6. EQUILIBRIUM CONSTANT, EQUILIBRIUM CONVERSION, TEMPERATURE DEPENDENCE

Problem 6-01 Calculation of equilibrium constant from equilibrium mixture composition, temperature dependence

Molecules of mammalian haemoglobin consist of two pairs of two types of polypeptide chains (A and B). These oligomers $\mathrm{A}_{2} \mathrm{~B}_{2}$ dissociate reversibly to two AB molecules:

$$
\mathbf{A}_{2} \mathbf{B}_{2}=\mathbf{2} \mathbf{A B}
$$

(a) In one of experiments performed at the temperature of $25^{\circ} \mathrm{C}$ was found that in the solution initially containing 1.5 g of haemoglobin ($M=64500 \mathrm{~g} \mathrm{~mol}^{-1}$) in $150 \mathrm{~cm}^{3}$, in equilibrium 19.7 \% of this amount was converted to AB . Calculate the equilibrium constant and standard reaction Gibbs energy for the standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$ at given temperature and pressure. Assume that activity coefficients are equal to one.
(b) The value of the standard reaction enthalpy is $\Delta_{\mathrm{r}} H^{\ominus}=-60 \mathrm{~kJ} \mathrm{~mol}^{-1}$. At which temperature will be the conversion degree of haemoglobin one half of that at the temperature of $25^{\circ} \mathrm{C}$?

$$
\text { [(a) } \left.K=3 \cdot 10^{-5} ; \Delta_{\mathrm{r}} G^{\ominus}=25.815 \mathrm{~kJ} \mathrm{~mol}^{-1} \text {; (b) } 44.7^{\circ} \mathrm{C}\right]
$$

Problem 6-02 Equilibrium constant, equilibrium mixture composition, temperature dependence
Transhydrogenation, schematically written as

$$
\mathbf{A H}_{2}+\mathbf{B}=\mathbf{A}+\mathbf{B H}_{2}
$$

is one of the reactions catalyzed by oxidoreductases.
At concentrations $0.02 \mathrm{~mol}_{\mathrm{AH}_{2}}$ and 5 mmol B in $1 \mathrm{dm}^{3}$ of initial mixture the equilibrium mixture contained $3 \mathrm{~mol} . \%$ of BH_{2}. The experiment took place at constant temperature of $25.5^{\circ} \mathrm{C}$.
(a) Calculate the equilibrium constant for the standard state infinite dilution at given temperature and pressure, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$. Assume that all activity coefficients are equal to one.
(b) Calculate how much of the substrate AH_{2} (in $\mathrm{mmol} \mathrm{dm}^{-3}$) will be left in the equilibrium mixture if the initial mixture contained equal amounts of both substrates AH_{2} and $\mathrm{B}, 0.04 \mathrm{~mol} \mathrm{dm}^{-3}$.
(c) Calculate the reaction enthalpy of transhydrogenation if you know that at the temperature of $33^{\circ} \mathrm{C}$ and equal initial concentrations, $65 \mathrm{mmol} \mathrm{dm}{ }^{-3}, 9.75 \mathrm{~mol}$ of A was found in $1 \mathrm{dm}^{3}$ of the equilibrium mixture.

$$
\text { [(a) } \left.K_{1}=6.8755 \cdot 10^{-3} \text {; (b) } c_{\mathrm{AH} 2}=0.03694 \mathrm{~mol} \mathrm{dm}^{-3} \text {; (c) } \Delta_{\mathrm{r}} H^{\ominus}=153106 \mathrm{~J} \mathrm{~mol}^{-1}\left(K_{2}=3.1142 \cdot 10^{-2}\right)\right]
$$

