Gear's methods I

Predictor-corrector type: knowledge of history is used to predict an approximate solution, which is made more accurate in the following step

- Rarely used in special cases (rotations)
- we do not want (otherwise good) methods that require several calculations of the r.h.s.
- a predictor without r.h.s. = polynomial, or equivalently a vector of derivatives:

$$R = \begin{pmatrix} \vec{r}_{i} \\ h \dot{\vec{r}}_{i} \\ \frac{h^{2}}{2!} \ddot{\vec{r}}_{i} \\ \frac{h^{3}}{3!} \ddot{\vec{r}}_{i} \end{pmatrix}$$

Predictor:

$$R(t+h)^{\text{pred}} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} R(t)$$

Gear's metods II

 $+\frac{2/18}{504/4}$

The error of the predictor:

$$\vec{E}_i = \frac{h^2 \vec{f}_i(\vec{r}^N(t+h)^{\text{pred}})}{2 m_i} - \frac{h^2}{2} \ddot{\vec{r}}_i(t+h)^{\text{pred}}$$

Corrector:

$$R(t+h) = R(t+h)^{\text{pred}} + \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} E$$

Unknown constants determined from the stability conditions.

For a 1st order equation y' = f(y):

$$E = hf(y(t+h)^{\text{pred}}) - hy'(t+h)^{\text{pred}}$$

equivalent to Adams-Bashforth

Gear's metods I

 $+\frac{3/18}{504/4}$

1st order:

M	a_0	a_1	a_2	аз	a 4	<i>a</i> ₅
2	1/2	1				
3	5/12	1	1/2			
4	3/8	1	3/4	1/6		
5	251/720	1	11/12	1/3	1/24	
6	95/288	1	25/24	35/72	5/48	1/120

 $M = \text{predictor length (local order } \mathcal{O}(h^M))$

a suitable for a r.h.s. without $\dot{\vec{r}}$

 b suitable for a r.h.s. with $\dot{\vec{r}}$

c equivalent to velocity Verlet (lower order, time-reversible)

2nd order:

M	a ₀ a	a ₀ b	a_1	a ₂	<i>a</i> ₃	a 4	<i>α</i> ₅
3 ^c	0	0	1	1			
3	1/6	1/6	1	1			
4	1/6	1/6	5/6	1	1/3		
5	19/120	19/90	3/4	1	1/2	1/12	
6	3/20	3/16	251/360	1	11/18	1/6	1/60

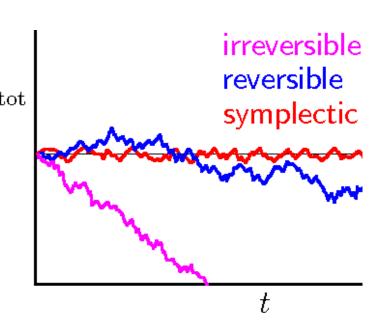
Comparison of methods

Verlet:

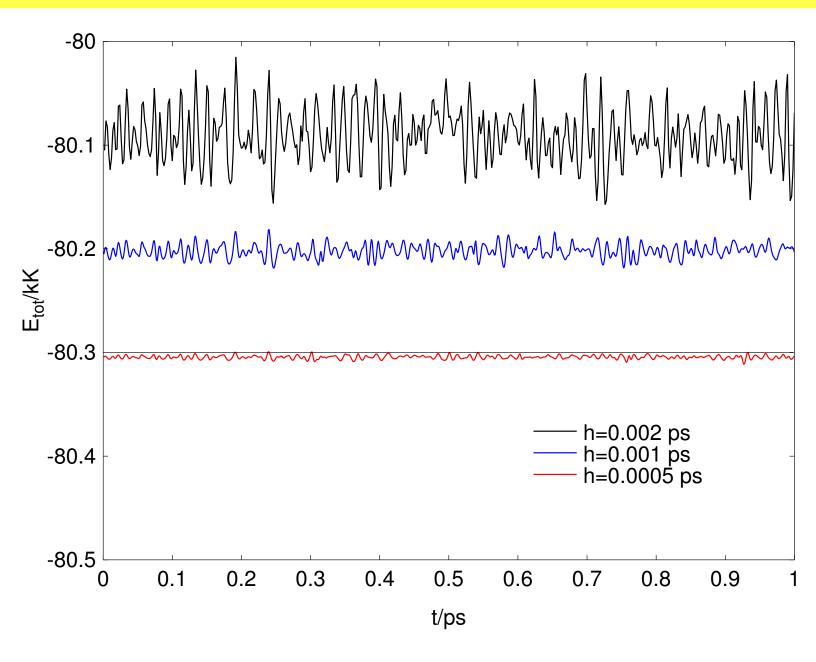
- \bigoplus is time-reversible \Rightarrow no drift in the total (potential + kinetic) energy
- ♦ is symplectic ⇒ error in the total energy is bound
- 🛟 is simple
- low order (phase error)
- (directly) not applicable to a r.h.s. containing velocities (equation $\ddot{r} = f(r, \dot{r})$: Nosé–Hoover, rotations)
- difficult change of the timestep so that the trajectory is accurate (in MD, usually not needed/does not matter)

