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Techniques

Memory pattern

I coalesced accesses

I shared memory conflicts

I data race

I Array of Structures vs
Structure of Arrays

Computation

I sp, dp, sfu

I thread divergence

I Instruction Level Parallelism

I computationally bound
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Figure: Comparison of the TESLA GPU series capabilities.
@ https://www.nextplatform.com/2020/05/28/diving-deep-into-the-nvidia-ampere-gpu-architecture/
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coalesced global mem. access

I consecutive threads access
consecutive memory blocks

I depends on the memory
cache lane size (128byte)

I single transaction should
serve multiple cores

I both global memory read
write

conclusion

I no holes

I ordered

I aligned (32byte,128byte)

Figure: Example of un-coalesced
memory access.
@ https:\\kaigai.hatenablog.com\entry2016\11\17\070708
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conflict-less shared mem. access

I priority access to shared memory banks

I banks size is limited (4,8byte)

I use stride to ensure non-conflict

I helps with coalesced access
to global mem.

conclusion

I either each access own bank

I all access the same bank
Figure: Example of strided
shared mem. access.
@ docs.nvidia.com
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data race

I two or more threads change
same memory space

I produce nondeterministic result

I use barriers syncthreads()

I use the atomic operations
(force serialize, slower)

conclusion

I organize algorithm better

I otherwise barriers

I atomics are slower convenience
Figure: Data race visualization.
@ https://programming.guide/go/data-races-explained.html
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SoA vs AoS

I how are data organized in memory

I depend on problem type and data
sizes

I type use enforces parallelization
strategy (vertical, horizontal)

I need to satisfy coalesced access
and solve the problem

conclusion

I analyze problem and pick type

I use corresponding strategy

I for GPU default use SoA Figure: AoS and SoA stored in memory.
@ https://asc.ziti.uni-heidelberg.de/en/node/18
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Varied speed for varied tasks

I different count of unit by purpose

I throughput can be limited by
utilization

I shift to spread the tasks over units

I perform ”enough” computation
per mem. load

conclusion

I int/float is cheap

I dont misuse special functions
(sin,exp,log)

I better to over-calculate Figure: Ampere SM diagram.
@ docs.nvidia.com
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thread divergence

I branching in the kernel code

I can’t concurrently execute
different instructions

I forces branch sequencing

I all branches are evaluated

I new architectures can handle
short conditions

conclusion

I no conditions

I or short and simple

Figure: Pascal and earlier thread div.
@ https://www.peterstefek.me/shader-branch.html

Figure: Volta and later thread div.
@ https://www.peterstefek.me/shader-branch.html
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ILP

I more work done per core

I registers are expensive for thread indexes

I more calculation per memory load

I automatized by loop unroll macro in code

I useful for enough parallel or decrease
occupancy

conclusion

I not use immediately

I use with caution
(may worsen)

I complicates code
(loops in kernel)

Figure: Cheng, Luo and R. Suda. “An execution time prediction analytical model for GPU with
instruction-level and thread-level parallelism awareness.” (2011).
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Summary

I beware hardware dependence

I beware coalesced accesses

I beware data races

I beware branches in code

I beware utilization of units
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Practical session

1. start/setup your development tool

2. get the source code

3. follow the instructions in code
I if unsure → first think about it
I if still lost → ”google” it
I if can’t find → ask about it (personally or mail)

4. make sure your code compile

5. make sure your code work

6. send your code to me (celnyd@vscht.cz)
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Until next time
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