7. SIMULTANEOUS CHEMICAL EQUILIBRIA

Problem 7-01 Two simultaneous reactions in solution, calculation of equilibrium constants
Two simultaneous reactions, which can be schematically written as

$$
\begin{align*}
& \mathrm{A}(\mathrm{aq})=\mathrm{R}(\mathrm{aq})+2 \mathrm{~S}(\mathrm{aq}) \tag{1}\\
& \mathrm{A}(\mathrm{aq})=\mathrm{B}(\mathrm{aq}) \tag{2}
\end{align*}
$$

are taking place in a solution initially containing only A in concentration $c_{\mathrm{A} 0}=0.15 \mathrm{~mol} \mathrm{dm}^{-3}$. Equilibrium mixture of A, B, R, and S contained 28.57 mol . \% S and 35.71 mol . \% B. Calculate equilibrium constants of both reactions assuming that all activity coefficients are equal to one. Standard state: infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$.

$$
\left[K_{1}=2.4 \cdot 10^{-3} ; K_{2}=1.667\right]
$$

Problem 7-02 Two simultaneous reactions in solution, calculation of equilibrium constants
In a solution initially containing the components A and R in concentrations $c_{\mathrm{A} 0}=0.07 \mathrm{~mol} \mathrm{dm}^{-3}$ and $c_{\mathrm{R} 0}=0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ two simultaneous reactions are taking place:

$$
\begin{align*}
& \mathrm{R}(\mathrm{aq})=\mathrm{D}(\mathrm{aq})+\mathrm{S}(\mathrm{aq}) \tag{1}\\
& \mathrm{A}(\mathrm{aq})+\mathrm{R}(\mathrm{aq})=2 \mathrm{~B}(\mathrm{aq}) \tag{2}
\end{align*}
$$

Equilibrium mixture of A, R, B, D, and S contained 20 mol . \% D and 22 mol . \% B. Calculate the equilibrium constants for the standard states infinite dilution, $c^{\mathrm{st}}=1 \mathrm{~mol} \mathrm{dm}^{-3}$. Activity coefficients can be considered as equal to one.

$$
\left[K_{1}=0.0508 ; K_{2}=2.3639\right]
$$

Problem 7-03 Two simultaneous reactions in solution, calculation of equilibrium composition
Substance A decomposes in two possible ways

$$
\begin{align*}
& A=R+S \tag{1}\\
& A=B+D \tag{2}
\end{align*}
$$

The equilibrium constants have the following values for the standard state infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}: K_{1}=0.32$ and $K_{2}=1.28$. The equilibrium solution contains all components, A, B, D, R, and S . What is its composition (in mol. \%)? The initial solution contained only the substance A in concentration $c_{\mathrm{A} 0}=0.1 \mathrm{~mol} \mathrm{dm}^{-3}$. Assume that activity coefficients are equal to one.
[1.652 mol. \% A; 16.391 mol . \% R; 16.391 mol . \% S; 32.783 mol . \% B; 32.783 mol . \% D]

