Molecular dynamics

@ hard spheres etc. - collisions
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@ ‘classical” MD - integration of the equations of motion

@ Brownian (stochastic) dynamics, dissipative particle dynmics = MD + random forces

Forces are needed:

. au(y
[ — — "

or

Example - pair forces:

N
U=ZU(FU) = fFijzE—

i<j J=1
Eal
Notation: 7jj = Fj— 7, rij = |Fjjl

y
—@

e

(=1,...,N

% du(rji) orji 3 ﬁ: du(rj) 7ji
iz drji arF; = drji rji

i it
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Newton’s equations of motion s03/4
d’r; . fi
l= Flzﬂ, l=1,,N
dt? mj

Method of finite differences, timestep h

Initial value problem: F and F at time tg are known

Methods:

& Runge-Kutta: many evaluations of the right-hand side/step (costly!)
& Predictor—corrector: a bit better, rarely used

@ Verlet and clones (symplectic = good energy conservation)

@ Multiple timestep methods: more timescales (usually symplectic)

& Geometric integrators (symplectic)



Verlet method

ion: . h? .
Taylor expansion: Flt—h) = I’i(t)—hl’i(t)+7fi(t)—... P 1x
ri(t) = ri(t) —2x

. h? ..
Fi(t+h) = mﬂ+hmayw3ﬂuyh” +1x

) fi(t) Fi(t—h)—2F(t) + Fi(t+h
= numeric 2nd derivative: Fi(t) =fl( ) = « ) () + 1l )
mj h?
- - - zfi(t
Verlet method: ri(t+ h)=2ri(t)—ri(t—h)+ h
mj
. h2 fi(t
Initial values: ri(to— h) =ri(tg) — hri(tg) + > Jilto) + O(h3)
mi

& time-reversible (= no energy drift); even symplectic

@ cannot use for 7 = f(r, F) because F(t) is not known at time t

|ldentical trajectories: leap-frog, velocity Verlet, Gear (m = 3), Beeman

+0O(h?)
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vlic movies/leap-frog.mp4;vic movies/leap-frog2.mp4 4/21
Leap-frog s03/4

velocity = displacement (change in position) per unit time h (vector) v(t+h/2)

F(t+ h)—TF(t f
e+ hy2) = LMD F(t+h)
h
acceleration = change in velocity per unit time “_f}(t‘hf?)
V(t+h/2)—V(t—h/2) f
at) = =
h m

V(t+ h/2) = v(t—h/2)+ a(t)h

r(t+h) = r(t)y+ v(t+ h/2)h

—_—

repeated

t = t+h J

@ cquivalent to Verlet (identical trajectory)
but: velocities at different time, a bit different (by O(hz)) kinetic energy

credit: http://www;anagrammer.Com/scrabee/Ieapfrog
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Equivalence of Verlet and leap-frog s03/4

Leap-frog:
v(t+ h/2) = v(t—h/2)+ a(t)h

r(t+h) := r(t)+ v(t+h/2)h } repeated
t ;= t+h )
2nd equation twice in 2 different times:
r(t+h) = r(t)+ v(t+ h/2)h x + 1

r(t) = r(t—h)+v(t—h/2)h x-—1
Subtract both equations:
r(t+h)—r(t)=r(t)—r(t—h)+ v(t+ h/2)h—v(t—h/2)h

insert for the difference of velocities:

r(t+ h)—2r(t)+ r(t—h) = h[v(t+ h/2)— v(t—h/2)] = a(t)h? =%h2

which is the Verlet method



uvodsim/verlet.sh 6/21
s03/4

@ energy is well conserved
@ perihelion precession O(h?)
@ harmonic oscillator: frequency shifted O(h?)
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Theoretical mechanics and environs + 034

Euler-Lagrange equations

our world: PN = {71, ..., PN}, #' = {F1,..., P}
Function £ = (7N, )
Action:
]
S=J Ldt
to
is stationary (likely min or max) between fixed points #V(tg) and FN(t1) for
doL oL
dtah- B orj

Total 3N equations.
If £ = Lagrangian, then this is the Hamilton principle, or (in general) the “principle of minimum
action” or so.



