i L. 1/37
Mechanical quantities s07/4

notation here:

£ NVE MD): |
@ Temperature ( ) U=U(r") = potential energy

Tin = Ekin E = E(T, V) = internal energy
fke/?2 f = # of degrees of freedom

@ Internal energy: .
f res = residual
E = (Ein+ U) "' kel + (U) = Eig + Eres IS NS E
@ Pressure B =1/kgT

NI< . au(vl/3éN)
= — — = Pid +
P Y B SV e Pid T Pres

- dimensionless (scaled) coordinates &;: 7; = V1/3E; e e
- red derivative is calculated at constant EV, ;.’.’E - f,.'i

whole configurations is uniformly shrank/swelled
— pid = kinetic contribution (=ideal gas), also pjg = ¢2Ekin/3V,

where in periodic b.c. ¢ = N/(N — 1) takes into acccount 3 zero conserved momenta
— Pres = cohesion contribution
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Pressure in the NVT ensemble: derivation s07/4
1
dF = —SdT — pdV (X) =—f XNy exp[—pu(P")1dPN
Qn JynN
oF QN ®a®
=— — = 0O
P (av)r' F=keTin e ® o :.0
Fi=V1/3Ei . . . .. ‘.
Qn = J exp[—BU(F")1dY "= J exp[-BU(VPEMIVIAEN  Gg@® @ @
vN 13N “
B _(f) _kT(aanN) _kBT(aQN) ﬂl :!‘ ®
T T v T v Jav T o Uav e .
kgl . .
= o0 J _ exp[—pUVSEN)INVEdEN ® o%00%, e
/(BTl . aU(vl/3EN) . O .. ¢ )
o J 3Nexp[—ﬁU(v1/3aN)](—ﬁ)( v ) VNVaEN o~ of
N J1 EN .‘ ‘... O
B ﬂk = dU(VL/3EN) _ |ideal part N residual part Qo O ®
VA aV e ~ |(kinetic) (correction) &Q O !‘
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Residual quantities s07/4

= with respect to the standard state of ideal gas at the same temperature, volume (= density),
and composition as the given system. Usefull in the canonical (NVT) ensemble.

sometimes “excess”; for solvation Gibbs energy or u of solute, also “Ben-Naim standard state”

For the Helmholtz energy: ideal gas: Oy = VN
Qn VN Qn
F=—kglInZy =—kgT In YL = —kgT In NINSN — kgT In W = Fiq + Fres

Refresh:

de Broglie thermal wavelength:

h
N\ =
vV 2mtmkgT

chemical potential of ideal gas:
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Pressure - virtual volume change method s07/4

1/3&N
=5,
% % en

Numerical derivative (for a selected series of configurations)

aU UV + AV)—U(V) U(2®)— U(s
_— — +O(AV)_ .................... +O(AV)
% AV AV

U _ UV + V) - UV —av) | oav?)

3V 2AV

Implementation: U(V + AV) means that the whole configuration (all distances) is swelled by the
same ratio; for molecules w.r.t. a reference point (then, N = # of molecules):

(v+ AV)1/3
v :
The scaled configuration is not included in the trajectory.

For models with a hard core such that swelling the box cannot cause an overlap, shrinking can be
used: P = NkgT/V + 58T (e=[U(V=AV)-UV)V/keT) 4 O(AV)
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Pressure from the virial of force s07/4
The derivative expanded: —fi
o
JU(VL/3ENy N 17 v 1 M U
( 5) = Z—V_Z/Bgi S = Z Fis—
oV =3 of; 3V or

The result is

. cannot be directly applied in the periodic boundary conditions.

@ Pair additivity in the periodic boundary conditions =

N 1
p=keT === > {1 (ri) = Pid + Pres

v i<j
@ For molecular models one can use either the site-frame (N = # of sites/atoms) or molecular

frame (N = # of molecules; typically, ref. point = center of mass). Of course, the formulas
differ.
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Pressure tensor + 07/4

Also called stress tensor (in solids):

— o e 1N .
P=Pid+ Pres=¢ > (emiviv; + Fify)
(=1

@ Tensor product T= 0V, also denoted T=0® V: Tgp = VaVp.

@ ¢ =N/(N—-1) takes into acccount 3 zero conserved momenta in periodic b.c.