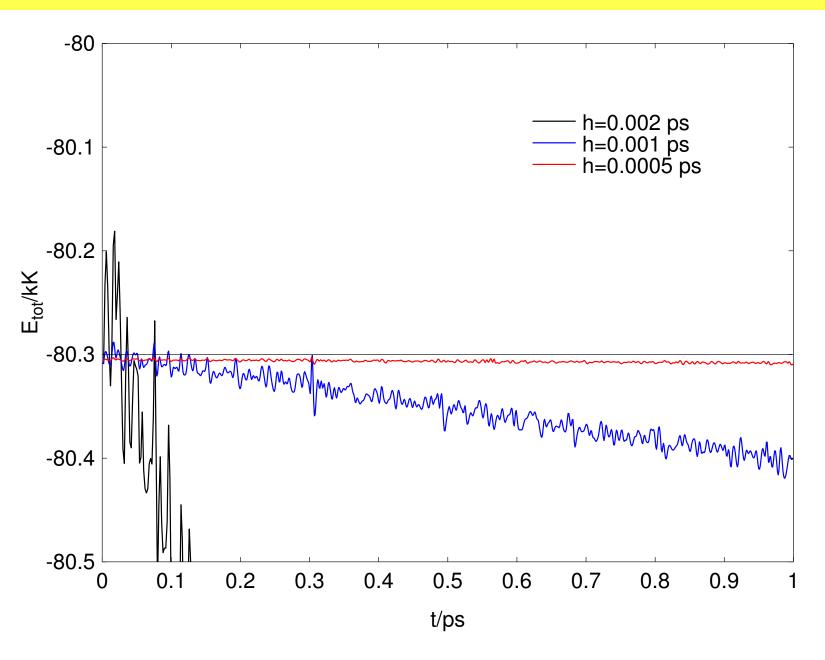
Gear and similar: just opposite

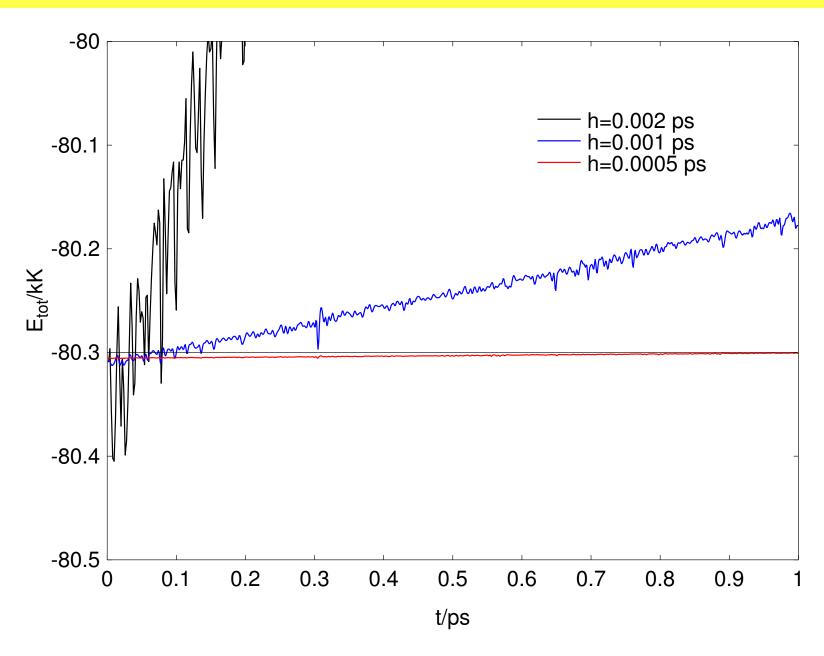
- igoplus a symplectic integerator preserves (with bounded accuracy) the phase space volume $\mathrm{d}\vec{r}^N\mathrm{d}\vec{p}^N$
- is a subset of geometric integrators preserving the flow of phase-space volume
- the quality of energy conservation helps us set up the timestep h

