System size and potential range

Size of the simulated sample depends on:
correlation length

- correlation time
- range of the potential
liquid: hundreds of molecules
biomolecules: $10^{4}-10^{6}$
nanostructures, crystals (defects): billions
problem: correlation times of many complex phenomena are long

Pair potential treatment:

number of operations needed for 1 MD step or 1 attempted move of every particle: loop over all pairs (nearest-image): $\sim N^{2}$
short-range potential, optimum algorithm: $\sim N^{1}$

Short-range forces

Potential cutoff

$$
u_{\text {simul }}(r)= \begin{cases}u(r) & \text { for } r \leq r_{\mathrm{c}} \\ 0 & \text { for } r>r_{\mathrm{c}}\end{cases}
$$

Usually $r_{\mathrm{C}}<L / 2$ ($L=$ box size)
MD: continuous forces, or at least cut-andshift potential:

$$
u_{\text {simul }}(r)= \begin{cases}u(r)-u\left(r_{\mathrm{c}}\right) & \text { pro } r \leq r_{\mathrm{c}} \\ 0 & \text { pro } r>r_{\mathrm{c}}\end{cases}
$$

\Rightarrow discontinuity (jump) in forces.
Better: smooth (depends on the integrator order) - next slide

Correction of energy of a selected atom (assuming: $g(r)=1$ for $r>r_{\mathrm{c}}$):

$$
\Delta U=\int_{r_{c}}^{\infty} u(r) \rho 4 \pi r^{2} \mathrm{~d} r \quad \text { for the whole box : } N \Delta U / 2
$$

Dispersion forces: $u(r) \propto r^{-6}, \Delta U \propto r_{c}^{-3}$; for $r_{c}=L / 2$ we get error $\propto 1 / N$ Typical values r_{c} : 2.5 to $4 \mathrm{LJ} \sigma$, i.e., 8 to $15 \AA$

Coulomb problem: dipole-dipole: r^{-3}, charge-charge: $r^{-1}-\Delta U$ diverges!

Methods:

cut-and-shift, must be done smoothly - cheap, inaccurate, time $\sim N$ ions: OK for $r_{\mathrm{c}} \gg$ Debye screening length, dipoles: bad correlations

- Ewald summation - golden standard standard Ewald: computer time $\propto N^{3 / 2}$ particle-mesh (FFT): computer time $\propto N \log N$

O tree-code (Greengard-Rokhlin)

For dipolar systems only:

reaction field: dielectric response beyond cutoff, computer time $\propto N$

Periodic boundary conditions surrounded "at infinity" by a dielectric or metal ($\varepsilon^{\prime}=\infty$, tin-foil)
sum of all periodic images:

$$
U=\sum_{\vec{n}}^{\prime} \sum_{1 \leq j \leq l \leq N} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{j} q_{l}}{\left|\vec{r}_{j}-\vec{r}_{l}+\vec{n} L\right|}
$$

Summation trick:

 point charges screened by Gaussian charge distribution of opposite sign
the screened charge interaction is short-ranged
Gaussians are summed in the k-space

Ewald summation II

Oops! The infinite sum does not converge absolutely

$$
U=\lim _{s \rightarrow 0} \sum_{\vec{n}}^{\prime} \exp \left(-s \vec{n}^{2}\right) \sum_{1 \leq j \leq l \leq N} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{j} q_{l}}{\left|\vec{r}_{j}-\vec{r}_{l}+\vec{n} L\right|}
$$

Tricks used in the derivation:

$$
\frac{1}{r}=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \exp \left(-t^{2} r^{2}\right) \mathrm{d} t=\frac{2}{\sqrt{\pi}} \int_{0}^{\alpha} \exp \left(-t^{2} r^{2}\right) \mathrm{d} t+\frac{2}{\sqrt{\pi}} \int_{\alpha}^{\infty} \exp \left(-t^{2} r^{2}\right) \mathrm{d} t
$$

1st term: $3 \times$ the Poisson summation formula

$$
\sum_{n=-\infty}^{\infty} f(x+n L)=\frac{1}{L} \sum_{k=-\infty}^{\infty} \hat{f}(k / L) e^{2 \pi i k x / L}
$$

where

$$
\hat{f}(k)=\int_{-\infty}^{\infty} f(x) \mathrm{e}^{-2 \pi i k x / L} \mathrm{~d} x
$$

2nd term leads to the function

$$
\operatorname{Erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp \left(-t^{2}\right) d t
$$

$$
\begin{aligned}
& 4 \pi \varepsilon_{0} U= \sum_{\vec{n}}^{\prime} \sum_{1 \leq j \leq l \leq N} \frac{q_{j} q_{l} \operatorname{Erfc}\left(\alpha\left|\vec{r}_{j}-\vec{r}_{l}+\vec{n} L\right|\right)}{\left|\vec{r}_{j}-\vec{r}_{l}+n L\right|} \\
&+ \sum_{\vec{k}, \vec{k} \neq \overrightarrow{0}} \frac{\exp \left(-\pi^{2} k^{2} / \alpha^{2} L^{2}\right)}{2 L \pi k^{2}}|Q(\vec{k})|^{2}+\frac{2 \pi}{2 \varepsilon_{r}^{\prime}+1} \frac{\vec{M}^{2}}{L^{3}}-\frac{\alpha}{\sqrt{\pi}} \sum_{j=1}^{N} q_{j}^{2} \\
& Q(\vec{k})=\sum_{j=1}^{N} q_{j} \exp \left(2 \pi i \vec{k} \cdot \vec{r}_{j} / L\right) \\
& \vec{M}=\sum_{j=1}^{N} \vec{r}_{j} q_{j}(\text { watch point charges! }) \\
& \operatorname{Erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp \left(-t^{2}\right) \mathrm{d} t
\end{aligned}
$$

with optimized parameters $\sim N^{3 / 2}$
with particle mesh for the k-space part: $\sim N \log N$