@ The scalar pressure is 1/3 of its trace, p = tr(?)/3.

@ 'n models with rigid (constrained) bonds, the virial of constrained forces has to be included (it
depends on velocities).

@ Diagonal terms are good for calculating surface tension.
@ Off-diagonal terms are good for calculating viscosity.*

@ Can be also calculated by the virtual box change:

— elongation in X = Pxx,

— simulation cell shape change = off-diagonal terms.
*Suprisingly, the diagonal terms can be used to calculate viscosity, too.



Surface tension of liquid

Using slab geometry — elongated periodic box (2:1 or more)

(aV) (aG) L ,Pt, Where Pt = Pxx + Pyy — 2P
= | — = | — = —_—— , W ere = + —_ ,
Y oA) v T oA )7 42 t t XX vy zz

@ 't is “mechanical quantity”.
@ Cannot be used for interfacial energy of crystals (it is “entropic quantity”).
@ Cutoff corrections - several variants (cf. simen09).

@ P, = saturated vapor pressure;
iIf small enough, Pxx, Pyy can be replaced by the usual pressure p.

@ Alternative: virtual area change method [Gloor et al.: JCP 123, 134703 (2005)]: R0

scaling in X, y and inversely squared in Z so that volume is preserved:

r= ()

7/37

+ s07/4




Fluctuation quantities + 580/73/74

((AX)?) = VarX = (mean quadratic) fluctuation = variance AX = X—(X)
fluctuation = (mech/el/. .. quantity)’ = (thermodynamic potential)’’
Less accurate than mean values!

E.g. (NVT): P=—(55). E=(%F), - then:

@ Heat capacity at constant [V]:

C (—aE) - VarE L ((AEyin + AU)?)
= = arE = in+
V=\oT )y ker? kT2 "

Cov (U, Ekin) = (AUAEk;n) = 0, VarEyin = %(kBT)Z (see exercise) =

1 fkgT )2 fkg 1 ,
Cy = + AU = + AU) )=Cyig+C
@ Isothermal compressibility — in the NPT ensemble

1ravy  {(av)?)
(a_P)T VkgT

4

Permittivity can be calculated from the fluctuation of the cell dipole moment, (M2), (more later).



Exercise

9/37
+ s07/4

Calculate (Ejn) and Var (Ekin) for one degree of freedom, Egjn = %mvz.

15

Exin = Emv

) exp(—%mvz/kBT)

n(v) =
fexp(—%mvz/kBT)dv
-

(Ekin) = J Exinmt(v)dv
"

Var (Exin) = J (Ekin — {Ekin))*m(v)dv

1(/< T)?

restart;

assume (m>0,k>0,T=0);

K:=m/2*vA2: KT:=k*T:

inorm:=int(exp(-K/KkT) ,v=-infinity..infinity);
2 Kk~ T o

Jme~ k~ T

averK:=int(K*exp(-K/kT) ,v=-infinity..infinity) /inorm;

INOFM =

averkK 1= %krv T~

FluctK:=int((K-averK)AZ*exp(-K/kT) ,v=-infinity. .infinity) /inorm;

z _ 2
fluctk = %kfv T~



Isochoric heat capacity Cy in the NVE ensemble

In the canonical ensemble:
oX

VarX = kBTza—_,_ = kpT?X’ (X =U, Exin)

Cov (U, Ekin) =0
Y7 / /
Cy=U"+E Egn=

Unnormalized probability distribution for temperature T:

W(U, Ekin) ~ exp

(6U)?

fks

2

(6Ekin)?

“2VarU 2 Var Eyin

where the deviations are linearized: (U, Ekin) = (Ug + 6U, Ekin,0 + 6Ekin)

10/37
+ s07/4

Unnormalized probability distribution taking into account change in temperature, T =T+ 6T:

(6U—U’6T)?  (8Ekin—E}; 6T)?

w(T, U, Exin) ~ exp

2 VarU

2 Var Eyin




Isochoric heat capacity Cy in the NVE ensemble Il + iééﬂ

In the MD NVE ensemble it holds U + Eyjn = E = const or U = E — Eijn, and of course 6Ekijn = —6U,
so that let us choose 6Ei, as the independent variable

(T, Ekin) - - SE2 Uy Eiin 472
W(T, Exin) ~ exp | — + - +
an P17\ 2ker207 T 2kaT2E], ) 7Kin T\ 2kgT2 T 2kpT2

where the variances were replaced by derivatives, see (1).
NB: term 6EkinéT cancels out!

