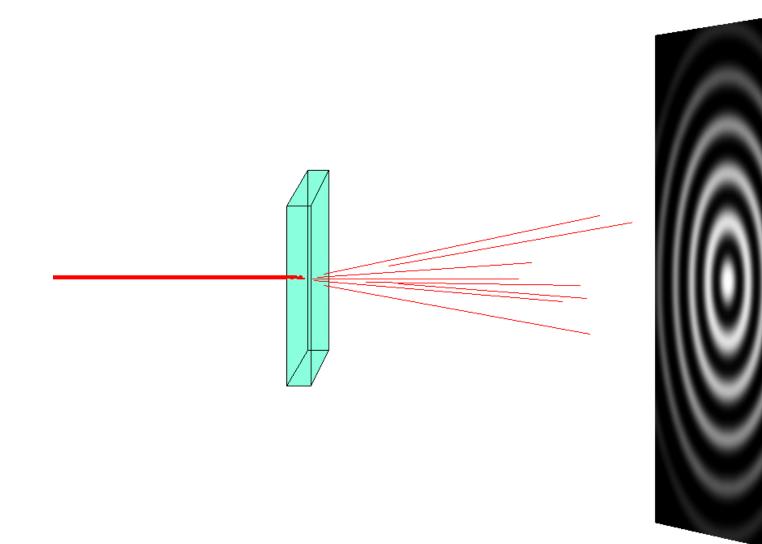
liquid

g(r) = pair correlation function = radial distribution function = probability density of finding a particle r apart from another particle, normalized so that for randomly distributed particles (ideal gas) it is 1

Structure of fluids – correlation functions

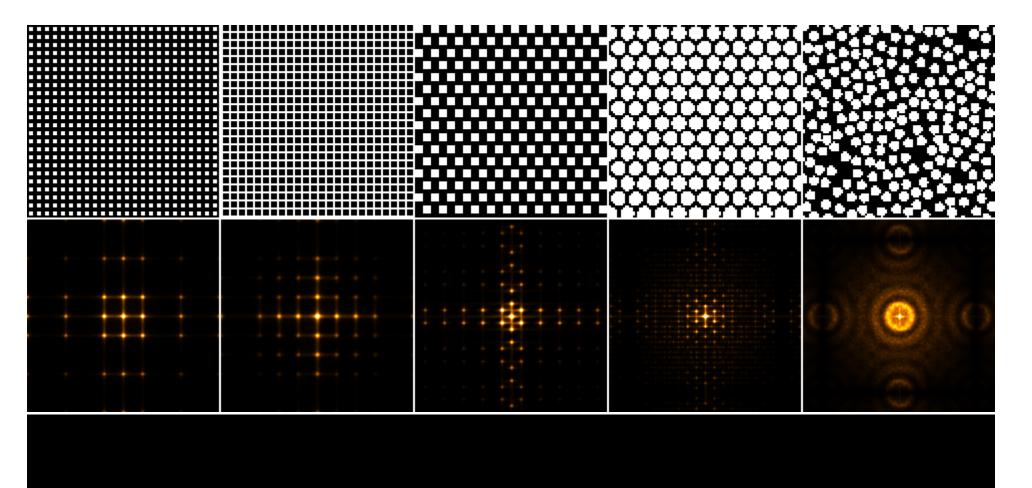


How to obtain structure – experiment



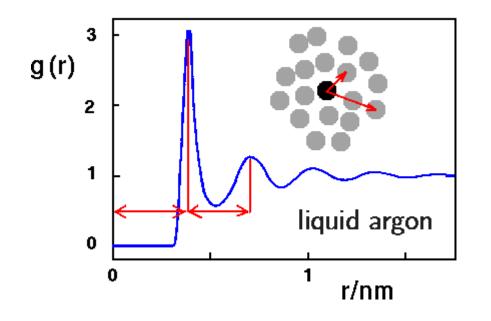
- Diffraction (neutrons, X-ray, electrons)
 ⇒ "structure factor"
 - inverse Fourier transform \Rightarrow RDF

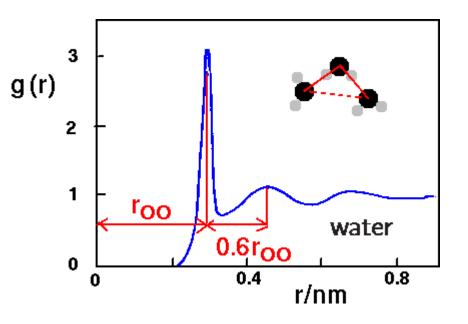
How to obtain structure

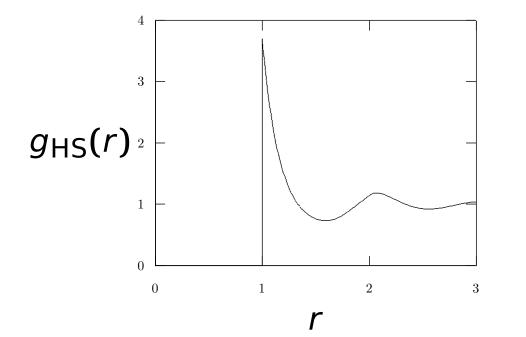


5/10 *s*08/2

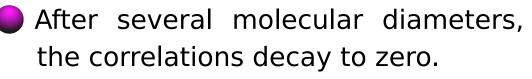
Argon, hard spheres, water







- The structure of simple fluid (argon, HS) is organized by shells.
- The structure of water is determined by the tetrahedral geometry of hydrogen bonds.

