
Programming background Memory Building blocks Conclusion

Parallel paradigm

David Celný

Department of Physical Chemistry, UCT Prague

celnyd@vscht.cz

September 2, 2021

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

Overview

Programming background
Memory
Building blocks
Conclusion

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

Hello programming

C

I Dennis Ritchie at 1972

I GP, procedural, imperative,
statically typed

I direct memory control

I standardized (current C17)

C++

I Bjarme Stroustrup at 1985

I add OOP & functional

I standardized (current C++20)

CUDA

I Nvidia at 2007

I parallel computing platform, API to
GPU, scalable (across GPU)

I works with C, C++, Fortran

I control of GPU from CPU (not full)

I new device memory space

I one code → split compilation for
CPU/GPU

I dedicated libraries (cuBLAS, cuFFT,cuRAND ...)

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

Figure: Look at the GPU specialization on different tasks. @ docs.nvidia.com

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

#include <stdio.h>

__global__ void hello_kernel()

{

int thread_id = (blockDim.x*blockIdx.x + threadIdx.x);

printf("Hello, World from thread: %d\n", thread_id);

}

int main ()

{

hello_kernel<<<1,1>>>();

\\ hello_kernel<<<1,48>>>(); \\ What happens here?

\\ hello_kernel<<<4,12>>>(); \\ And here ?

cudaDeviceSynchronize();

return 0;

}

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

I multiple memory levels, caches

I specialized types (constant, texture)

I high latency require tricks (multidispatch, swap)

I memory sensitive to coalesced access

I adjustable caching ability (L1 vs Shared mem.)

I access pattern heavily influence efficiency

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

Figure: Schematical comparison of CPU/GPU memory spaces and cores.
@ docs.nvidia.com

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

New memory playground

Type

1. RAM

2. global mem.

3. shared mem. (cache)

4. constant mem.

5. local mem. (registers)

Size(deviceQuery)

1. 2GB - 64GB

2. 1GB - 24GB∗

3. 64, 128kB∗

4. 32, 48, 64kB∗

5. 64kb for all
threads

Latency(rule of thumb)

1. 800-1000 x (or more)

2. 80-120 x

3. 7-12 x

4. 6-10 x (readonly)

5. 1

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

Operational groups

residence

1. core

2. SM

3. GPU

4. multiGPU

code specification

1. <<<?,# threads >>>

2. <<< # blocks, ? >>>

3. <<<?, ? >>>

4. <<<?, ?, ?, stream # >>>

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

thread

I the smallest unit

I occupy single core

I located by threadIdx (x,y,z)

I use registers/local memory for storage

I can’t communicate directly with other
threads

I synchronized by syncthreads()

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

block

I group of threads

I run concurrently (up to 32, divergence)

I located by blockIdx (x,y,z)

I size determined by blockDim (x,y,z)

I use shared memory for
storage/communication within block

I isolated from other blocks

warp

I 32 threadblock (halfwarp)

I scheduled for evaluation (max group)

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

grid

I lattice of blocks

I occupy device (stream on device)

I dimension available in gridDim (x,y,z)

I use global memory for communication

I no precise control how it is distributed on
device

I implicit synchronization at the end of
kernel

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

stream

I flow of kernel launches with same purpose

I default stream, other require prior
initialization

I can be multiple on single device

I utilize available resources (priorities)

I way how to parallelize on multiple GPU

I use global memory for communication

I explicit synchronization with
cudaStreamSynchronize()

↓

↓

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

Summary

I what we work with
I memory is the key to speed

I different types of it

I building blocks of program
I and its hierarchy

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

References
Gerassimos Barlas (2015)
Multicore and GPU Programming: An Integrated Approach
Elsevier publishers ISBN: 978-0-12-417137-4

Thomas Sterling, Matthew Anderson & Maciej Brodowicz (2018)
High Performance Computing: Modern Systems and Practices
Elsevier publishers ISBN: 978-0-12-420158-3

Jason Sanders & Edward Kandrot (2011)
CUDA by Example: An introduction to General-Purpose GPU programming
Addison-Wesley ISBN-10: 978-0-13-138768-3

List of Nvidia graphics processing units (cited 2021)
https:\\en.wikipedia.org\wiki\List of Nvidia graphics processing units

GPU Memory Latency’s Impact and Updated Test (cited 2021)
https:\\chipsandcheese.com\2021\05\13\gpu-memory-latencys-impact-and-
updated-test

I overview image is personal redraw
I until next time image [Cit. 02.09.2021]. Available from

https:\\i.chzbgr.com\full\9591931648\hDC02ACF7\person-my-hacky-program-
cpu-o-other-7-processor-cores-my-rtx-3090

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

Practical session

1. start/setup your development tool

2. get the source code

3. follow the instructions in code
I if unsure → first think about it
I if still lost → ”google” it
I if can’t find → ask about it (personally or mail)

4. make sure your code compiles

5. make sure your code works

6. send your code to me (celnyd@vscht.cz)

David Celný UCT

GPU parallelism



Programming background Memory Building blocks Conclusion

Until next time

David Celný UCT

GPU parallelism


	Programming background
	Memory
	Building blocks
	Conclusion