From term at 86T 2:

kgT 2 kgT 2
Varl = ———— =
U +Ekin Cy

which is a known expression for the temperature in the NVE ensemble, however, T here is not the
kKinetic temperature, but T in formula dE =TdS [V]. The average temperature is the same, but not
the fluctuation.



Isochoric heat capacity Cy in the NVE ensemble Il + 15;32

From the term at §E?:
kgT 2 kgT 2
7 = / /

VarE = VarU = VarEyin =

Since E/._is known:

Kin

k| 2712 1
Cy= —1 + 1
fVarTin

where Tyin = Exin/(fk/2) is the kinetic temperature.

Final expression applicable in simulations:

2 —1
Cy =.& ( 2 (Tkln) _ 1) +1
2 |\ f{(ATkin)?)
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Entropic quantities s07/4

These include F, G ((«< partition function), S (hnumber of states W), u, AG,. ..
They cannot be expressed as a simple (-).

Usage: equilibria in general; solubility, ligand-receptor binding, stability of biomolecules, ...
Formally (for the configura-

@ thermodynamic integration: _ ,
tional integral):

@ over a real variable (T, V, P)

. [ e=BYUdrN
@ over a coupling parameter 0 = -
@ reversible work calculated by the integration of force
[ e=RUdrN vN

@ Widom particle insertion method;

| . | | ~ /=N [ e—BUg+BU47N ~ (aBU
gradual insertion, alchemical transmutation 4 fe € dr (ePY)

_ ... totally useless
@ non-Boltzmann sampling:

@ umbrella sampling
@ multiple histogram reweighting
@ metadynamics/Wang-Landau/conformational flooding

& local density method



.. i 14/37
Thermodynamic integration s07/4

Physical chemistry: dF = —SdT —pdV, dG =—SdT + Vdp U = U(r") = potential energy
, E =E(T,V) = internal energy
Canonical ensemble (B8 = 1/kgT):

oF V1 d(BF) d(BFres)
() = e[ (92,52

@ Numerically integrated: p, E must be determined at many points

@ Start from a suitable reference state (known state, ideal gas, harmonic crystal)

(BF) _ L.
Proof # 10f7—E

0(BF) a(F/T) a(F/T)/a(l/T) _ —ST—F
36  a(1/T)  aT 3T T2

—1
/( )=ST+F=E
T2

d(BF) _ .
Proof # 2 ofW—E.

0BF) —alnz 1oz  ayyePWysap N [-eeFEW]
B B zop | yyem®  yemwm OTF
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Integration over a coupling parameter s07/4

Let us consider any dependence (BU)(A), e.q.:

(BUY(N) = {'B[UO +A(U1—Ug)] A = coupling parameter, A € [0, 1]
-~ lav A = BB: see previous slide
then

a,BFreS _ _aan _ 1 ae_BUdFN _ EJ a(,BU)()\) e_'BU()‘)di"N _ <a(:8U)()\)>
Q oA A

I A O oA AN

A1 /3(BU)(A
(3Fres)()\1) — (,BFres)()\O) + < (ﬁ )( )> dA
Ao OA A

where (-)» = mean value in the ensemble (simulation) with potential U(A)
How to integrate: (over a real variable or coupling parameter)
@ Several discrete values of A;:

@ fit to a suitable function and integrate it

@ use a numerical quadrature method; e.g., the Simpson formula
(points with a higher weight should be simulated longer)

@ A little change of A in every MD step (the system is almost in equilibrium) + integration
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Examples s07/4

@ For A =3 we get as before:

B1

B1Fres(B1) — BoFres(Bo) = JB (U)dﬁ
0

@ Integration from an Einstein crystal to a real crystal.
NB: Einstein crystal = independent (here classical) harmonic oscillators at lattice sites.
There are minor solvable problems when the crystal is detached from the fixed sites.

@ Integration from ideal gas (e.g., around the critical point to liquid). Because of gas singularity
at zero density, one of the integrals is (for NPT):

'”¢=H_uo=fp(vm—ﬂ)dp’ (s) 1)
RT 0 p’ p

It helps to use a virial equation of state at low densities.

