9. HETEROGENEOUS IONIC EQUILIBRIA

$$
\begin{aligned}
& \mathrm{C}_{v_{\mathrm{C}}} \mathrm{~A}_{v_{\mathrm{A}}}=v_{\mathrm{C}} \mathrm{C}^{z_{\mathrm{C}}}+v_{\mathrm{A}} \mathrm{~A}^{z_{\mathrm{A}}} \quad(\mathrm{C} \ldots \text { cation, } \mathrm{A} \ldots \text { anion }) \\
& a_{ \pm}=\left(a_{\mathrm{C}}^{\nu_{\mathrm{C}}} \cdot a_{\mathrm{A}}^{v_{\mathrm{A}}}\right)^{1 /\left(v_{\mathrm{C}}+v_{\mathrm{A}}\right)} \\
& \gamma_{ \pm}=\left(\gamma_{\mathrm{C}}^{\nu_{\mathrm{C}}} \cdot \gamma_{\mathrm{A}}^{v_{\mathrm{A}}}\right)^{1 /\left(v_{\mathrm{C}}+v_{\mathrm{A}}\right)} \\
& K_{\mathrm{S}}=\gamma_{ \pm}^{\left(v_{\mathrm{C}}+v_{\mathrm{A}}\right)} \cdot\left(v_{\mathrm{C}}^{\nu_{\mathrm{C}}} \cdot v_{\mathrm{A}}^{v_{\mathrm{A}}}\right) \cdot\left(\frac{c}{c^{s t}}\right)^{\left(v_{\mathrm{C}}+v_{\mathrm{A}}\right)} \\
& I<0.001 \mathrm{~mol} \mathrm{dm}^{-3}: \quad \ln \gamma_{ \pm}=-z_{\mathrm{C}} \cdot z_{\mathrm{A}} \cdot A \cdot \sqrt{I} \quad, I=\frac{1}{2} \sum_{i}\left(c_{i} \cdot z_{i}^{2}\right) \\
& I<0.1 \mathrm{~mol} \mathrm{~mol}^{-3} \quad \ln \gamma_{ \pm}=-\frac{z_{\mathrm{C}} \cdot z_{\mathrm{A}} \cdot A \cdot \sqrt{I}}{1+a \cdot \sqrt{I}}, a \approx 1 \mathrm{~mol}^{-1 / 2} \mathrm{dm}^{3 / 2}
\end{aligned}
$$

Problem 9-01 Heterogeneous ionic equilibria

The solubility product of silver chloride at $20^{\circ} \mathrm{C}$ has the value of $1.26 \cdot 10^{-10}$ and that of calcium fluoride at the same temperature is $3.4 \cdot 10^{-11}$ (both for the standard state of infinite dilution, $c^{\text {st }}=1$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$). Which of the previously mentioned substances is more soluble in water? Suppose that activities can be put equal to concentration.

$$
\left[c_{\mathrm{AgCl}}=1.122 \cdot 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}, c_{\mathrm{CaF} 2}=2.041 \cdot 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\right]
$$

Problem 9-02 Heterogeneous ionic equilibria - mean activity coefficient
The concentration of the saturated solution at $20^{\circ} \mathrm{C}$ was found to be $2.45 \cdot 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$. Calculate the mean activity coefficient of CaF_{2} in the saturated solution. Compare the result with the previous problem and find out if the assumption, that the mean activity coefficient is equal to one, made there, was justified.
[$\gamma_{ \pm}=0.833 \neq 1$; the assumption was not justified]
Problem 9-03 Heterogeneous ionic equilibria - solubility of sparingly soluble salts
The solubility product of lanthanum oxalate (standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$) at $25^{\circ} \mathrm{C}$ is $2 \cdot 10^{-28}$. Lanthanum oxalate precipitate was four times decanted always with $50 \mathrm{~cm}^{3}$ of distilled water (it is supposed that each time the equilibrium between the solid phase and the solution was established). Calculate total weight loss of the precipitate. Assume that the mean activity coefficient is equal to one. $M_{\mathrm{La}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}}=541.9 \mathrm{~g} \mathrm{~mol}^{-1}$.

$$
\left[\Delta m=1.226 \cdot 10^{-4} \mathrm{~g}\right]
$$

Problem 9-04 Heterogeneous ionic equilibria - solubility product, mean activity coefficient, Debye-Hückel equation In $1300 \mathrm{~cm}^{3}$ of saturated lead iodide solution at $26^{\circ} \mathrm{C}$ was found 0.905 g of $\mathrm{PbI}_{2}\left(M=461 \mathrm{~g} \mathrm{~mol}^{-1}\right)$. Calculate the solubility product of lead iodide (standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$). To determine the mean activity coefficient use the Debye-Hückel relation ($A=1.175 \mathrm{dm}^{3 / 2} \mathrm{~mol}^{-1 / 2}$).

$$
\left[K_{\mathrm{S}}=8.84 \cdot 10^{-9}\right]
$$

Acid mine water contains $0.001 \mathrm{~mol} \mathrm{Fe}{ }^{3+} / \mathrm{dm}^{3}$. Determine the pH at which begins the precipitation of $\mathrm{Fe}(\mathrm{OH})_{3}$. The solubility product of $\mathrm{Fe}(\mathrm{OH})_{3}$ at the temperature of $18^{\circ} \mathrm{C}$ is $3.8 \cdot 10^{-38}$, the ionic product of water $5.78 \cdot 10^{-15}$ (both for the standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$). Assume that activities can be replaced by relative concentrations.

$$
[\mathrm{pH}=2.8]
$$

Problem 9-06 Heterogeneous ionic equilibria - solubility in the presence of other ions
The solubility product of lead chloride at $25^{\circ} \mathrm{C}$ has the value of $2 \cdot 10^{-5}$ (standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$). Calculate the solubility of PbCl_{2} in pure water and compare it with its solubility in NaCl solution $\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$.
[solubility in water: $0.017 \mathrm{~mol} \mathrm{dm}^{-3}$, solubility in NaCl is by one order lower, $0.002 \mathrm{~mol} \mathrm{dm}^{-3}$]
Problem 9-07 Heterogeneous ionic equilibria - solubility in the presence of other ions
5 grams of silver molybdate was stirred in $500 \mathrm{~cm}^{3}$
(a) of distilled water,
(b) of silver nitrate solution with concentration of $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$
(c) of sodium molybdate with concentration of $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$

Calculate what percentage of the original amount of $\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ will be dissolved in each experiment. The solubility product of $\mathrm{Ag}_{2} \mathrm{MoO}_{4}$ (standard state of infinite dilution, $c^{\text {st }}=1 \mathrm{~mol} \mathrm{dm}^{-3}$) has the value of $3.1 \cdot 10^{-11}$. Assume that activities can be replaced by relative concentrations.

$$
\text { [(a) } 0.744 \% \text {, (b) } 0.0029 \% \text {, (c) } 0.074 \% \text {] }
$$