Euler-Lagrange equations - proof

t1
5=f Cdt
to

PN (E) — PV + 87V (D), 67N (to) = 67N (t1) =0

Trajectory variation:

t1 9L 1 9L .
55=f Zf-afidt+f > — - 6Fdt
to or to l-al"[

L

The 2nd term integrated by parts:

t1
oL t1 9L daL
§S=|> —-oF +f Zan-[ — ;]dt
ori to or; dtor;
to

{ (

(1st [] = O because the endpoints are fixed)
ori are arbitrary = 2nd [] =0



Math refreshment: Legendre transform

Let us have f(x), better a convex one.

d
f* =f—x— *as function of p = —f
dx dx

n

In @ more mathematical language:
f*(p) = minx(f — xp)

Differentials:

df
df = —dx =pdx
dx

df * = df —d(px) = pdx — pdx — xdp = —xdp

And the reverse transformation:

df * df *
AN, f**=f*—Lp=f*+px=f
dp dp

f(x)
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Xmin

X N\

NS



A small detour - enthalpy

Internal energy U = U(S, V):
dU=—pdV [ad.]

U(V) [ad.] is convex, because p = —g—L\j Is a decreasing function of V

Enthalpy H = H(S, p):

oU
oV
dH =Vdp [ad.]
Reversed:
oH
U=H—-Vp=H——p
op

Similarly U(S) — F(T), F(N) = Q(u), ...

plot/legendrevdw.sh 1g/,21
+ s03/4

Example. Plot F(V) and G(V) at constant T for the van der Waals equation of state

control: a—T



From Newton to Lagrange
Let

1

N =N =2 -

£=£(I’{V,I‘i ) = Exin— Epot = E Emiri —U(rlN)
i

then Lagrange equations = Newton’s equations

Ummm ... nothing new yet.
But in the generalized coordinates

gj=qj(f1,...7), j=1...3N
it works, too!

Example: planet in the polar coordinates (r, ¢)

1 5 5., K
£=Ekin—Epot=§m(r +re¢ )+7

EulerLagrange equations:

mi=mr¢?—— (Verlet not applicable)

mrig=0 = mrép=const (angular momentum)

11/21
+ s03/4
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From Lagrange to Hamilton + 03/
Momentum p; = m;F; = g—lf

l
Generalized momenta (definition): p; = g—é

Example (planet): pgy = mr?¢

Legendre transform: #; — p; (and opposite sign)

H=%(FN,/5N)=Z/5[°I"1—E
i

L= Ekin_Epot
‘H is called the Hamiltonian
Cartesian coordinates: H = Eyjn + Epot
_ _ Y. d oL 3 oL
Using the Lagrange equations: p; = oF dtaF _ ar
ri i

= Hamilton’s equations:
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Conservation of energy + 03/4

Change of £ if both positions and velocities change
(not time: Epot Is assumed to be conservative = 9L = 0)

ot —
oL oL . :
di = — - dri+ —" dr; | = p;-drj+ p;- dF
Zl: [arl o) li| Zi:(Pt i T Pi i)
Legendre transform:
: : : ! oH _ OoH
dH = d(p;-F)—dL =D [—p;- dF; + Fidf;] =Z[§ . dF; + a—ﬁ-dpi]
[ [ [ t L
Hamilton equations:
. oH . OH
= ——, i = —
i of; ' ap

And also:
. OH .
— = — T+ — 0
dt Z[art l 9P pl}

= conservation of energy (Hamiltonian = integral of motion)



A sledgehammer not needed to crack a nut + 13;31

d d mi.-
— (Ekin + E = — E—F.+UFN




More integrals of motion: Noether theorem
Any (differentiable) symmetry (of the action) of a
physical system has a corresponding conservation law.