(g)
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Non-Boltzmann sampling s07/4

We want (BU)1, but we simulate (BU)g (can change B/U/both)!
A(BU) = (BU)1— (BU)o
[ xe=(BUngN - [ Xem (B0 e=BBUIN  (xe—0(BU)),

(X)guyy = N B
(BU)1 fe—([S’U)ldrN Qiofe—(ﬁU)o e—A(BU)gpN (e_A(,BU))O

Helmholtz energy:

A(BFres) = PB1Fres((BU)1)—BoFres((BU)o)

01 fe—(BU)ldi
—In (—) =—In

Qo [ e=(BU)odpN
fe—(BU)o e—A(BU)gpN

f e—(,BU)OdFN

—In = — In{e~2(BU)y,

— In (e+A(BU)) 1

where the last equation follows from 0 «— 1 interchange
First usage probably Zwanzig (1954) “thermodynamic perturbation method”, loosely also “umbrella sampling”
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Non-Boltzmann sampling contd.

n
o
~
~
S

@ A(BU) must not be too large eX=1+X+--

@ the thermodynamic integration is recovered N1 +Xx)=Xx+---
for infinitesimally small A(BU):

|

https://positi\}e(;u.tlookshlog_com/2[]15

/01/30/surviving-the-storm-together

A(BFres) = —ln(e_A('BU))O
~ —In(l—A(BU))o
= —In(1—(A(BU))o)
(A(BL))
general A:  9(BFres)/oA (0A(BU)/A) )
A=B: 9(BFres)/of = (U)

Umbrella sampling
The system in the middle is sampled: mid = (BU)q + A(BU)/2 = (BoUo + B1U1)/2:

A(BFres) = |n(e+A('8U)/2)mid — |n(e_A('8U)/2)mid

Nowadays, term “umbrella sampling” usually refers to many steps of similar kind.



Multiple histogram reweighting |

aka WHAM, weighted histogram analysis method

Building the density of states as a funtion of energy in a wide
range of temperatures from overlapping histograms of energies
obtained in a number of simulations at different temperatures
(can be extended to other coupling parameter).

Configurational integral and residual Helmholtz energy at tem-
perature T;, B; = 1/kgT;:

0;= e—FiFi = J UGN _ J D(E)e—PEQE

where D(E) (aka W, Q) is the density of states:

-
D(E) = 1drN = J s(U(Ny = E)d
JuN)=E
tangle [
rec ;ng e 1dFN

JU(PN)e(E—AE/2,E+NE/2)

[Ghoufi et al. (2008)]

1(E)

19/37
+ s07/4

T1 T T3 Ta Ts

n(E) = D(E)ePE

D(E) X ECOhStN


https://doi.org/10.1063/1.2904460

Detour: Density of states for a particle in a box

One particle in 1D in a box of length L, energies of eigen-
states according to the Schrodinger equation:
n’h®
En= 312 xn<, n=1,2,...
Let’s have f = 3N such degrees of freedom. The number of
states #(E) with energy less than E satisfies the equation

2 2, . 2 _1el/272
ny+ns+ +nf<E_[E ]

For large E, #(E) = 1/2f of the volume of the EY/2-pall in
the f-dimendional space:

W/ 2Ef/2 d#(E)

#(E) = < E/?2 = DE)=—— < E7271
r(f/2 + 1) dE

n(E) = D(E)e—PE

The Boltzmann factor e—FE eventually wins!

For large N, the product converges to a Gaussian with Var(E) « f < N (o = N1/2)

x(E)

20

10

20/37
s07/4

—_— 1014e—1OE
S 10—14 E30

— E30 o-10E




Multiple histogram reweighting Il + iéé%

In the simulation, we calculate the histogram h;(E) for a set of (equidistant) energies E, or some
equivalent Gaussian-based é-function approximation. We will use the normalized histogram and
the f—form. (To repeat, subscript ; refers to T;.)

Zh[(E)=Jhi(E)dE= 1
E

hi(E) = — = D(E)eBilE=F)

Using one temperature only but F; is not known (yet):
D(E) = hi(E)ePiE=Fi) (2)

@ We will average D(E) from several simulations at different temperatures.
@ D(E) does not depend on T;, but our calculation does + statistical errors.
@ At different T; different ranges of E are sampled.