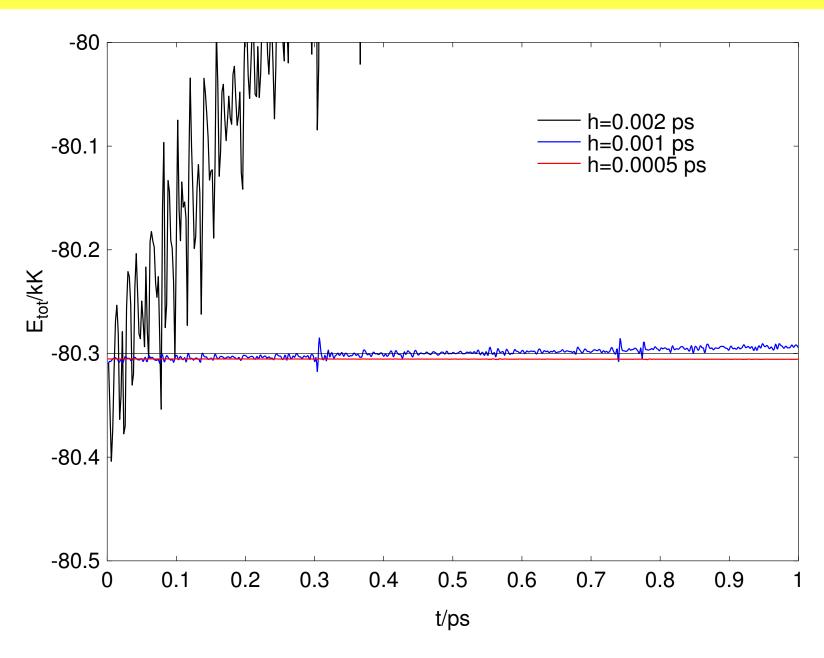


Energy conservation: Verlet









Exercise

Write a computer program for a numerical integration of the Newton's equations for a harmonic oscillator with the force constant K (f(x) = -Kx). Use K = 1 a m = 1 and one of the following methods:

- Verlet
- velocity Verlet
- leap-frog

Runge-Kutta 4th order for
$$y'' = f(x, y)$$
, $y(x_0) = y_0$, $y'(x_0) = y'_0$:

$$k_{1} = f(x_{0}, y_{0}, y'_{0}),$$

$$k_{2} = f\left(x_{0} + \frac{h}{2}, y_{0} + \frac{1}{2}hy'_{0} + \frac{h^{2}}{8}k_{1}, y'_{0} + \frac{h}{2}k_{1}\right),$$

$$k_{3} = f\left(x_{0} + \frac{h}{2}, y_{0} + \frac{1}{2}hy'_{0} + \frac{h^{2}}{8}k_{2}, y'_{0} + \frac{h}{2}k_{2}\right),$$

$$k_{4} = f\left(x_{0} + h, y_{0} + hy'_{0} + \frac{h^{2}}{2}k_{3}, y'_{0} + hk_{3}\right),$$

$$y_{1} = y(x_{0} + h) = y_{0} + hy'_{0} + \frac{h^{2}}{6}(k_{1} + k_{2} + k_{3}),$$

$$y'_{1} = y'(x_{0} + h) = y'_{0} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}).$$

