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Hello programming

C

I Dennis Ritchie at 1972

I GP, procedural, imperative,
statically typed

I direct memory control

I standardized (current C17)

C++

I Bjarme Stroustrup at 1985

I add OOP & functional

I standardized (current C++20)

CUDA

I Nvidia at 2007

I parallel computing platform, API to
GPU, scalable (across GPU)

I works with C, C++, Fortran

I control of GPU from CPU (not full)

I new device memory space

I one code → split compilation for
CPU/GPU

I dedicated libraries (cuBLAS, cuFFT,cuRAND ...)
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Figure: Look at the GPU specialization on different tasks. @ docs.nvidia.com
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#include <stdio.h>

__global__ void hello_kernel()

{

int thread_id = (blockDim.x*blockIdx.x + threadIdx.x);

printf("Hello, World from thread: %d\n", thread_id);

}

int main ()

{

hello_kernel<<<1,1>>>();

\\ hello_kernel<<<1,48>>>(); \\ What happens here?

\\ hello_kernel<<<4,12>>>(); \\ And here ?

cudaDeviceSynchronize();

return 0;

}
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I multiple memory levels, caches

I specialized types (constant, texture)

I high latency require tricks (multidispatch, swap)

I memory sensitive to coalesced access

I adjustable caching ability (L1 vs Shared mem.)

I access pattern heavily influence efficiency
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Figure: Schematical comparison of CPU/GPU memory spaces and cores.
@ docs.nvidia.com
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New memory playground

Type

1. RAM

2. global mem.

3. shared mem. (cache)

4. constant mem.

5. local mem. (registers)

Size(deviceQuery)

1. 2GB - 64GB

2. 1GB - 24GB∗

3. 64, 128kB∗

4. 32, 48, 64kB∗

5. 64kb for all
threads

Latency(rule of thumb)

1. 800-1000 x (or more)

2. 80-120 x

3. 7-12 x

4. 6-10 x (readonly)

5. 1

David Celný UCT
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Operational groups

residence

1. core

2. SM

3. GPU

4. multiGPU

code specification

1. <<<?,# threads >>>

2. <<< # blocks, ? >>>

3. <<<?, ? >>>

4. <<<?, ?, ?, stream # >>>
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thread

I the smallest unit

I occupy single core

I located by threadIdx (x,y,z)

I use registers/local memory for storage

I can’t communicate directly with other
threads

I synchronized by syncthreads()
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block

I group of threads

I run concurrently (up to 32, divergence)

I located by blockIdx (x,y,z)

I size determined by blockDim (x,y,z)

I use shared memory for
storage/communication within block

I isolated from other blocks

warp

I 32 threadblock (halfwarp)

I scheduled for evaluation (max group)
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grid

I lattice of blocks

I occupy device (stream on device)

I dimension available in gridDim (x,y,z)

I use global memory for communication

I no precise control how it is distributed on
device

I implicit synchronization at the end of
kernel
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stream

I flow of kernel launches with same purpose

I default stream, other require prior
initialization

I can be multiple on single device

I utilize available resources (priorities)

I way how to parallelize on multiple GPU

I use global memory for communication

I explicit synchronization with
cudaStreamSynchronize()

↓

↓

David Celný UCT
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Summary

I what we work with
I memory is the key to speed

I different types of it

I building blocks of program
I and its hierarchy
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Practical session

1. start/setup your development tool

2. get the source code

3. follow the instructions in code
I if unsure → first think about it
I if still lost → ”google” it
I if can’t find → ask about it (personally or mail)

4. make sure your code compiles

5. make sure your code works

6. send your code to me (celnyd@vscht.cz)
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Until next time
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