= We compose the total D(E) from all data:
D(E) = ) , wi(E)n(E)ePUE=FD, 5 wi(E) = 1
[ [



Multiple histogram reweighting lli + iééﬁ

Determining the weights: minimization of the error 6D(E) (or some estimate). Using reasonable
assumptions, we get

SyNhi(E) 3 NjePiE=F)

where N; is the number of measurements at temperature G;. =

e—Bifi = f D(E)e_ﬁiE dE = f Z Wj(E)hj(E)e'B/(E_Ff)e_'BiE dE
J

wi(E) =

.N-e_ﬁj(E—Fj)h.(E)e,Bj(E—Fj) ,N.h.(E)e—,BjE
=JZJ j / e PEJE = 2 Njhy dE

Zj Nje—ﬁj(E—Fj) Zj Nje—ﬁj(E—Fj)

can be solved by iterations (self-consistent solution).
Fi; are determined but an additive constant, D(E) but a multiplicative factor



Multiple histogram reweighting 1V + ig;ﬂ

Expectation value at temperature g:
J 2. hi(E)
X0 = [ X(E)D(E)e—FEdE _ > Nje PitE=F))
[ D(E)e—PEdE J 2.i hi(E)
> Nje—ﬁj(E—Fj)

e~ PEJE

X(E)

e~ PEJE

@ | dE is over histograms of width AE

@ if AE is very short, all calculated energies are stored and fX(E)hl-(E)dE is replaced by a sum of
E over hi{(E) = 1/N;

@ VVarE/(E) ~N~Y2 = B;/Bi+1 ~ 1 £ N~1/2 (overlapping distributions)
T1 T> T3 T4 Ts

1(E)




Parallel tempering (replica exchange) + ﬁg‘ﬁj

k simulations at temperatures 1 < B> ... are run in parallel.

Once a while, 2 subsystems g, Bj (normally |i—j| = 1) are interchanged, the acceptance probability
IS

| { eXp(—,BiEj—,GjEi)}
min< 1,
exp(—pBiE;— BjE|)

@ Pros: easier barrier crossing, improved ergodicity, faster convergence at low temperatures

@ Cons: correlations between subsystems, difficult error estimation



Conformational flooding, Wang-Landau, metadynamics igéﬁ

Method suitable for fast barrier crossing (bad ergodicity — “bottleneck”), incl. calculation of the
free energy profile (AF or AG), based on decreasing the energy barrier.

energy barrier W

AN o2 ovet—

: SN

@ (several predecessors)

@ Conformational flooding H. Grubmdiller (1995)
@ Wang-Landau (MC) F. Wang, D.P. Landau (2001)
@ Metadynamics (MD) A. Laio, M. Parrinello (2002)

@ Formal equivalence C. Junghans, D. Perez, T. Vogel (2014)


doi://doi.org/10.1103/PhysRevE.52.2893
doi://doi.org/10.1103/PhysRevLett.86.2050
doi://doi.org/10.1073/pnas.202427399
doi:10.1021/ct500077d

Conformational flooding, Wang-Landau, metadynamics igéﬁ

@ Our system is defined by the potential Ug(FN)

@ Collective variable X = A(7V) describes the studied process, e.g.: reaction coordinate, dis-
tance ligand-receptor (optionally + orientation), etc.
There may be 2 or even more collective variables

@ We simulate system with potential U(FV) = Ug(FN) + AU()), where AU = 0 at start
@ AU(N) is periodically updated:
(A
AU := AU + wg, A=)
h(A)
6 = aproximation of é-function (MC: histogram bin, better and MD: Gauss)
w = small enough relaxation parameter, w < kgl
h()\) = density of Cartesian points on hypersurface A; e.g., h(A\) = 4nA?2 for A =r1>

= the probability of visiting the same A again decreases



Conformational flooding, Wang-Landau, metadynamics igéﬂ

Free energy profile along A:

@ strictly, updating should be turned off in the final run (MC: microreversibility violation, MD:
heating)

@ then, the residual almost-uniform p()) is determined and:

F(A) =const— AU(A) — kgT In[p(A)/h(A)]

@ in practice, with small enough w and continued updating, we can assume p(A)/h(A\) = constt so
that (in the sampled region of A)

F(A) = const— AU(M)

Free energy of a well-define “basin” of states (e.g., a bond state) is:

A2
F=—kgTIn J e~ FAVKBT h(\)dA
A1

Integration over region for more collective variables

fsymbols const are different



] ) plot/metadynamics.sh 1 2 55,37
Conformational flooding, Wang-Landau, metadynamics: Case study .,; .,

3D system, interaction energy: online simulation is for T=1K and T=2K, type |r| to reread

Uo(X, Yy, z)
kg K

= p(x)(y? + 22+ 1), where ¢(x) = [(x + 1)+ 2)(x — 2)(x — 4) + 21] e(x+1.5)%/3

@ Thebarrieris E*/kg = 1910K, e~ E*/k8lK=10-929 T T T T T T
@ Collective variable A = x

@ Histogram: triangular 6(A), grid = 1/100
@ On purpose short MC step in x (~ MD)

@ Initial w = 0.25kgT, decrease to finish
fine + stop (w =a < 0): aaaV in the plot window

@ graphs shown:
—running: AU — Fexact, Where

Fexact(A) = ¢(A) + kgl In(¢(A))
— final: AU and ¢(x) = Up(x, 0, 0) X
— F and Fexact comparison

Note: in real systems, the second term will be a result of many degrees of freedom, not just 2 (y, z)



) _ xmaple ../maple/metadynamics-case-study.mw 5q,37
Conformational flooding, Wang-Landau, metadynamics: Case study ;.

The final graph shows F(x) + AU(x) (two independent simulations T = 1K, different start)
20_""! """"" e e e e I I prer e prer e I""_

- — In(o(x)) (constants added to curves) .
151 grid=1/25 .
— grid=1/100, run 1 -
10 | — grid=1/100, run 2 -

1/grid  AF/kgT
50 37.85(8)
100 40.52(5)
200 40.98(5)
400 41.08(3)
exact* 41.13

where AF is the difference

between the right and left
basins.

* see Maple

Uo(x,0,0)/kgT + In(d(x)) + AU(X)/kgT
o1

_10_....1 ......... vty vty Lot Lot Lot Lot Lo
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Widom particle insertion method | s07/4

Open system
= —5dT — pdV + udN

(8(,3/'_)) B (aanN)
V,T oN Jy T

5 _(a(ﬁFres)) _[3n@wv"Y) ~_(|noN+1_|n@)
Hres = oN V.T B oN VT ~ yN+1 vN

10n+1
exp(—PBures) = -
res Vv QN
Or for the full chemical potential:
py 2N+l _ Que/[IVH LAY 1 Owg1 1 Qe
Zy Qn/[NIN3NT (N+1)A3 Qp AR

then by subtracting u'd = kgl In (N\//\ ) we get the same Ures = u—u'd
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Widom particle insertion method li s07/4

10
exp(—PBUres) = — v

V' On . ‘

N—-N+1 Un+1=Un+ Y(N)
X .

1
...

Jexp(—BUN—BW)dfl---df’Nﬂ =VJ(e_ﬁw)Ndi+1
where %fXdFNH = {X)random 7y,; = Mean value of X over positions of the (N + 1)-th particle in
volume V, calculated by MC integration (inserting a particle at rancom place)

10n+1 B 1
V On VOn

1
exp(—PBUres) = VJ(e_'Bw)NdFN+1 = <(e_Bw)N>random FN+1

@ (N + 1)-th particle does not influence the system - it is virtual (fictitious, ghost)

@ Problem: dense systems, large solutes
Remedy: gradual insertion (thermodynamic integration or by finite steps)

Similar: solute insertion = solubility, Henry constant



cd ../maple; xmaple simul07+18+Widom.mw 32/37
Example s07/4

We have simulated N = 500 Ar atoms (Lennard-Jones: 0 = 3.405A, e/kg = 119.8 K) in a box of
volume V =15.791 nm3 at temperature T = 150 K. By the Widom method, we found that®

exp(—ures/kgT) = 0.749(3)

Calculate u°, the chemical potential of Ar with respect to the standard state of ideal gas at pressure

pSt =1 bar and temperature T.