Exercise II

- Beeman: $r(t+h) = r(t) + v(t)h + \frac{4f(t)-f(t-h)}{6m}h^2$ $v(t+h) = v(t) + \frac{2f(t+h)+5f(t)-f(t-h)}{6m}h$
- \bigcirc Gear 2nd order M=4

Try also the Hamilton equations of motion using:

- Gear 1st order
- Euler for y' = f(y): y(t + h) = y(t) + f(t)h (where f(t) = f(y(t)))
- Adams-Bashforth various orders:

$$y(t+h) = y(t) + \frac{h}{2}[3f(t)h - f(t-h)]$$

$$y(t+h) = y(t) + \frac{h}{12}[23f(t) - 16f(t-h) + 5f(t-2h)]$$

$$y(t+h) = y(t) + \frac{h}{24}[55f(t) - 59f(t-h) + 37f(t-2h) - 9f(t-3h)]$$

Runge-Kutta 4th order (for the 1st order differential equation)

Temperature

The temperature is **measured** in the standard (microcanonical) MD.

$$T = \left\langle \frac{E_{\text{kin}}}{\frac{1}{2}k_{\text{B}}f} \right\rangle = \left\langle T_{\text{kin}} \right\rangle$$

$$f = 3N - f_{\text{conserved}} \approx 3N$$

It is assumed that the conserved degrees of freedom are zero

Example: molecules in a spherical cavity: $f_{conserve} = 1_{energy} + 3_{rotations}$

Generally from the equipartition theorem:

$$\left\langle p \frac{\partial \mathcal{H}}{\partial p} \right\rangle = \left\langle p \dot{q} \right\rangle = k_{\rm B} T$$

Equipartition: the averaged kinetic temperature should not depend on (a subset of) the degrees of freedom used. Typically, one may easily separate:

- \bigcirc T_{tr} from the velocities of the centers of mass
- \bigcirc $T_{\text{rot+in}}$ from rotations and internal degrees of freedom.
- \bigcirc $T_{tr} \neq T_{rot+in}$ indicates various problems (bad equilibration, too long timestep, ...).



Constant temperature in MD: methods

not canonical: (do not give the canonical ensemble)

- *velocity rescaling: $\vec{v}_{i,\text{new}} = \vec{v}_i (T/T_{\text{kin}})^{1/2}$
- *Berendsen (friction): $\vec{v}_{i,\text{new}} = \vec{v}_i (T/T_{\text{kin}})^q$, q < 1/2, is equivalent to: $\ddot{\vec{r}}_i = \frac{\vec{f}_i}{m_i} \eta (T_{\text{kin}} T)\dot{\vec{r}}_i$, $\eta = \frac{q}{Th}$

* do not sample the center of mass in the periodic boundary conditions

canonical deterministic:

Nosé-Hoover: one (or more) degrees of freedom added, averaging it ⇒ canonical ensemble. Problem: tricks needed with Verlet (r.h.s. depends on velocities)

canonical stochastic:

- Maxwell–Boltzmann: once a while the velocties of particles are drawn from the Maxwell–Boltzmann distribution, $\pi(\dot{x}_i) = \exp(-\dot{x}^2/2\sigma^2)/\sigma\sqrt{2\pi}$, $\sigma^2 = k_BT/m_i$
- Andersen: randomly visit particles (usually better)
- Langevin: small random force added to all particles at every step
- *Canonical sampling through velocity rescaling (CSVR [Bussi, Donadio, Parrinello])

Nosé-Hoover thermostat

- one degree of freedom added: "position" s and "velocity" s
- \bigcirc + kinetic energy $\frac{M_s}{2}\dot{s}^2$
- \bigcirc + potential energy $-fk_{B}T \ln s$

