8. SIMULTANEOUS EQUILIBRIA IN SOLUTIONS OF ELECTROLYTES

Dissociation constant of abase (in earlier tables) is the equilibrium constant K_{B} of the reaction

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O}=\mathrm{BH}^{+}+\mathrm{OH}^{-}
$$

Dissociation constant of an acid conjugate of this base is equilibrium constant $K_{\mathrm{BH}^{+}}$of the reaction

$$
\mathrm{BH}^{+}=\mathrm{B}+\mathrm{H}^{+}
$$

Both constants are related by an equation (K_{w} is ionic product of water)

$$
K_{\mathrm{B}} \cdot K_{\mathrm{BH}^{+}}=K_{\mathrm{w}}
$$

Dissociation and acidity constants of some weak bases at $25^{\circ} \mathrm{C}$
(standard state $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$)

Base B		K_{B}	$\mathrm{Conjugate}^{2}$ acid BH^{+}	$K_{\mathrm{BH}^{+}}$
piperidine	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}$	$1.34 \cdot 10^{-3}$	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}_{2}{ }^{+}$	$7.52 \cdot 10^{-12}$
methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$4.58 \cdot 10^{-4}$	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	$2.2 \cdot 10^{-11}$
ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	$4.58 \cdot 10^{-4}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	$2.2 \cdot 10^{-11}$
propylamine	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}$	$4.0 \cdot 10^{-4}$	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{3}{ }^{+}$	$2.5 \cdot 10^{-11}$
ammonia	NH_{3}	$1.80 \cdot 10^{-5}$	$\mathrm{NH}_{4}{ }^{+}$	$5.6 \cdot 10^{-10}$
pyridine	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}$	$1.71 \cdot 10^{-9}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}{ }^{+}$	$5.9 \cdot 10^{-6}$
aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	$4.0 \quad 10^{-10}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	$2.5 \cdot 10^{-5}$
diphenylamine	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$	$6.90 \cdot 10^{-14}$	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH}_{2}{ }^{+}$	0.146

Problem 8-01 pH-Strong bases

Calculate pH of aqueous solution of NaOH prepared at $17^{\circ} \mathrm{C}$
(a) by dilution of $1 \mathrm{~cm}^{3}$ of NaOH solution with concentration of $1 \cdot 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ to volume $10 \mathrm{dm}^{3}$ (b) by dilution of $1 \mathrm{~cm}^{3}$ of NaOH solution with concentration of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ to volume $10 \mathrm{dm}^{3}$.

Is it possible to neglect the protolysis of water? Ionic product of water at the temperature of $17^{\circ} \mathrm{C}$ is $5.83 \cdot 10^{-15}$ (standard state: infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$). Activity coefficients can be taken as equal to one.

$$
\text { [(a) } \mathrm{pH}=7.146 \text {; (b) } \mathrm{pH}=9.234 \text {; }
$$

Protolysis can be neglected in case (b): (a) $\mathrm{pH}=6.234$; (b) $\mathrm{pH}=9.234$]
Problem 8-02 Solution of weak acid - dissociation constant
pH of aqueous solution of weak acid HA, prepared at $18^{\circ} \mathrm{C}$ in concentration $2.5 \cdot 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$, was determined to be 6.8. Calculate the value of the dissociation constant for the standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$ (assume that all activity coefficients are equal to one). Ionic product of water K_{w} at these conditions has the value of $5.826 \cdot 10^{-15}$.

$$
\left[K_{\mathrm{HA}}=7.755 \cdot 10^{-10}\right]
$$

Problem 8-03 Solution of weak acid - concentration from pH
The dissociation constant of acrylic acid for the standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$, has the value of $5.5 \cdot 10^{-5}$. Assuming that all activity coefficients are equal to one and that you can neglect the water protolysis, calculate what amount of acrylic acid (in grams) you must dissolve in $100 \mathrm{~cm}^{3}$ of water at $20^{\circ} \mathrm{C}$ to obtain a solution with $\mathrm{pH}=4.2$. Ionic product of water K_{w} at these conditions has the value of $6.8 \cdot 10^{-15}$.

