
System size and potential range
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Size of the simulated sample depends on:

correlation length

correlation time

range of the potential

liquid: hundreds of molecules
biomolecules: 104–106

nanostructures, crystals (defects): billions

problem: correlation times of many complex phenomena are long

Pair potential treatment:

number of operations needed for 1 MD step or 1 attempted move of every particle:

loop over all pairs (nearest-image): ∼ N2

short-range potential, optimum algorithm: ∼ N1



Short-range forces
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Potential cutoff

simul(r) =
§

(r) for r ≤ rc,
0 for r > rc,

Usually rc < L/2 (L = box size)

MD: continuous forces, or at least cut-and-
shift potential:

simul(r) =
§

(r) − (rc) pro r ≤ rc,
0 pro r > rc,

⇒ discontinuity (jump) in forces.
Better: smooth (depends on the integrator
order) – next slide

0 1 2 3

r

-1

0

1

U(r)



Smooth cutoff
[simul/plotspcelj.sh]
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Cutoff corrections
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Correction of energy of a selected atom (assuming: g(r) = 1 for r > rc):

ΔU =
∫ ∞

rc
(r)ρ4πr2dr for the whole box : NΔU/2

Dispersion forces: (r) ∝ r−6, ΔU ∝ r−3c ; for rc = L/2 we get error ∝ 1/N

Typical values rc: 2.5 to 4 LJ σ, i.e., 8 to 15 Å

Coulomb problem: dipole–dipole: r−3, charge–charge: r−1 – ΔU diverges!

Methods:

cut-and-shift, must be done smoothly – cheap, inaccurate, time ∼ N
ions: OK for rc � Debye screening length, dipoles: bad correlations

Ewald summation – golden standard
standard Ewald: computer time ∝ N3/2

particle-mesh (FFT): computer time ∝ N logN

tree-code (Greengard–Rokhlin)

For dipolar systems only:

reaction field: dielectric response beyond cutoff, computer time ∝ N



Ewald summation I
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Periodic boundary conditions surrounded “at infin-
ity” by a dielectric or metal (ϵ′ =∞, tin-foil)

sum of all periodic images:

U =
∑

~n

′ ∑

1≤j≤≤N

1

4πϵ0

qjq
|~rj − ~r + ~nL|

Summation trick:
point charges screened by
Gaussian charge distribution
of opposite sign

the screened charge interaction is short-ranged

Gaussians are summed in the k-space
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Oops! The infinite sum does not converge absolutely

U = lim
s→0

∑

~n

′
exp(−s~n2)

∑

1≤j≤≤N

1

4πϵ0

qjq
|~rj − ~r + ~nL|

Tricks used in the derivation:

1

r
=

2
p
π

∫ ∞

0
exp(−t2r2)dt =

2
p
π

∫ α

0
exp(−t2r2)dt +

2
p
π

∫ ∞

α
exp(−t2r2)dt

1st term: 3× the Poisson summation formula
∞
∑

n=−∞
ƒ ( + nL) =

1

L

∞
∑

k=−∞
ƒ̂ (k/L)e2πk/L

where

ƒ̂ (k) =
∫ ∞

−∞
ƒ ()e−2πk/Ld

2nd term leads to the function

Erfc() =
2
p
π

∫ ∞


exp(−t2)dt
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4πϵ0U =
∑

~n

′ ∑

1≤j≤≤N

qjqErfc(α|~rj − ~r + ~nL|)

|~rj − ~r + nL|

+
∑

~k, ~k 6=~0

exp(−π2k2/α2L2)

2Lπk2
|Q( ~k)|2 +

2π

2ϵ′r + 1

~M2

L3
−

α
p
π

N
∑

j=1
q2j

Q( ~k) =
N
∑

j=1
qj exp(2π ~k · ~rj/L)

~M =
N
∑

j=1
~rjqj (watch point charges!)

Erfc() =
2
p
π

∫ ∞


exp(−t2)dt

with optimized parameters ∼ N3/2

with particle mesh for the k-space part: ∼ N logN


