
Gear’s methods I + 1/18
s04/4

Predictor-corrector type: knowledge of history is used to predict an approximate solution, which
is made more accurate in the following step

Rarely used in special cases (rotations)

we do not want (otherwise good) methods that require several calculations of the r.h.s.

a predictor without r.h.s. = polynomial, or equivalently a vector of derivatives:
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Gear’s metods II + 2/18
s04/4

The error of the predictor:
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Corrector:
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Unknown constants determined from the stability conditions.

For a 1st order equation y′ = ƒ (y):

E = hƒ (y(t + h)pred) − hy′(t + h)pred

equivalent to Adams–Bashforth
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1st order:

M 0 1 2 3 4 5

2 1/2 1

3 5/12 1 1/2

4 3/8 1 3/4 1/6

5 251/720 1 11/12 1/3 1/24

6 95/288 1 25/24 35/72 5/48 1/120

2nd order:

M 0  0 b 1 2 3 4 5

3c 0 0 1 1

3 1/6 1/6 1 1

4 1/6 1/6 5/6 1 1/3

5 19/120 19/90 3/4 1 1/2 1/12

6 3/20 3/16 251/360 1 11/18 1/6 1/60

M = predictor length (local order O(hM))
 suitable for a r.h.s. without ˙⃗r
b suitable for a r.h.s. with ˙⃗r
c equivalent to velocity Verlet

(lower order, time-reversible)



Comparison of methods
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Verlet:

is time-reversible ⇒ no drift in the total (potential + kinetic) energy

is symplectic ⇒ error in the total energy is bound

is simple

low order (phase error)

(directly) not applicable to a r.h.s. containing velocities

(equation r̈ = ƒ (r, ṙ): Nosé–Hoover, rotations)

difficult change of the timestep so that the trajectory is accurate

(in MD, usually not needed/does not matter)

Gear and similar: just opposite

Notes:

a symplectic integerator preserves (with bounded accuracy) the phase space volume dr⃗Ndp⃗N

is a subset of geometric integrators preserving the flow of phase-space volume

the quality of energy conservation helps us set up the timestep h



Energy conservation: Verlet
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Energy conservation: Gear M = 4
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Energy conservation: Gear M = 5
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Energy conservation: Gear M = 6
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Exercise
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Write a computer program for a numerical integration of the Newton’s equations for a harmonic

oscillator with the force constant K (ƒ () = −K). Use K = 1 a m = 1 and one of the following

methods:

Verlet

velocity Verlet

leap-frog

Runge-Kutta 4th order for y′′ = ƒ (, y), y(0) = y0, y′(0) = y′0:

k1 = ƒ (0, y0, y′0) ,
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Exercise II
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Beeman: r(t + h) = r(t) + (t)h + 4ƒ (t)−ƒ (t−h)
6m h2

(t + h) = (t) + 2ƒ (t+h)+5ƒ (t)−ƒ (t−h)
6m h

Gear 2nd order M = 4

Try also the Hamilton equations of motion using:

Gear 1st order

Euler for y′ = ƒ (y): y(t + h) = y(t) + ƒ (t)h (where ƒ (t) = ƒ (y(t)))

Adams-Bashforth various orders:

y(t + h) = y(t) + h
2[3ƒ (t)h − ƒ (t − h)]

y(t + h) = y(t) + h
12[23ƒ (t) − 16ƒ (t − h) + 5ƒ (t − 2h)]

y(t + h) = y(t) + h
24[55ƒ (t) − 59ƒ (t − h) + 37ƒ (t − 2h) − 9ƒ (t − 3h)]

Runge-Kutta 4th order (for the 1st order differential equation)



Temperature
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The temperature is measured in the standard (microcanonical) MD.

T =

*

Ekin

1
2kBƒ

+

= 〈Tkin〉

ƒ = 3N − ƒconserved ≈ 3N

It is assumed that the conserved degrees of freedom are zero

Example: molecules in a spherical cavity: ƒconserve = 1energy+3rotations

Generally from the equipartition theorem:
�

p
∂H
∂p

�

= 〈pq̇〉 = kBT

where p is any component of any momentum vector and q the canonically conjugate coordinate

Equipartition: the averaged kinetic temperature should not depend on (a subset of) the degrees
of freedom used. Typically, one may easily separate:

Ttr from the velocities of the centers of mass

Trot+in from rotations and internal degrees of freedom.

Ttr ̸= Trot+in indicates various problems (bad equilibration, too long timestep, . . . ).



