
Structural quantities
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Correlation functions

radial distribution function (RDF, also pair correlation/distribution function), g(r) = probability
of finding a particle at distance r (from another particle), normalized to ideal gas

structure factor (diffraction → Fourier transform of g(r))

angular correlation function – good for small nonspherical molecules

time autocorrelation functions

Order parameters

Ordering in the z-direction:
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Nematic liquid crystal – the “director” is not known:
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, eigenvector of the max. eigenvalue = director

Formulas detecting local order (e.g., tetrahedral around water molecules as Steinhardt’s pa-
rameters based on spherical harmonics), onset of crystallization can be detected . . .



Structure of fluids – correlation functions
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randomly distributed molecules
(ideal gas)

liquid

g(r) = pair correlation function = radial distribution function = probability density of finding a
particle r apart from another particle, normalized so that for randomly distributed particles (ideal
gas) it is 1



Structure of fluids – correlation functions
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How to obtain structure – experiment
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Diffraction (neutrons, X-ray, electrons) ⇒ “structure factor”

inverse Fourier transform ⇒ RDF



How to obtain structure
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Argon, hard spheres, water
6/29
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The structure of simple fluid (argon, HS) is or-
ganized by shells.
The structure of water is determined by the
tetrahedral geometry of hydrogen bonds.
After several molecular diameters, the corre-
lations decay to zero.



Running coordination number
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Also “cumulative radial distribution function” ρ = N/V = number density

N(r) = 4πρ
∫ r

0
g(r′)r′2dr′

For rmin = first minimum on the RDF curve, N(rmin) = “coordination number” = averaged number
of molecules in the first shell
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RDF from simulations – simple
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Histogram of the number of particle pairs, N, so that

r ∈ [r − Δr/2, r + Δr/2) alternatively: I = [r, r + Δr)

The volume of the shell
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Mean number of molecules around a selected particle in case of uniformly distributed molecules
(ideal gas, ρ = N/V):

ρΔV

Sum over all particles (1/2 to count each pair just once):

N id. gas
 =

N

2
ρΔV

Radial distribution function:

g(r) =
〈N〉

N id. gas


=
2〈N〉

NρΔV



Another example – brine
show/ssbrine.sh 9/29

s08/4

RDFs of supersaturated (10.5 mol/kg) solution of NaCl:
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Another example – brine
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CNs of supersaturated (10.5 mol/kg) solution of NaCl:
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SIMOLANT – installation (Windows)
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http://old.vscht.cz/fch/software/simolant
or simolant

Download simolant-win32.zip

Create a folder and unpack SIMOLANT there.
Do not run directly from simolant-win32.zip!

Run simolant.exe

Hint: The calculated data are exported to file simolant.txt with a decimal point. If you like
decimal comma (useful with Czech localization), click comma in panel “Expert”.

Hint: If you restart SIMOLANT, the old simolant.txt is renamed to simolant.bak. The export
name simolant can be changed by Menu: File → Protocol name..



Simolant: observe RDF by yourself
simolant 12/29

s08/4

Menu: Prepare system → Periodic liquid

For smoother results, move slider “measurement block” to maximum

Increase/decrease temperature a bit (slider “T”).
Try a different pressure (slider “P”).
NB: the RDF graph is scaled from 0 to maximum!

Set the temperature to maximum (T = 5): only a
small first peak should remain.

Decrease temperature below 0.4 to crystallize.

To obtain a nearly perfect crystal without defects,
select Menu: Prepare system → Periodic crystal .
Again, you may try to heat/cool. You should get:

Apparently r3/ r1 = 2 because r3 is the
second neighbor •••
Similarly, r2/ r1 =

p
3



Radial distribution function in the NVT ensemble + 13/29
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3D (e.g., in periodic b.c.), good for a homogeneous and isotropic liquid:

g(r) ≡ g(r12) =
N(N − 1)

ρ2QNVT

∫

. . .

∫

exp[−βU(r⃗1, r⃗2, . . . , r⃗N)] dr⃗3 . . .dr⃗N

Equivalently Or (mixtures, in a region):

g(r12) =
ρ2(r⃗1, r⃗2)

ρ1(r⃗1)ρ2(r⃗2)
,

where ρn is the n-particle
distribution function, ρ1 =
ρ in a homogeneous fluid.

g(r) =
�

1 −
1

N

�

V〈δ(r⃗12 − r⃗)〉

For a mixture:

gj(r) = V〈δ(r⃗12 − r⃗)〉

Normalization (fluid):

lim
N→∞,r→∞

g(r) = 1

NB: ideal gas at finite N: g(r) = 1 − 1/N (e.g., in periodic b.c.)