Problem 6-03 Equilibrium constant, equilibrium mixture composition, temperature dependence
Lyases are enzymes catalyzing non-hydrolytic decompositions of substrates into two components:

$$
\mathbf{A B}=\mathbf{A}+\mathbf{B}
$$

(a) Calculate the equilibrium constant of this reaction at the temperature of $25^{\circ} \mathrm{C}$ for standard state infinite dilution at given temperature and pressure, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$ if you know that in the solution initially containing 0.4 mol AB and 0.1 mol B in $1 \mathrm{dm}^{3}$, in equilibrium was found 22.4 mmol of A in $1 \mathrm{dm}^{3}$. You can assume that all activity coefficients are equal to one.
(b) What would be the values of equilibrium concentrations of AB, A, and B , if the initial solution contained only AB in concentration $7.6 \mathrm{mmol} \mathrm{dm}{ }^{-3}$?
(c) The reaction enthalpy has the value of $42.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and it can be taken as constant at the temperature interval under consideration. At which temperature will be the reaction yield twice larger than that reached ad (a) - i.e. at $25^{\circ} \mathrm{C}$?

$$
\text { [(a) } \left.K_{1}=7.261 \cdot 10^{-3} \text {; (b) } c_{\mathrm{A}}=c_{\mathrm{B}}=0.004638 \mathrm{~mol} \mathrm{dm}^{-3}, c_{\mathrm{AB}}=0.002963 \mathrm{~mol} \mathrm{dm}^{-3} \text {, (c) } T_{2}=315 \mathrm{~K}\right]
$$

The smallest class of enzymes represent isomerases, the task of which is to keep the equilibrium between two isomers A and B :

$$
\mathbf{A}=\mathbf{B}
$$

(a) Calculate the equilibrium constant of the isomeration (standard state infinite dilution at given temperature and pressure, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) from these data: At the temperature of $48^{\circ} \mathrm{C}$ the initial solution contained 1.28 mol A and 0.048 mol B in $8 \mathrm{dm}^{3}$, in equilibrium was left 0.72 mol A from the initial amount of A (activity coefficients: $\gamma_{\mathrm{A}}=0.62 ; \gamma_{\mathrm{B}}=1.028$).
(b) Calculate the equilibrium degree of conversion and the equilibrium concentration of A if the initial solution contains only A in the same concentration as ad (a). Activity coefficients have the values $\gamma_{\mathrm{A}}=0.66$ and $\gamma_{\mathrm{B}}=1.05$ in this case. Which conversion degree will be larger, $\alpha_{(\mathrm{a})}$ or $\alpha_{(b)}$?
(c) At $28^{\circ} \mathrm{C}$ The equilibrium mixture of isomers contains $65 \mathrm{~mol} . \%$ of $\mathrm{A}\left(\gamma_{\mathrm{A}}=0.58 ; \gamma_{\mathrm{B}}=1.12\right)$. Calculate the standard reaction enthalpy $\Delta_{r} H^{\ominus}$ and entropy $\Delta_{r} S^{\ominus}$ of isomerization. Assume that in the temperature interval under consideration these quantities are independent of temperature.
[(a) $K_{1}=1.4 ; \alpha_{(a)}=0.4375$; (b) $\alpha_{(b)}=0.4681 ; c_{\mathrm{A}}=0.0851 \mathrm{~mol} \mathrm{dm}^{-3}$, the conversion ad (b) is larger; (c) $\left.\Delta_{\mathrm{r}} H^{\ominus}=11950.743 \mathrm{~J} \mathrm{~mol}^{-1} ; \Delta_{\mathrm{r}} S^{\ominus}=40 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$

Problem 6-05 Equilibrium in liquid and gaseous phases

Standard Gibbs energy of the reaction

$$
\text { myoglobin }(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \text { oxymyoglobin }(\mathrm{aq})
$$

at the temperature of $25^{\circ} \mathrm{C}$ is $\Delta_{\mathrm{r}} G_{\mathrm{m}}{ }^{\ominus}=-30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ standard state infinite dilution at given temperature and pressure, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$). Henry constant of oxygen solution in water at the same conditions has the value $K_{\mathrm{H}}=769$ bar $\left(\mathrm{mol} \mathrm{kg}^{-1}\right)^{-1}$. What amount of myoglobin (\%) will be present in equilibrium in the form of oxymyoglobin at the pressure of 1 bar? Take that the air contains 21 vol. \% of oxygen.

