
2D Clausius–Clapeyron equation
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Aim:
Verify the Clausius–Clapeyron equation by simula-
tions of a 2D model of matter

Model:
8-4 type potential (≈ Lennard-Jones in 2D)

(r) =
1

r8
−
1

r4

Hard attractive (7-3) or repulsive (r−7) walls.

Reduced units: kB = R/NA = 1, energy and tem-
perature are measured in the same units

Quantities given per 1 atom, not per 1 mol
(subscript at)
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Tasks
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In a system of two phases separated by a flat inter-
face, determine the equilibrium vapor pressure in de-
pendence on temperature (at least two points). Use
MD with a thermostat.

Calculate the mean temperature and pressure, then
simulate the vapor in MC and determine the com-
pressibility factor.

Calculate the vaporization enthalpy from the Clausius–Clapeyron equation (cor-
rected to non-ideal behavior of vapor), including the estimated standard error.

Determine the vaporization enthalpy from the averaged potential energy of liquid
in the periodic boundary contitions.

Compare both values.



Simulation methods
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The simulation starts from a random configuration using MC (to remove over-
laps), then it automatically switches to MD.

Method: leap-frog + Berendsen thermostat*

Monte Carlo (Metropolis) is possible, too (for some subtasks)

Pressure = averaged force on the top wall:

pwall =
�

ƒwall

L

�

, L = edge length

〈·〉 = averaging of instantaneous values during the simulation

Alternatively, pressure from the virial of force (no wall needed):

pyy = ρkBT +
1

DV

*

∑

all forces

ryƒy

+

pyy = diagonal component of the pressure tensor in the direction of ŷ,
ρ = N/V = number density�, V = LD, L = edge length, D = dimension (D = 2), the
sum is over all pair forces (particle–particle, wall-particle)

*other types can be used, too
�sometimes denoted N or n



Vaporization enthalpy from the Clausius–Clapeyron equation 4/14
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The Clausius–Clapeyron equation

ΔvapHm = −
R ln(p1/p2)

1/T1 − 1/T2
is derived using the following simplifications:

The vaporization enthalpy does not depend on temperature

Liquid volume � vapor volume

The ideal gas equation of state holds for the vapor phase.

In the simulation, the first two simplifications are valid (error < 2%), however, non-
ideality is important (error ≈ 15%). We will assume instead:

The compressibility factor of gas, Z = p/ρkBT, at the saturated vapor pressure
does not depend on temperature.

The corrected Clausius–Clapeyron equation is:

ΔvapHat = −Z
ln(p1/p2)

1/T1 − 1/T2
where Z is approximated by the value at T = (T1 + T2)/2



Vaporization enthalpy from the mean potential energy 5/14
s1/2

From the known formula H = U + pV we get

ΔvapHat = ΔvapUat + pΔvapVat =
�

Epot(g) − Epot(l)

N

�

+
p

ρ(g)
−

p

ρ(l)

where ρ = N/V = number density

Crude approximation

ρ(l)� ρ(g)

Epot(g) ≈ 0

vapor = ideal gas

ΔvapHat ≈ −
�

Epot(l)

N

�

+ kBT

Better approximation

ρ(l)� ρ(g)

ΔvapHat ≈
�

Epot(g) − Epot(l)

N

�

+ ZkBT



SIMOLANT – installation (Windows)
6/14
s1/2

http://www.vscht.cz/fch/software/simolant
or simolant

Download simolant-win32.zip

Create a folder and unpack SIMOLANT there.
Do not run directly from simolant-win32.zip!

Run simolant.exe

Hint: The calculated data are exported to file simolant.txt with a decimal point. If
you like decimal comma (useful with Czech localization), click , in panel “Measure”.

Hint: If you restart SIMOLANT, the old simolant.txt is renamed to simolant.bak.
The export name simolant can be changed by Menu: File → Protocol name..



Vapor pressure – setup
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Default number of atoms = 300. On a slow computer, decrease the number of
atoms (slider “N”), but not below 150.

Menu: Prepare system → Vapor-liquid equilibrium

Menu: Show → Quantities

Slider “simulation speed” (right bottom) to maximum
(only every 15th configuration is shown and analyzed)

Slider “measurement block” to maximum
(block = average of 100 points)

Hint: some speed can be gained by turning off drawing using selector:
draw mode: Nothing



Vapor pressure – simulation at T1
8/14
s1/2

Set temperature (leftmost slider “T”, not “τ”) to T1 ∈ [0.15,0.16]
– the value of “T” is shown in the data block top right
– the lower temperature, the more precise ... but a faster computer

is needed
– Hint: fine slider move = cursor keys ↑ and ↓

– Hint: also can be typed to field cmd: T=0.155 + Enter

Simulate until the system is equilibrated

Click record . Do not change simulation parameters during recording!