Number of particles around one chosen particle (in NVT):
∫

V
ρg(r⃗)dr⃗ = N − 1



Calculation of RDF in simulations – exact + 14/29
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Histogram of the count of pairs of particles, N, so that r ∈ I

I = [r − Δr/2, r + Δr/2), optionally I = [r, r + Δr)

r = Δr,  = 1, . . . , max
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The formula again:

g(r) =
2〈N〉

NρΔV



Correlation function and thermodynamics + 15/29
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For simple fluid (point particles interacting by a pair spherically symmetric potential):

Residual internal energy:

〈U〉 =
1

QNVT

∫

∑

<j

j(rj)e−βUdr⃗1 . . .dr⃗N
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e−βU4πr212dr12(r12)dr⃗3 . . .dr⃗N
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2
ρ

∫

(r)g(r)dr⃗ = 2Nπρ
∫

(r)g(r)r2dr

Pressure:
βP

ρ
= 1 −

2π

3
βρ

∫

g(r)′(r)r3dr



Structure factor + 16/29
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Distance of atom r⃗j from plane ν⃗ · r⃗ = 0 is ν⃗ · r⃗j (for |ν⃗| = 1).

Distance from wave source (wave plane of eq. ν⃗ · r⃗ = const) via atom rj to the detector (ν⃗′ · r⃗ =
const) is ν⃗ · r⃗j − ν⃗′ · r⃗j + const

Wave vector k⃗inc = kincν⃗, kinc = 2π/λ
Definition k = 2π/λ is common in physics
wheras k = 1/λ in crystallography; then,
factor 2π is in the exponential: exp[2πk⃗·r⃗].Formally the incident wave is (but phase)

exp[ (kincν⃗ − kincν⃗
′) · r⃗j] = exp[ k⃗ · r⃗j]

where

k⃗ = kincν⃗ − kincν⃗
′, k = |k⃗| = 2sin(α/2)kinc ≈ αkinc



Structure factor + 17/29
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Waves scattered by all atoms interfere:

K =
N
∑

j=1
exp[ (kincν⃗ − kincν⃗

′) · r⃗j] =
N
∑

j=1
exp[ k⃗ · r⃗j], signal ∝ 〈|K |2〉

Definition of the structure factor (pure compound):
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It is a function of vector k⃗, we may imagine it in the periodic b.c. in a cube of edge L:

k⃗ =
2πn⃗

L
, n⃗ ∈ Z3

Similarly, a 3D RDF is (not exactly isotropic even for a liquid)

g(r⃗12) =
N(N − 1)

ρ2QNVT

∫

L3
. . .

∫

L3
exp[−βU(r⃗1, r⃗2, . . . , r⃗N)] dr⃗3 . . .dr⃗N



Structure factor and RDF + 18/29
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In a periodic box V = L3; k⃗ = 2πn⃗/L:

S(k⃗) =
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= 1 + ρ
∫

L3
g(r⃗) cos(k⃗ · r⃗)dr⃗

The integral diverges as V →∞ ⇒ we subtract 0 =
∫

V cos(k⃗ · r⃗)dr⃗, k⃗ = 2πn⃗/L
(other method: convergence factor exp(−αk2), limα→0)

S(k⃗) = 1 + ρ
∫

V
[g(r⃗) − 1] cos(k⃗ · r⃗)dr⃗ V→∞

= 1 + ρ
∫

[g(r⃗) − 1] cos(k⃗ · r⃗)dr⃗



Structure factor and RDF + 19/29
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Since g(r⃗) = g(− r⃗), we have

S(k⃗) − 1 = ρ
∫

[g(r⃗) − 1] cos(k⃗ · r⃗)dr⃗ = ρ
∫

[g(r⃗) − 1]e−k⃗·r⃗dr⃗

and the 3D inverse Fourier transform is

g(k⃗) − 1 =
1

8π3ρ

∫

[S(k⃗) − 1]ek⃗·r⃗dk⃗

Once again using S(k⃗) = S(−k⃗):

g(k⃗) − 1 =
1

8π3ρ

∫

[S(k⃗) − 1] cos(k⃗ · r⃗)dk⃗

The k→ 0 limit:

NVT : S(0) = 0

μVT : S(0) = 1 + ρ
∫

[g(r⃗) − 1]dr⃗ = kBT

�

∂ρ

∂p

�

T
(compressibility equation)



Isotropic structure factor
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Let’s choose k⃗ = (0,0, k) and spherical coordinates (ϕ, θ, r), then k⃗ · r⃗ = kr cosθ and (g and S are
odd functions)

S(k) − 1 = ρ

∫

[g(r⃗) − 1] cos(k⃗ · r⃗)dr⃗ (subst. z = cosθ)

= ρ

∫ ∞

0
r2dr
∫ 2π

0
dϕ
∫ 1

−1
[g(r) − 1] cos(krz)dz

=
4πρ

k

∫ ∞

0
r[g(r) − 1] sin(kr)dr

In the same way we can evaluate the inverse Fourier transform

g(k⃗) − 1 =
1

8π3ρ

∫

[S(k⃗) − 1] cos(k⃗ · r⃗)dk⃗

=
1

2π2rρ

∫ ∞

0
k[S(k) − 1] sin(kr)dk



S(k) from simulations + 21/29
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S(k⃗) in simulations can be calculated directly by the same code as the k-space part of the Ewald
summation. If needed, we may sphericalize it:

S(k) =
∑

k=|k⃗|

S(k⃗)/
∑

k=|k⃗|

1

S(k) can be obtained by the inverse Fourier transform of g(r). The RDF g(r) must have a long
range and/or it has to be filled (by 1) for long distances.