. 3
) o pid = kgT In 2=
Hints: ures = u—p'%(T, V) (N particles in volume V)

(o]

u° = p—u'9(T, vy (vid = volume of ideal gas of N particles at T, pSt)

Mo = pres+ p'A(T, V) — (T, V1Y)

NkgT (dow Jad) (_jow P (g)eyy'8 = 1

pstv [0z—0T x(8)ocov'T=rv+S = 1

[0z—0T XZEVE'T=(SGEQT/T6L STIU|LFY— =
WSV1—=(cwugGeQT) —(cwWuleL ' ST)T = 1V
cWUGGEQT = (sd/IDIN = A
(10143 'P3S) [,,,—0TxE'8=(6¥L"0/€00°0) x 18Y = (5®N)o
(dndsjow 4ad) [,,_0T*XG86°'G = 5o

= Mres+ kBT In

SThe value in parentheses is the estimated standard uncertainty in the unit of the least significant digit.



Henry constant
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Gas (2) dissolved in liquid (1), mole fraction in liquid x> = N2/(N1 + N3), x> < 1.
One form of the Henry law for partial pressure p> of (2) in equilibrium with solution:

Hres,2 = M2(x2) — Hid(V) \
In equilibrium:

eql. ; /\2

H2(x2) = H'9(V2) =kgT In—=

V> J

p2 = Knx2

By virtual insertion of one molecule (N> = 1) of gas (2) to pure liquid (1), we get the residual
chemical potential of (2) at x, =1/(N1+ 1)~ 1/N;,

b HUres,2 = kBT In
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where V> is the volume corresponding to pressure p> (don’t forget that N> = 1),

Vo =

1kgl kgl kgl N1

P> x2KH  KH

where p1 = N71/V = number density of liquid (1). Finally,
p1ksl

p1ksl

Ky =

B e—BHres,2 - ((e—ﬁw)N1>

random insertion of (2)



Reversible work by integrating the mean force igéﬁ

From thermodynamics:

AG = Wother than pressure-volume [P, T]

ri(2)
Api=— (fl)
ri(1)
where f; = —aU/aF; is the force acting on particle i 200

Molecules: the force applies to the center of mass
or other reference point.

Problem: hysteresis 100l

f/ pN




Mean force and its potential + igéﬂ

Let us define the single-particle density as (also denoted as nj)

N B
Pl(f1)=Q—NJe‘B“("1 ----- N A7, ... dPy

- p1(71)dry is the probability of finding a particle (any one) in dry
— extension to mixtures: N/Qn — Nspecies/QN

The potential of mean force is defined by
U1(F1) = —kgT In[Vp1(F1)]

The corresponding force is

_ U1 001/0r1 oU .
fi=— " = kgl = <— (T)> = 1)F2 ..... N
ary P1 orL//m,....Pn

l.e,. it is indeed the mean force on particle 1 held at fixed position 7.

Note: Similarly, for a 2-particle distribution, which for a pair of particles in an isotropic fluid is g(r),
one defines the potential of mean force as:

U2(r) = —ksT In[g(r)]



Interfacial (surface) energy of solids + igéﬂ

Cleaving [Davidchack, Laird: JCP 118, 7651 (2003)]: Thermodynamic integration over a gradually
growing “knife” (e.g., Gaussian potential) inserted between crystalographic planes.

Molding [Espinosa, Vega, Sanz: JCP 141, 134709 (2014)]: Thermodynamic integration over a grad-
ually growing “mold” (potential wells) to keep a crystal growing in a part of the system.

@ General problem of both methods: hysteresis

Gibbs energy of crystals +

@ Einstein crystal! at given T as a reference, integration over a coupling parameter [Frenkel,
Ladd: JCP 81 3188 (1984), Frenkel, Mulder: Mol. Phys. 55, 1171 (1985)].

@ Classical method: harmonic vibrations as a reference, thermodynamic integration of the differ-
ence 0 —» T [Kolafa JCTC 15, 68 (2019) and references therein]

findependent harmonic oscillators, here treated classically



Local density/concentration method + igéﬂ

Let a solute ( be a subject of external potential Ul.eXt(F) (e.qg., “gravity”). In equilibrium:

pi(7) + UFY(7) = const
or
Hi(F1) — pi(F2) = —[US¥Y(F1) — USY(72)]
We determine the concentration or density at /1 and know the chemical potential (with respect to
a certain reference)

Example:

@ reference = infinite dilution approximation (y = 1) in the region of
small concentration

@ the activity coefficient y in the region of high concentration can be
calculated