Equations of motion ($\xi = \ln s$):

$$\ddot{\vec{r}}_i = \frac{\vec{f}_i}{m_i} - \dot{\vec{r}}_i \dot{\xi}$$

$$\ddot{\xi} = \left(\frac{T_{\text{kin}}}{T} - 1\right) \tau^{-2}$$

Thermostat time constant:

$$\tau = \sqrt{\frac{M_S}{fk_BT}}$$

Provided that the system is ergodic, it can be proven that we get the canonical ensemble

Nosé-Hoover

- canonical (except conserved quantites)
- high quality
- good also for small systems (Nosé-Hoover chain)
- \bigcirc oscillations, decoupling (fine tuning of τ)
- worse for start
- equations of motion w. velocities

Berendsen

- simple
- exponential relaxation (i.e., good also for start)
- flying icecube
- not canonical
- poor for small systems

Bussi et al. (CSVR)

- canonical (except conserved quantites)
- exponential relaxation (i.e., good also for start)
- sometimes (crystals) less accurate than Nosé-Hoover

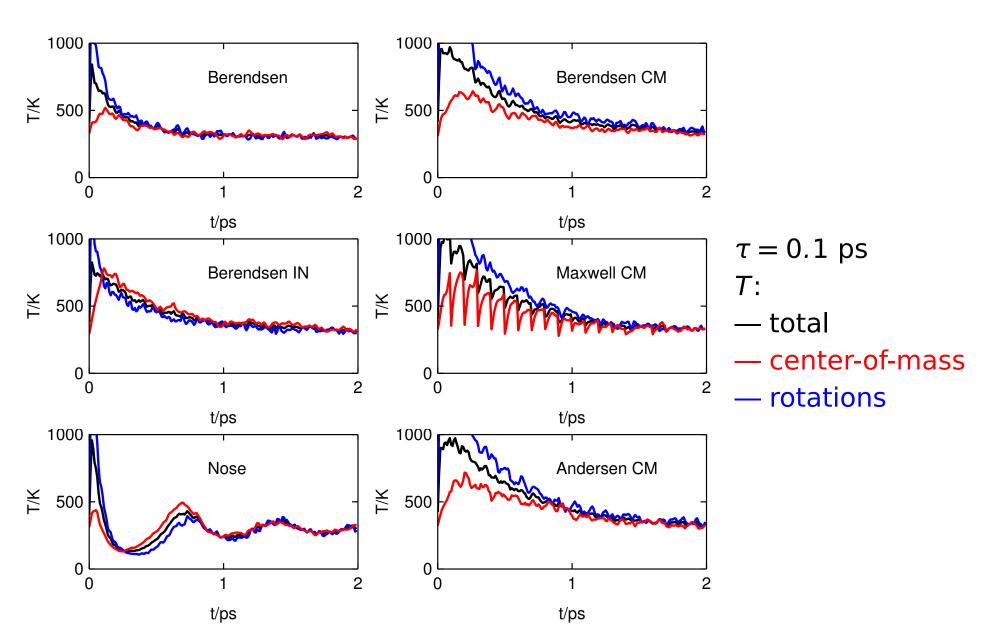
Maxwell-Boltzmann, Langevin etc.

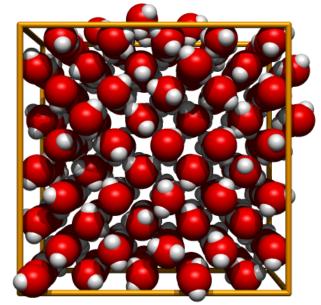
- canonical (incl. conserved quantities)
- exponential relaxation

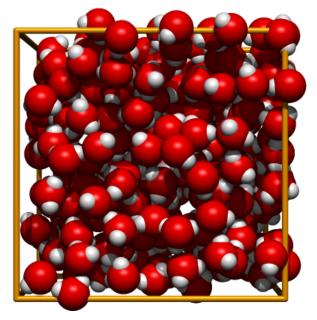
- kinetics lost
- problematic with constrained dynamics

Thermostats: application to water

2 ps trajectory started from 250 randomly oriented SPC/E water molecules at fcc lattice