If one wishes, 3D S(k⃗) can be obtained by the inverse Fourier transform from RDF g(r⃗) and vice
versa

Simulation-based S(k) for a mixture (where individual site-site RDFs need not be available)
allows for a direct comparison with the experiment

S(k) and S(k⃗) may detect unwanted crystallization of a supercooled system



Structure factor + 22/29
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Structure factor for multiatomic systems + 23/29
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Structure factor for a “mixture” of atoms (bj = coherent scattering length)

S(k) = 1 + N
〈|Q(k⃗)|2〉 −
∑

j b
2
j

�

∑

j bj
�2

Q(k⃗) =
∑

j

bj exp[−2πk⃗ · r⃗j/L]

S =
∑



∑

J

JSJ, J =
NbNJbJ

(
∑

 Nb)2

N = number of atoms of type  (
∑

 Nb =
∑

j bj)



Reverse Monte Carlo + 24/29
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Input: experimental RDF

Output: (r) so that the RDF is best reproduced

Not unique – other conditions on (r) needed



Exercise: structure factor of NaCl crystal/melt + 25/29
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Scattering lenghts [fm]: Na: 3.63, Cl: 9.577 (35Cl: 11.65, 37Cl: 3.08)

Tasks:

Simulate a crystal at 1000 K

Switch to NVT and generate a trajectory (about 100 configurations)

Calculate the SF directly

Compare with inverted RDF

Melt and repeat for the liquid

Try different isotopes

You need: nacl.ble nacl.def nacl.cfg na.mol na.gol cl.mol cl.gol

Make your folder, and install (to your folder) by:
guest@403-a324-01:~/VY$ mkdir YOU
guest@403-a324-01:~/VY$ cd YOU
guest@403-a324-01:~/VY$ unzip /home/jiri/nacl.zip

Inspect carefully nacl.def!



Exercise: structure factor of the NaCl crystal + 26/29
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A crystal is prepared in nacl.def Start + equilibration

start simulation; all variables are default:
guest@403-a324-01:~/VY$ cook nacl -s
init="start" start from prepared configuration
; end of data set + start of simulation

after the run has finished:
key="cp" show the convergence profile
key="show" show the trajectory
; another 100 steps if not equilibrated

final run:
tau.P=0 use NVT now
init="start" use the configuration, measurements + trajectory restarted
; end of data set + start of simulation
key="rdf" calculate + show RDF
key="cn" show the coordination numbers
key="quit" or ctrl-d = control returns to the command prompt



Exercise: structure factor of the crystal directly + 27/29
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The structure factor will be calculated from the trajectory, nacl.plb, recorded in previously.

data: optionally change b at the end of table Lennard-Jones in nacl.ble

How long is the trajectory?
guest@403-a324-01:~/VY$ plbinfo nacl.plb

Calculate the structure factor (-m1 = reads nacl.plb)
guest@403-a324-01:~/VY$ cook nacl -m1 -s
reread.from=1 reread.to=101 read nacl.plb from .. to
tau.P=0 NVT (do not change the box)
el.kappa=15/2/pi ; max. k-vector

The result is in nacl.sfr. To show:
guest@403-a324-01:~/VY$ plot nacl.sfr



Exercise: structure factor of the NaCl crystal + 28/29
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Now the same by the Fourier transform of the RDF

Calculate the RDF first:
guest@403-a324-01:~/VY$ rdfg nacl -g -p

Fourier transform for a mixture with given b:
guest@403-a324-01:~/VY$

cat nacl.*.g | sfourier 100 30 216 NA:3.63 CL:9.577 > | nacl.sfg

Comparison:
guest@403-a324-01:~/VY$ plot nacl.sfr nacl.sfg
nacl.sfr = direct result
nacl.sfg = RDF-inverted result



Exercise: structure factor of the NaCl melt + 29/29
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We will melt the sample, equilibrate, and simulate the melt.

Melting:
guest@403-a324-01:~/VY$ cook nacl -s
T=5000 a lot at start, to melt the crystal
tau.P=0 but NVT, so that it does not evaporate
no=50 ; start 50 steps

Cooling the melt
T=1400 ; temperature of the melt and cooling in NVT

Equilibrating of the melt sample at given temperature, pressure
bulkmodulus=2e9 approx. bulk modulus of the liquid for NPT [in Pa]
tau.P=1 time constant of the barostat
no=100; running at selected temperature, pressure in NPT
key="cp" to have a look whether the system has equilibrated
; repeat until equilibrated

Final run
tau.P=0 NVT again to calculate RDF + write a trajectory
init="start" ;

To be followed by the same algorithm as in the case of crystal. . .


