Structural quantities

Correlation functions:
radial distribution function (RDF, also pair correlation/distribution function) $g(r)=$ probability of finding a particle at distance r (from another particle), normalized to ideal gas
structure factor (diffraction \rightarrow Fourier transform of $g(r)$)
angular correlation function - good for small nonspherical molecules
time autocorrelation functions

randomly distributed molecules (ideal gas)

liquid
$g(r)=$ pair correlation function $=$ radial distribution function $=$ probability density of finding a particle r apart from another particle, normalized so that for randomly distributed particles (ideal gas) it is 1

Diffraction (neutrons, X-ray, electrons)
\Rightarrow "structure factor"
inverse Fourier transform \Rightarrow RDF

- The structure of simple fluid (argon, HS) is organized by shells.
O The structure of water is determined by the tetrahedral geometry of hydrogen bonds.
- After several molecular diameters, the correlations decay to zero.

Also "cumulative radial distribution function"

$$
N(r)=4 \pi \rho \int_{0}^{r} g\left(r^{\prime}\right) r^{\prime 2} \mathrm{~d} r^{\prime}
$$

For $r_{\min }=$ first minimum on the RDF curve, $N\left(r_{\min }\right)=$ "coordination number" $=$ averaged number of molecules in the first shell

RDF from simulations - simple

Histogram of the number of particle pairs, \mathcal{N}_{i}, so that

$$
r \in\left[r_{i}-\Delta r / 2, r_{i}+\Delta r / 2\right) \quad \text { alternatively: } \mathcal{I}_{i}=\left[r_{i}, r_{i}+\Delta r\right)
$$

The volume of the shell

$$
\Delta V_{i}=\frac{4 \pi}{3}\left[\left(r_{i}+\frac{\Delta r}{2}\right)^{3}-\left(r_{i}-\frac{\Delta r}{2}\right)^{3}\right]
$$

Mean number of molecules around a selected particle in case of uniformly distributed molecules (ideal gas, $\rho=N / V$):

$$
\rho \Delta V_{i}
$$

Sum over all particles (1/2 to count each pair just once):

$$
\mathcal{N}_{i}^{\mathrm{id.} \text { gas }}=\frac{N}{2} \rho \Delta V_{i}
$$

Radial distribution function:

$$
g\left(r_{i}\right)=\frac{\left\langle\mathcal{N}_{i}\right\rangle}{\mathcal{N}_{i}^{\text {id. gas }}}=\frac{2\left\langle\mathcal{N}_{i}\right\rangle}{N \rho \Delta V_{i}}
$$

SIMOLANT - installation (Windows)

http://www.vscht.cz/fch/software/simolant or Google simolant

Download simolant-win32.zip
Create a folder and unpack SIMOLANT there.
Do not run directly from simolant-win32.zip!
O Run simolant.exe
Hint: The calculated data are exported to file simolant. txt with a decimal point. If you like decimal comma (useful with Czech localization), click II, in panel "Measure". Hint: If you restart SIMOLANT, the old simolant.txt is renamed to simolant. bak. The export name simolant can be changed by Menu: File \rightarrow Protocol name..

Set in menu: Boundary conditions \rightarrow Periodic
Type $\mathrm{N}=209$ to input field "cmd:" (slow computer: $\mathrm{N}=56$)

- Slide "measurement block" to max

O Increase density (slider " ρ ") and observe the changes in RDF

- Repeat with a lower temperature " T ", combine different ρ and T.
Set max ρ, cool slowly to $T=0$, try heat/cool if not well crystallized Hint: "color mode" \rightarrow Neighbors to visualize crystal defects
O You should get the following RDF:

Apparently $r_{3} / r_{1}=2$ because r_{3} is the second neighbor $\bullet \bullet \bullet$

- Your homework: calculate r_{2} / r_{1}