$$
\left[m_{0}=9.763 \cdot 10^{-4} \mathrm{~g}\right]
$$

pH of the solution containing $0.001 \mathrm{~mol} \mathrm{dm}^{-3}$ of acetic acid (HA) together with other monobasic acid (HB) in concentration $0.001 \mathrm{~mol} \mathrm{dm}^{-3}$ was determined to be 3.78 . The dissociation constant of the acetic acid (standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$) is $K_{\mathrm{HA}}=1.75 \cdot 10^{-5}$. Find the value of the dissociation constant of acid HB. Ionic product of water K_{w} at these conditions has the value of $1.008 \cdot 10^{-14}$. Assume that all activity coefficients are equal to one

$$
\left[K_{\mathrm{HB}}=1.26 \cdot 10^{-5}\right]
$$

Problem 8-05 Solution of weak base -pH
What is pH value of the ammonia solution with concentration of $0.002 \mathrm{~mol} \mathrm{dm}^{-3}$ at the temperature of $20^{\circ} \mathrm{C}$. The value of acidity constant of ion $\mathrm{NH}_{4}{ }^{+}$is $5.56 \cdot 10^{-10}$ and the ionic product of water is $K_{\mathrm{w}}=6.8 \cdot 10^{-15}$ (both for standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$). You can assume that the amount of hydrogen ions formed by water autoprotolysis is negligible small and all activity coefficients are equal to one.

$$
[\mathrm{pH}=10.345]
$$

Problem 8-06 Solution of weak base - acidity and dissociation constants
The measurement of pH of methylamine solution of the concentration $0.002 \mathrm{~mol} \mathrm{dm}^{-3}$ at the temperature of $30.1^{\circ} \mathrm{C}$ yielded the value $\mathrm{pH}=10.87$. Calculate the acidity constant of $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$and the dissociation constant of methylamine (both for standard state of infinite dilution, $c^{s t}=1 \mathrm{~mol} \mathrm{dm}^{-3}$). Ionic product of water at $30.1^{\circ} \mathrm{C}$ is $K_{\mathrm{w}}=1.484 \cdot 10^{-14}$ and all the activity coefficients can be taken as equal to one.

$$
\left[K_{\mathrm{BH}+}=1.104 \cdot 10^{-11}, K_{\mathrm{dis}}=1.344 \cdot 10^{-3}\right]
$$

Problem 8-07 Solution of the salt of the weak base and weak acid
Aqueous solution of the salt of weak acid (AH) and weak base (BOH) at the temperature of $25^{\circ} \mathrm{C}$ and concentration of $0.0025 \mathrm{~mol} \mathrm{dm}^{-3}$ has $\mathrm{pH}=9.65$. Calculate the dissociation constant of the weak acid in question, if you know that the dissociation constant conjugated to the weak base BOH has the value of $K_{\mathrm{B}+}=1.32 \cdot 10^{-9}$ (all for standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$, and unit activity coefficients).

$$
\left[K_{\mathrm{dis}(\mathrm{HA})}=3.26 \cdot 10^{-11}\right]
$$

Problem 8-08 Charge numbers
What ratio of concentrations $c\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right): c\left(\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right)$will be found, if you add a small amount of methylamine to the buffer solution with $\mathrm{pH}=10$? Acidity constant of methylammonia is $\mathrm{p} K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right)=10.64$ (standard state: infinite dilution, $c^{\mathrm{st}}=1 \mathrm{~mol} \mathrm{dm}^{-3}$)
[$c\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right): c\left(\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right)=0.229 ; \mathrm{pH}<\mathrm{pK}$, the share of protonated form is greater]
Problem 8-09 Charge numbers
Find the equilibrium concentration ratio $c\left(\mathrm{CO}_{2}\right): c\left(\mathrm{HCO}_{3}^{-}\right): c\left(\mathrm{CO}_{3}{ }^{2-}\right)$ in blood ($\mathrm{pH}=7.4$)? The acidity constants are: $\mathrm{p} K_{\mathrm{a}}\left(\mathrm{CO}_{2}\right)=6.37$ (including $\left.\mathrm{H}_{2} \mathrm{CO}_{3}\right), \mathrm{p} K_{\mathrm{a}}\left(\mathrm{HCO}_{3}{ }^{-}\right)=10.25$.

$$
\left[c\left(\mathrm{CO}_{2}\right): c\left(\mathrm{HCO}_{3}\right): c\left(\mathrm{CO}_{3}^{2-}\right)=0.0933: 1: 0.00141\right]
$$

Problem 8-10 Balance of simultaneous equilibria in electrolyte solutions
0.2 mol of salmiac $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ together with 0.001 mol of ammonia $\left(\mathrm{NH}_{3}\right)$ were dissolved in $2 \mathrm{dm}^{3}$ of water.
(a) Write the equations which would permit to calculate pH . Don't solve.
(b) Calculate pH of the solution assuming that the water protolysis can be neglected. Acidity constant of NH_{3} has the value of $5.6 \cdot 10^{-10}$ (standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$).

