
What to address Memory Computation Conclusion

Optimization techniques

David Celný

Department of Physical Chemistry, UCT Prague

celnyd@vscht.cz

September 2, 2021

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

Overview

What to address
Memory
Computation
Conclusion

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

Techniques

Memory pattern

I coalesced accesses

I shared memory conflicts

I data race

I Array of Structures vs
Structure of Arrays

Computation

I sp, dp, sfu

I thread divergence

I Instruction Level Parallelism

I computationally bound

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

Figure: Comparison of the TESLA GPU series capabilities.
@ https://www.nextplatform.com/2020/05/28/diving-deep-into-the-nvidia-ampere-gpu-architecture/

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

coalesced global mem. access

I consecutive threads access
consecutive memory blocks

I depends on the memory
cache lane size (128byte)

I single transaction should
serve multiple cores

I both global memory read
write

conclusion

I no holes

I ordered

I aligned (32byte,128byte)

Figure: Example of un-coalesced
memory access.
@ https:\\kaigai.hatenablog.com\entry2016\11\17\070708

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

conflict-less shared mem. access

I priority access to shared memory banks

I banks size is limited (4,8byte)

I use stride to ensure non-conflict

I helps with coalesced access
to global mem.

conclusion

I either each access own bank

I all access the same bank
Figure: Example of strided
shared mem. access.
@ docs.nvidia.com

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

data race

I two or more threads change
same memory space

I produce nondeterministic result

I use barriers syncthreads()

I use the atomic operations
(force serialize, slower)

conclusion

I organize algorithm better

I otherwise barriers

I atomics are slower convenience
Figure: Data race visualization.
@ https://programming.guide/go/data-races-explained.html

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

SoA vs AoS

I how are data organized in memory

I depend on problem type and data
sizes

I type use enforces parallelization
strategy (vertical, horizontal)

I need to satisfy coalesced access
and solve the problem

conclusion

I analyze problem and pick type

I use corresponding strategy

I for GPU default use SoA Figure: AoS and SoA stored in memory.
@ https://asc.ziti.uni-heidelberg.de/en/node/18

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

Varied speed for varied tasks

I different count of unit by purpose

I throughput can be limited by
utilization

I shift to spread the tasks over units

I perform ”enough” computation
per mem. load

conclusion

I int/float is cheap

I dont misuse special functions
(sin,exp,log)

I better to over-calculate Figure: Ampere SM diagram.
@ docs.nvidia.com

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

thread divergence

I branching in the kernel code

I can’t concurrently execute
different instructions

I forces branch sequencing

I all branches are evaluated

I new architectures can handle
short conditions

conclusion

I no conditions

I or short and simple

Figure: Pascal and earlier thread div.
@ https://www.peterstefek.me/shader-branch.html

Figure: Volta and later thread div.
@ https://www.peterstefek.me/shader-branch.html

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

ILP

I more work done per core

I registers are expensive for thread indexes

I more calculation per memory load

I automatized by loop unroll macro in code

I useful for enough parallel or decrease
occupancy

conclusion

I not use immediately

I use with caution
(may worsen)

I complicates code
(loops in kernel)

Figure: Cheng, Luo and R. Suda. “An execution time prediction analytical model for GPU with
instruction-level and thread-level parallelism awareness.” (2011).

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

Summary

I beware hardware dependence

I beware coalesced accesses

I beware data races

I beware branches in code

I beware utilization of units

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

References
Gerassimos Barlas (2015)
Multicore and GPU Programming: An Integrated Approach
Elsevier publishers ISBN: 978-0-12-417137-4

Thomas Sterling, Matthew Anderson & Maciej Brodowicz (2018)
High Performance Computing: Modern Systems and Practices
Elsevier publishers ISBN: 978-0-12-420158-3

Jason Sanders & Edward Kandrot (2011)
CUDA by Example: An introduction to General-Purpose GPU programming
Addison-Wesley ISBN-10: 978-0-13-138768-3

List of Nvidia graphics processing units (cited 2021)
https:\\en.wikipedia.org\wiki\List of Nvidia graphics processing units

I overview image [Cit. 02.09.2021]. Available from https:\\me.me\i\gtx-1070-vs-
a-relationship-gi-geforce-runs-pubg-still-1bf254a73db84c2dac0db220d25802f4

I techniques image [Cit. 02.09.2021]. Available from
https:\\static.wixstatic.com\media\903056 39aa9523c70a428684be9744580b0b1bm̃v2.png

I computation image [Cit. 02.09.2021]. Available from
https:\\memezila.com\wp-content\Nvidia-before-vs-Nvidia-now-meme-
6521.png

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

Practical session

1. start/setup your development tool

2. get the source code

3. follow the instructions in code
I if unsure → first think about it
I if still lost → ”google” it
I if can’t find → ask about it (personally or mail)

4. make sure your code compile

5. make sure your code work

6. send your code to me (celnyd@vscht.cz)

David Celný UCT

GPU parallelism



What to address Memory Computation Conclusion

Until next time

David Celný UCT

GPU parallelism


	What to address
	Memory
	Computation
	Conclusion

