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Simulations of molecular systems s12/2

Large molecules vs. small molecules (rigid or almost rigid)
Vibrating (classical) bonds - pros:

@ simplicity and consistency of the model

@ code simplicity

@ more realistic description of flexibility

Cons:

@ technical problems with too stiff springs (short timestep in v MD, short trial moves
in MC)

@ vibrational frequencies (esp. for hydrogens) are so high that cannot be treated
by classical mechanics anyway

@ transfer of energy between the fast vibrations and slow degrees of freedom is
slow (they are decoupled), unless a stochastic thermostat is used

@ flexible models are more complicated theoretically



2/9
MC: molecules s12/2

Example of a wrong algorithm for a linear molecule with axis (6, ¢):

' = 6+ A6uj_117
o = ¢+ Adur_1 1]

Example of a correct algorithm for a general body:

@ choose an axis randomly:
—any of X, y, Z in the body frame
—any of X, y, 2 in 3D space
—any random vector

@ rotate by angle Aauj_1,1]

where u—_1 1 is a random number uniformly distributed in interval [—1, 1]



MD: bonds 5%32

Integration of the equations of motion for systems with fixed
bond lengths or angles is not the same as the infinitely-large
force constant limit of the corresponding flexible system

What to fix:
@ bonds with hydrogen only - longer timestep allowed, slightly worse equipartition

@ all bond lengths - slightly larger systematic error, not good for rigid geometries
(fullerene)

& all bond lengths + angles with hydrogens — cheap and less precise, but longer
timestep allowed + good equipartition

& all bond lengths + all angles - WRONG except small molecules
Methods:
@ SHAKE (+Verlet)

& Lagrangian constraint dynamics



Dihedral angle distribution of butane 51‘232

United-atom model (CHARMM19) of butane
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Fixed constraints in MD: SHAKE iR

Matematical pendulum:

h?
F(t+h) = Pyerlet(t+h)— Efc(t)

2l O=Te®

m
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IF(t+ h)|* = F(D)]° = 12

[ Pverlet(t + h) — AF(£)]% = F(t)?
Pverlet(t + h)2 — 2APyeriet(t + h) - F(t) + A2 F(1)? = F(£)?

_Pverlet(t + h)|% — |F(t)]°
2Pverlet(t + h) - F(t)
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SHAKE s12/2
General atom-atom bond:

. . 1/mi .

Fi(t+h) = Tverlet,i(t+ h)+ Al/mi N 1/mjl’zj

. . 1/mj .

ri(t+h) = Tverlet,(t+ h)_)\l/m[ N 1/mjrij

where
_ |Pverlet,i(t + )2 — |7;()]2
2Pverlet, ij(t + h) - 7(t)

Center-of-mass is conserved (integral of motion)!
Complex molecules: repeat iteratively until converged

Superrelaxation



Optimization |

For short-ranged pair potentials (also r-space Ewald):
@ all pairs (N < 300)

@ neighbor list (N ~ 1000)

@ linked-cell list method (N > 1000)
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Optimization II + o102

A couple of tricks:

@ MD: multiple timestep MD

@ MC: multimoves (near the critical point - critical slowing-down)
@ MC: identity change, non-Boltzmann sampling, ...

& hybrid MC/MD (not very good)

Programming tricks:

@ cache

@ nearest neighbors in periodic boundary conditions

@ tables: pair potential calculated by splines

Parallel code:

@ usually based on domain decomposition (linked-cell list)
@ standard computers 4-32 cores

@ Graphics Processing Units: thousands of processors, more difficult to program
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Kinetic quantities: EMD nd NEMD $12/2

Kinetic quantities: diffusivity, electric conductivity, viscosity, heat conductivity
Nonequilibrium molecular dynamics (NEMD)

@ as in “real experiment” - field or perturbation added
(electric field, thermal gradient, shear stress)

@ dissipation — heat is generated = good thermostat needed

@ dissipation extrapolation to zero perturbation E C g C E C E c
B B B B ™
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E g E g E g E 5 i~
Equilibrium molecular dynamics (EMD) ..... ACDACD ..... ACDACD
5E BEE BEE BEE BE
@ one equilibrium simulation enough A DA DA DA D
: 1 (™ Z Zy
@ based on the Linear Response Theory — Green-Kubo: D = 3 (Fi(t) - 7i(0))dt
0

1
Einstein: 2tD = 5(m-(t) —7(0)|%)