Constant temperature in MD: methods
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not canonical: (do not give the canonical ensemble) * do not sample the center of mass

in the periodic boundary conditions*velocity rescaling: ⃗,new = ⃗(T/Tkin)1/2

*Berendsen (friction): ⃗,new = ⃗(T/Tkin)q, q < 1/2,

is equivalent to: ¨⃗r  =
ƒ⃗

m
− η(Tkin − T)˙⃗r , η =

q

Th

canonical deterministic:

*Nosé–Hoover: one (or more) degrees of freedom added, averaging it ⇒ canonical ensemble.

Problem: tricks needed with Verlet (r.h.s. depends on velocities)

canonical stochastic:

Maxwell–Boltzmann: once a while the velocties of particles are drawn from the Maxwell–

Boltzmann distribution, πππ(̇) = exp(−̇2/2σ2)/σ
p
2π, σ2 = kBT/m

Andersen: randomly visit particles (usually better)

Langevin: small random force added to all particles at every step

*Canonical sampling through velocity rescaling (CSVR [Bussi, Donadio, Parrinello])



Nosé–Hoover thermostat + 13/18
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one degree of freedom added: “position” s and “velocity” ṡ

+ kinetic energy Ms
2 ṡ

2

+ potential energy −ƒkBT ln s

...

Equations of motion (ξ = ln s):

¨⃗r  =
ƒ⃗

m
− ˙⃗r ξ̇

ξ̈ =
�

Tkin

T
− 1

�

τ−2

Thermostat time constant:

τ =

√

√

√

Ms

ƒkBT

Provided that the system is ergodic, it can be proven that we get the canonical ensemble



Comparison of thermostats
simolant -H.1 -I9 -N50 -Pbc=2,T=.5,tau=0.1,rho=0.1 14/18

s04/4

Nosé–Hoover

canonical (except conserved quantites)

high quality

good also for small systems (Nosé–Hoover chain)

oscillations, decoupling (fine tuning of τ)

worse for start

equations of motion w. velocities

Berendsen

simple

exponential relaxation (i.e., good also for start)

flying icecube

not canonical

poor for small systems

Bussi et al. (CSVR)

canonical (except conserved quantites)

exponential relaxation (i.e., good also for start)
sometimes (crystals) less accurate than

Nosé–Hoover

Maxwell–Boltzmann, Langevin etc.

canonical (incl. conserved quantities)

exponential relaxation

kinetics lost

problematic with constrained dynamics

for me: Show flying icecube simolant: max. speed + select Berendsen thermostat



Thermostats: application to water
start simul/spce/spce250.plb 15/18
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2 ps trajectory started from 250 randomly oriented SPC/E water molecules at fcc lattice
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SIMOLANT: Try molecular dynamics by yourself
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Installation of SIMOLANT (Windows):

http://old.vscht.cz/fch/software/simolant

or simolant

Download simolant-win32.zip

Create a folder and unpack SIMOLANT there.

Do not run directly from

simolant-win32.zip
– help would not work

– you could not find saved files

Run simolant.exe

Also supported: linux, MacOS

http://old.vscht.cz/fch/software/simolant


Energy conservation
show/thermostats.sh 17/18

s04/4

Slider “measurement block” to the left
(1–3 values averaged per 1 point shown).

The default is one energy calculated per 3 MD steps (stride).
This can be changed by slider “simulation speed”.

For faster simulation, decrease # of particles by slider “N” to ∼ 50.

Menu: Show → Integral of motion convergence profile

The graph is always scaled from min to max.

If needed, reset the graph by button reset view

Menu: Method → Molecular dynamics (NVE)

– write “dt=0.005” to the cmd: field
– write “dt=0.01” to the cmd: field and observe the difference
– write “dt=0.02” to the cmd: field and observe the difference
– for too long dt, the simulation may switch to MC to avoid crash

Try to change (T, ρ,N) (ρ = rho = number density):
– return the default (automatic setup) by “dt=0”
– switch the method to (e.g.) Monte Carlo NVT (Metropolis)

– switch back to Molecular dynamics (NVE)



Try thermostats by yourself
show/thermostats.sh 18/18
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Turn simulation off by button run

Menu: Show → Temperature convergence profile

or optionally Energy/enthalpy convergence profile

Menu: Method → Molecular dynamics (Berendsen thermostat)

Turn simulation on by button run
– observe the total energy
– what happens if you change temperature?
– what happens if you change the correlation time (slider τ)?
Do not change the parameters too fast!

Repeat for other thermostats.

Repeat for different samples; e.g., liquid:
– slider “T”: T ≈ 0.2
– slider “ρ”: ρ ≈ 0.6
Try thermostats for a few molecules only, recommended setup:
– very low density (slider ρ)
– draw mode: Traces
– molecule size: Small or Dot