@ Time — energy conservation
(assuming Epot(t) — Epot(t + 5t))

. Translation — momentum

Since 6r is arbitrary, total momentum is conserved
@ Rotation — angular momentum
urY + sa x PNy = ur)
oU

—=— (63 x 7)) - mif;
z

= o:Z(aaxm-ari
l

. d .
=—Zi:55{-(FiX mil_"i)=—55{-azill_’[x mili

(Amalie) Emmy

Noether
credit: Wikipedia

Total angular
momentum
IS conserved
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Poisson and Liouville + 03/

Let f = f(FV, pN). Time development: f(t + dt) = f(t) + fdt.

of . [ O . ] [oH o oH of_
_=f_z[:[rl A "i]_zi:[apl or;  or; aﬁi]_{f'H}

{,} is called the Poisson bracket

It holds {A,B} =—{B,A}

If f = (PN, pN) is an integral of motion, then {f, H} =

If f =f(FN, pN, t) is an integral of motion, then {f, X} + af =0

Let us define the Liouville operator
oH o OH 9

0 A A
il = [rl—+p ]= [ — e ——— _.]EiLr+in
Z I Yo Zl: dp;j drj Odrj 9JpP;

pi

then (for = 0)
f={f H}Y=Iilf



Quantum dodge + ig{ﬁ

Postulate: {,} —» ih[,] signs wrong - see Czech version!
E.g.: {p,x}=—1 = [P, Xx] =—ih

(x, p = any pair of conjugate canonical variables)
X-representation: ¢ = ¢(x), X =x, p = —ih%

In other words [—ih%,x]w = —(hy (well-known)

Test of the machinery: {p,f} ==L — [—ihZ, f1¢ =—inZfy
Similarly for f = f(7, pV, t):

H _Y H—'haf i H —'ha
{f/ }_E_)[fl ]_l E l.€., [fl ](/J_l Ef‘p

Satisfied by H = ih—(ft (time Schrodinger equation); we write it as
n " d
Hl = (h—
v dt¢

= time development of ¢(x) (x cannot depend on time)



Liouville

f=Iilf
Formal (operator) solution (separation of variables)
Inf =ilt, f(t)=exp(ilt)= lim (1 + i't/nm"

What does this mean?

@ consecutively nx repeated (approximately)

f(O+t/n)=(1+iLt/n)f(0) =f(0) + il t/n
dt|t=0

@ Taylor:
t2

exp(iLt)f(0) = 1 + (iLf)t + (iLAiLAf)? ... =

. L2
= 1+f(0)t+f?+... = f(t)

18/21
+ s03/4



Both parts separately + 18251

The same Taylor-like trick for il and iLp:

\ ) .. t2
exp(il O (FV, pN) = 1 + (il )t + (iLrier)? +...=

2f t2

-7 _ N L 2Ny =N
_1+Zrl t+7r17r a_.l_}z L.=f(r"+rt,p")

” N = N = =N
exp(iLpt)f (PN, B") = f(F", B" + p™1)
Problem: operators il and iL, do not commute:

exp(iL) = exp(iLp + iLr) # exp(iLp) exp(iLy)
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Verlet once again + 03/4

So let at least approximately (for small h), but always reversibly:

exp(iLh) ~ exp(ilph/2) exp(ilrh) exp(iLph/2)

Step by step (VN omitted):

( B(0) , 7(0) )
( BO)+pON2 70) )
( BO)+BON/2 , FO)+(1/mIB0)+p(0)h/2]h )

( A0)+[p(0)+p(h)1h/2 , F(0)+ (1/m)[B(0) + p(0)h/2]1h )

This is the so called velocity Verlet:

2
r(t+h) = r(t)+ v(t)h +@h—
m 2
v(t+h) = v(t) +f(t) WA h)g

r(t+h)—r(t—h)
2h

The same trajectory as Verlet with v(t) =



What is this good for? +

exp(iLph/2) exp(iLrh) exp(ilph/2) = exp(iLh + €)
@ error € can be estimated (o< h3)

@ we can calculate a “perturbed Hamiltonian” (error ©(h3) per step, O(h?) globally), exactly
constant with the Verlet method
l.e., Verlet is symplectic = error is bound
(time reversibility = only error o« t1/2)

@ multiple-timestep methods and higher-order methods

energy conservation error is
used to set the timestep h

total energy —

time —

symplectic reversible irreversible