$$
\left[\left(\text { a) } K_{1}=\frac{\left(c_{\mathrm{A} 0}+x\right) \cdot(x+y)}{\left(c_{\mathrm{S} 0}-x\right)}, K_{2}=y \cdot(x+y) ; \text { (b) } \mathrm{pH}=6.951\right]\right.
$$

What is pH of the solution containing in $2 \mathrm{dm}^{3} 0.01 \mathrm{~mol} \mathrm{HCl}$ and 0.04 mol NH 4 Cl at the temperature of $25^{\circ} \mathrm{C}$? Acidity constant of NH_{3} has the value of $K_{a}=5.6 \cdot 10^{-10}$, ionic product of water $K_{\mathrm{w}}=1.008 \cdot 10^{-14}$.
[$\mathrm{pH}=2$ (the solution is not a buffer)]

Problem 8-12 Balance of simultaneous equilibria in electrolyte solutions

$2 \mathrm{dm}^{3}$ of aqueous solution contain 0.2 mol of HCl and 0.4 mol of $\mathrm{NH}_{4} \mathrm{Cl}$. What is pH of this solution at the temperature of $25^{\circ} \mathrm{C}$? Acidity constant of NH_{3} has the value of $K_{a}=5.6 \cdot 10^{-10}$, ionic product of water $K_{\mathrm{w}}=1.008 \cdot 10^{-14}$.
$[\mathrm{pH}=8.949]$

Problem 8-13 Buffers

0.096 mol of sodium acetate was dissolved in $\mathrm{v} 800 \mathrm{~cm}^{3}$ of acetic acid solution of concentration $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$.
(a) What is pH of this buffer solution?
(b) What change in pH will cause an addition of $2 \mathrm{~cm}^{3} \mathrm{HCl}$ solution of concentration $4 \mathrm{~mol} \mathrm{dm}^{-3}$ (neglect the mixing change in volume)?
(c) What change in pH will occur if you dissolve 8 mmol of NaOH in this buffer solution?

$$
\text { [(a) } \mathrm{pH}=4.838 \text {; (b) } \Delta \mathrm{pH}=0.078 \text {; (c) } \Delta \mathrm{pH}=-0.046]
$$

Problem 8-14 Buffers

Buffer consisting of $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ of acetic acid and $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ of sodium acetate has $\mathrm{pH}=4.75$. What change will cause the addition of $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}$ solution?

$$
\left[\mathrm{pH}_{1}=\mathrm{p} K_{\text {HAc }}=4.75, \mathrm{pH}_{2}=4.97\right]
$$

Problem 8-15 Buffers

System dihydrogen phosphate $\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right) /$hydrogen phosphate $\left(\mathrm{HPO}_{4}{ }^{2-}\right)$ represents a classical buffer significantly involved in keeping the intracellular value of pH . For the equilibrium constant of the reaction

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}=\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{+}
$$

applies $\mathrm{p} K=7.2$ (standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$). pH inside the cell is 7.4 and the total concentration of phosphate $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$. What are the concentrations of single components of this buffer? Instead of the activities you can use the relative concentrations.

$$
\left[\left[\mathrm{HPO}_{4}^{2-}\right]=7.737 \mathrm{mmol} \mathrm{dm}^{-3} ;\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=12.263 \mathrm{mmol} \mathrm{dm}^{-3}\right]
$$

Problem 8-16 Ampholytes - Amino acids

What is the share of single ionic forms in the alanine solution of the concentration $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ at $\mathrm{pH}=5.2$ and temperature $25^{\circ} \mathrm{C}$. The dissociation constants have the following values (standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$)

$$
\begin{aligned}
& \mathrm{p} K_{1}(-\mathrm{COOH})=2.34, \mathrm{p} K_{2}\left(-\mathrm{NH}_{3}{ }^{+}\right)=9.69 \\
& {\left[0.0032 \% \mathrm{Ala}^{-} ; 0.138 \% \mathrm{Ala}^{+} ; 99.859 \% \mathrm{Ala}^{0}\right] }
\end{aligned}
$$

Problem 8-17 Ampholytes - Amino acids

At what pH will the 0.03 molar solution of methionine contain $1.2 \mathrm{~mol} . \%$ of Met^{+}form and 0.008 mol. \% of Met^{-}form? The dissociation constants of methionine (standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) at $25^{\circ} \mathrm{C}$ have the following values:

$$
\mathrm{p} K_{1}(-\mathrm{COOH})=2.28 \quad, \quad \mathrm{p} K_{2}\left(-\mathrm{NH}_{3}^{+}\right)=9.21
$$

What pH value corresponds to the isoelectric point of methionine?

$$
[\mathrm{pH}=4.66 ; \mathrm{pI}=5.745]
$$