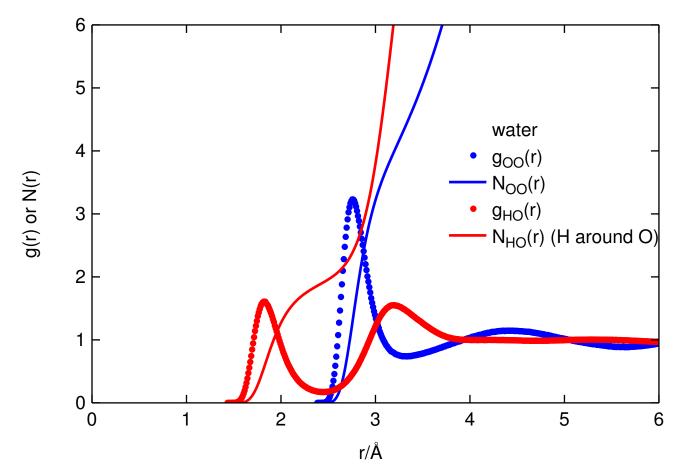


Running coordination number

Also "cumulative radial distribution function"

$$N(r) = 4\pi\rho \int_0^r g(r')r'^2 \mathrm{d}r'$$

For r_{\min} = first minimum on the RDF curve, $N(r_{\min})$ = "coordination number" = averaged number of molecules in the first shell



7/10 *s*08/2

 $\rho = N/V =$ number density

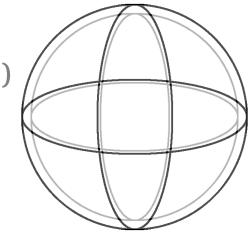
RDF from simulations – simple

Histogram of the number of particle pairs, \mathcal{N}_i , so that

 $r \in [r_i - \Delta r/2, r_i + \Delta r/2)$ alternatively: $\mathcal{I}_i = [r_i, r_i + \Delta r)$

The volume of the shell

$$\Delta V_i = \frac{4\pi}{3} \left[\left(r_i + \frac{\Delta r}{2} \right)^3 - \left(r_i - \frac{\Delta r}{2} \right)^3 \right]$$



Mean number of molecules around a selected particle in case of uniformly distributed molecules (ideal gas, $\rho = N/V$):

 $\rho \Delta V_i$

Sum over all particles (1/2 to count each pair just once):

$$\mathcal{N}_i^{\text{id.gas}} = \frac{N}{2} \rho \Delta V_i$$

Radial distribution function:

$$g(r_i) = \frac{\langle \mathcal{N}_i \rangle}{\mathcal{N}_i^{\text{id.gas}}} = \frac{2 \langle \mathcal{N}_i \rangle}{N \rho \Delta V_i}$$

SIMOLANT – installation (Windows)

- http://www.vscht.cz/fch/software/simolant or Google simolant
- Download simolant-win32.zip
- Create a folder and unpack SIMOLANT there.
 Do not run directly from simolant-win32.zip!

Run simolant.exe

Hint: The calculated data are exported to file simolant.txt with a decimal point. If you like decimal comma (useful with Czech localization), click **I**, in panel "Measure".

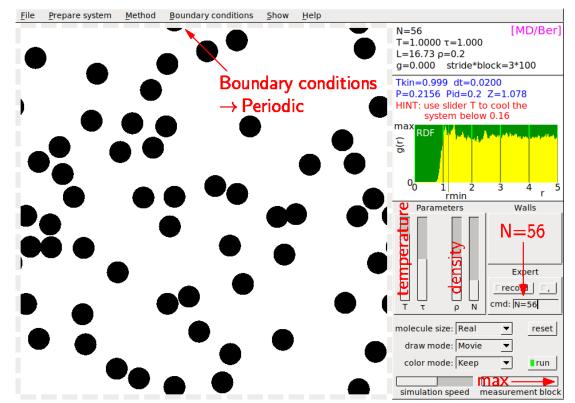
9/10

*s*08/2

Hint: If you restart SIMOLANT, the old simolant.txt is renamed to simolant.bak. The export name simolant can be changed by Menu: File \rightarrow Protocol name.

Simolant: observe RDF by yourself

- Set in menu: <u>Boundary conditions</u> \rightarrow <u>Periodic</u>
- Type N=209 to input field "cmd:" (slow computer: N=56)
- Slide "measurement block" to max
- Increase density (slider "\rho") and observe the changes in RDF
- Repeat with a lower temperature "T", combine different ρ and T.
- Set max ρ, cool slowly to T = 0, try heat/cool if not well crystallized Hint: "color mode" → <u>N</u>eighbors to visualize crystal defects



• Apparently $r_3/r_1 = 2$ because r_3 is the second neighbor •••

Your homework: calculate r_2/r_1