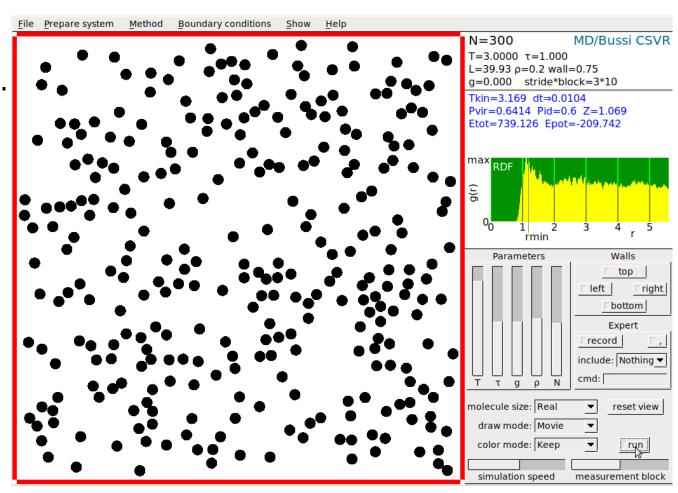




SIMOLANT: Try molecular dynamics by yourself

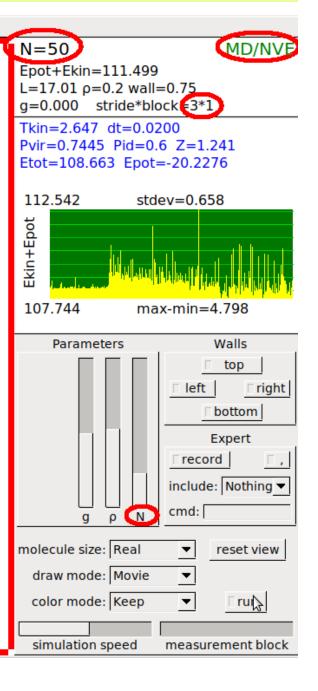
Installation of SIMOLANT (Windows):

- http://old.vscht.cz/fch/software/simolant or Google simolant
- Download simolant-win32.zip
- Create a folder and unpack SIMOLANT there. Do not run directly from simolant-win32.zip
 - help would not work
 - you could not find saved files
- Run simolant.exe
- Also supported: linux, MacOS



Energy conservation

- Slider "measurement block" to the left Boundary conditions Show (1–3 values averaged per 1 point shown).
- The default is one energy calculated per 3 MD steps (stride).
 This can be changed by slider "simulation speed".
- \bigcirc For faster simulation, decrease # of particles by slider "N" to \sim 50.
- Menu: Show \rightarrow Integral of motion convergence profile The graph is always scaled from min to max.
- If needed, reset the graph by button reset view
- \bigcirc Menu: <u>Method</u> \rightarrow Molecular dynamics (NV<u>E</u>)
 - write "dt=0.005" to the cmd:
 - write "dt=0.01" to the cmd:
 field and observe the difference
 - write "dt=0.02" to the cmd: field and observe the difference
 - for too long dt, the simulation may switch to MC to avoid crash
- Try to change (T, ρ, N) $(\rho = \text{rho} = \text{number density})$:
 - return the default (automatic setup) by "dt=0"
 - switch the method to (e.g.) Monte Carlo NVT (Metropolis)
 - switch back to Molecular dynamics (NVE)



Try thermostats by yourself

- Turn simulation off by button run Method Boundary conditions Show Help
- Menu: Show → Temperature convergence profile
 or optionally Energy/enthalpy convergence profile
- \bigcirc Menu: Method \rightarrow Molecular dynamics (Berendsen thermostat)
- Turn simulation on by button Irun
 - observe the total energy
 - what happens if you change temperature?
 - what happens if you change the correlation time (slider τ)?

Do not change the parameters too fast!

- Repeat for other thermostats.
- Repeat for different samples; e.g., liquid:
 - slider "T": $T \approx 0.2$
 - slider " ρ ": ρ ≈ 0.6
- Try thermostats for a few molecules only, recommended setup:
 - very low density (slider ρ)
 - draw mode: Traces
 - molecule size: Small or Dot

