5. GIBBS ENERGY AND DIRECTION OF CHEMICAL REACTION

Problem 5-01 Reaction Gibbs energy and direction of chemical reaction

The standard reaction Gibbs energy of the reaction

2-P-glycerate ${ }^{3-}=\mathbf{2 - P}$-enolpyruvate ${ }^{3-}+\mathbf{H}_{2} \mathrm{O}(\ell)$

at the temperature of $37.3^{\circ} \mathrm{C}$ is $\Delta_{\mathrm{r}} G^{\ominus}=-2.68 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (standard states: infinite dilution, $c^{\text {st }}=1$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$, for solutes, pure substance at given temperature and pressure). Find out if this reaction is exergonic or endergonic at standard conditions. Calculate the reaction Gibbs energy of the reaction in the instant when the concentrations of components are
(a) $c\left(2\right.$-P-glycerate $\left.{ }^{3-}\right)=0.015 \mathrm{~mol} \mathrm{dm}^{-3}$ and $c\left(2\right.$-P-enolpyruvate $\left.{ }^{3-}\right)=0.032 \mathrm{~mol} \mathrm{dm}^{-3}$
(b) $c\left(2-\mathrm{P}\right.$-glycerate $\left.{ }^{3-}\right)=5 \cdot 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ and $c\left(2\right.$-P-enolpyruvate $\left.{ }^{3-}\right)=7.5 \cdot 10^{-4} \mathrm{~mol} \mathrm{~cm}^{-3}$

Decide if the reaction will go to the products or to the reactants. Assume that all activity coefficients are equal to one.

$$
\begin{aligned}
{\left[\Delta_{\mathrm{r}} G^{\ominus}<0-\text { exergonic; (a) } \Delta_{\mathrm{r}} G\right.} & =-724.3 \mathrm{~J} \mathrm{~mol}^{-1}-\text { the reaction goes to products; } \\
\text { (b) } \Delta_{\mathrm{r}} G & \left.=+3940.3 \mathrm{~J} \mathrm{~mol}^{-1}-\text { the reaction goes to reactants }\right]
\end{aligned}
$$

Problem 5-02 Reaction Gibbs energy and direction of chemical reaction
The reaction
glucose-1-phosphate = glucose-6-phosphate,
catalyzed by phosphoglucomutase, is a part of carbohydrate metabolism. The equilibrium constant at $25^{\circ} \mathrm{C}, K=18.8$ is valid for the standard state infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$. Find out what will arise in the mixture containing both components in concentrations $5.55 \mathrm{mmol} \mathrm{dm}^{-3}$ of glucose-1-phosphate and $0.555 \mathrm{~mol} \mathrm{dm}^{-3}$ of glucose-6-phosphate: 1-phosphate or 6 -phosphate? What will be the composition of the equilibrium mixture? Assume that all activity coefficients are equal to one.
$\left[\Delta_{\mathrm{r}} G=4.14 \mathrm{~kJ} \mathrm{~mol}^{-1}>0\right.$, glucose-1-phosphate is formed, equilibrium mixture contains 94.95 mol . \% of glucose-6-phosphate]

Problem 5-03 Reaction Gibbs energy and direction of chemical reaction
The equilibrium constant of the reaction

glucose-1-phosphate = glucose-6-phosphate

at the temperature of $38^{\circ} \mathrm{C}$ is $K=16.707$ (the standard state: infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$, activity coefficients are equal to one). Find out if this reaction in the mixture of $8.2 \mathrm{mmol} \mathrm{dm}^{-3}$ of glucose-1-phosphate and $0.137 \mathrm{~mol} \mathrm{dm}^{-3}$ glucose-6-phosphate will occur spontaneously to glucose-6-phosphate.

$$
\left[\Delta_{\mathrm{r}} G=0.049 \mathrm{~J} \mathrm{~mol}^{-1} \approx 0, \text { reaction is nearly in equilibrium }\right]
$$