After a while, click record again. Results will be shown. The recommended num-
ber of blocks is > 50, better > 100, a relative error in P(top wall)� should be less
than 10 %.
– If not reached, select continue .
– If OK, save the results using button save (overwrite... .

�you can try also Pyy



Vapor pressure – simulation at T2
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Repeat for a higher temperature T2 ∈ (0.19,0.20)
– a smaller number of blocks (25–50) is sufficient because the pressure

is higher and the statistical error smaller (but the gas is less ideal)

Record the results by record ; since file simolant.txt is present, you will be
prompted by append to simolant.txt and clear



Data analysis I
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The results are in file simolant.txt.
If you executed several times append to... , you will find several data blocks.

In block “Measurement #1”, find temperature Tkin and pressure P (top wall),
denote them as p1 and T1.
– Tkin differs slightly from the temperature set because of finite-size and

thermostat errors
– alternatively, Pyy can be used as p1

Find the value p2 for temperature T2 from block “Measurement #2”

Calculate the mean temperature and pressure:

T =
T1 + T2
2

, p =
p

p1p2

Calculate the “mean number density” of vapor using the ideal gas equation of
state:

ρ = p/T



Compressibility factor (Monte Carlo)
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of gas will be calculated in the periodic boundary contitions.

Menu: Show → Quantities . . . already set

Menu: Boundary conditions → Periodic

Menu: Method → Monte Carlo (Metropolis)

Set temperature to T = (T1 + T2)/2 using cmd: T=number + Enter

Set the the density to ρ = p/T: rho=number + Enter

Equilibrate

Click record , simulate for at least 10 blocks; save the results

Re-open simolant.txt and find the last value of Z

In addition, find Epot (will be used later as Epot(g))

For a higher precision, re-set density to ρ = ρ/Z and repeat the simulation (then
the final p will be closer to p)

The standard approach is the NPT ensemble for p = p, which is not (for several reasons) implemented

in SIMOLANT.



If you get bored. . . MC or MD? + 12/14
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Repeat the previous calculation with

Menu: Method → MC→MD (Berendsen)

Compare both methods. Which method is more accurate? Why?

If you get bored. . . another method for Z +
It is possible to determine the vapor density in the equilibrium slab simulation:

Menu: Show → Vertical density profile

In simolant.txt you will find the den-
sity profile. Plot it (e.g., after importing
to Excel) and determine the gas den-
sity ρ1, then Z1 = p1/ρ1. Repeat for T2.

Make an average of both Zs.
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Vaporization enthalpy from the saturated pressures
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Calculate from the values obtained above (where kB = 1):

ΔvapHat = −Z
ln(p1/p2)

1/T1 − 1/T2

Do not forget to estimate the statistical (random) errors (uncertainties)! In the
results, the standard errors§ estimated using the block method are given.
It is sufficient to consider the errors in p1 and p2, because the temperatures and
Z are much more precise.

δ(ΔvapHat) = Z

q

δrel(p1)2 + δrel(p2)2

|1/T1 − 1/T2|

§Standard error = estimated standard deviation of the average caused by stochastic noise. Uncer-
tainty includes both the stochastic and systematic errors.



Vaporization enthalpy from the internal energy
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Menu: Boundary conditions → Periodic

Menu: Show → Quantities











already set

Set temperature to T = (T1 + T2)/2

Both MC and MD are appropriate.

To speed up, you may decrease “measurement block” a bit

Slide “ρ” (density) until pressure (blue P=... in the panel) fluctu-
ates around zero (precisely around p =

p
p1p2). The configuration

must be a homogeneous liquid without cavities.

Put down the value of Epot =



Epot(l)
�

(the error is small).

Epot(g) comes from slide 11.

Calculate: ΔvapHat =
�

Epot(g) − Epot(l)

N

�

+ ZT

Less accurate version for ideal vapor: ΔvapHat = −
�

Epot

N

�

+ T

Compare with the Clausius–Clapeyron-based result.

Hint: cursor
keys ↑ ↓ in
the slider


