Extended Lagrangian methods in MD: NPT

A dynamic variable (degree of freedom) is added.
Andersen: F; = V1/3E; r;=V1/3E,
?

NO: F; = dFy/dt = d(VY/3E&)/dt = VV—2/3Ey/3 + V1/3E,

~pn =N :
Lagrangian £=L(EN,E ", v, V).

N
L= = > miv3E)? + 1M\/\'/2 — U(VY3ENY - pv
2i3 2
Lagrange equations:
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Equations of motion:
1 N
MyV = —(Z Fifi+ 2Ekin)—PEPCfg—P
3V =1
VI3E,; = £ back in real variables: 7= iVl/?’é _Ji vn

mj dt m; 3V
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Extended Lagrangian methods in MD: NPT + 521/11/24

The Hamiltonian of the extended system is preserved:
canonically conjugate momentum p

/
oL 1p€ .
H=> g——L = — + U(VY3ENY & py

Ekln + Ekln. piston + Epot + PV

Other methods:
@ generalization (for crystals): Parrinello-Rahman

@ Berendsen (friction) method (thermostat required because of dissipation)

V = —const x (Pcfg — P)

@ Constraint dynamics

=N\ ;.N .
P="Pcg(EN,E",V, V)
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Nosé-Hoover thermostat + 1174

N
mi; ., M
Nosé originally proposed: Z ? — UM + 255'2 —f'kgTIns

“Rescaling of the kinetic energy by means of velocity, F = si”; the scaling degree of freedom s has
a kinetic as well as potential energy”

Equations of motion (why we write t’: see below)

d ; -
@(miszrl.) = fi
d?s 2 f’kBT
MSdtIZ = Zml o
Hamiltonian
N -»/2 /2
H = + U™y + + f'kgTIns
i=21: 2mls2 (7 2M.s J'ke
Canonically conjugate impulses (momenta):
oL . oL
./ 2 / :
= — =m;s“T., = —=Mss
Pimor = e PsT g T s
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Nose-Hoover thermostat + 1174

Nosé: For f/ = # of degrees of freedom incl. s we get the canonical distribution od static variables

(but see below.. .)
N particles in a general conservative field: f =3N+ 1

Problems: correct velocity is F; = sr so iIf s changes a lot, the integration step should change
accordingly

v . . . " :
Hoover: r; = SF; is the same as time rescaling, r'; = sdry/dt’, i.e

, d 1d
sdt=dt’ or — =——
dt’  sdt
this trick brings us back to the physical (unscaled) velocities and momenta:
- . - dl”l dFl =/ - -
Fi=r, M= =S 5=t Pi=P/s, Ps=p/s
Equations of motion:
1d m 7 | = 7
mi——sr; = —|[SFj+ Sr] =
‘sdt” s l l
1d1d Ms |3\ ($\?| 1(Y
Ms————s = — (—)—(—) = — Zm? — fkgT
Ssdtsdt s |\s S s\i:1
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Another trick: substitution & =Ins. Then:
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time constant of the thermostat:

Ms
T =
fkgT

Conserved quantity (not a Hamiltonian because not a function of coordinates and conjugate mo-
menta), can be proven by taking a derivative:

N 1 ;
ENosé-Hoover = E:Emi';i + U+ fkpT | §+
(=1

T2E2
2

= const

Hoover showed that these equations give the canonical distribution if f is the number of degrees
of freedom (without & or s)
N particles in a general conservative field: f = 3N
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Nosé-Hoover derivation |

Problem of time scaling (F = sr’, i.e., dt = dt’/s)

(A) =

The expectation value for H = E:

t1
to A(t)dt B

t
tolA(t)dt’/s (Ass)!

t1
to dt

t /
tol dt’/s (1/s)

A
- dp’dp’Ndsds (1 — E)

r1
- dpldp’Ndsds (1 — E)
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Nosé-Hoover derivation Il + <114

Trick: We will integrate over g, not p’.

After transformation dp! = s3dp; we get:

p/2
JAsf_ldp;dp’NddeN5 (Ho + 2/\54 + fkgTIns— E)
S
(A) = 72
J /~1dpldpNdsdrs (7—[0 + 2/\54 + fkgTIns — E)
S
Where we have donoted
N ,—52
Ho(", Py = 2o+ U()
i=1 <M

and where the number of degrees of freedom is f = 3N.
(If a quantity like the total momentum is conserved, a substitution must be used.)



Nosé-Hoover derivation Il

We will integrate over s first. We shall use the formula:

6(F(s)) =

2

6(s—so)

s0,F(s0)=0 |F/(50)|

So we need all roots of the argument of 6(); there is only one:

After integration:

1 p’? _ fkeT
so=exp|——| Ho+ ——FE ||, F/(s0) =
0 P kaT( 0 M, ) (So0) =
]c p/2
Adp’dpNdN exp | ——— | Ho+ —=——FE
J p.dp P kaT 0+ Sm
A) = i /2 1
f p
dp’dpNdrV exp | ——— | H > _F
J p.dp P TkaT 0+ Sm
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The last integration is over dp;. Many terms then cancel out:

f AdpNdN exp(—Ho/ksT)

(A) = , g.e.d

J dpNdrN exp(—Ho/kgT)



Exercise: thermostats

@ Simulate liquid water SPC/E and compare the following thermostats:

— Berendsen
— Nosé-Hoover

— Andersen (for the center of mass)
— Maxwell (for the center of mass)

The cutoff-electrostatics version cookce is recommended (it is faster than Ewald)

The needed files are in /home/guest/termostaty.zip:
../termostaty.zip

guest@403-a324-01:~/VY$ unzip

spce.ble = force field definition of SPC/E

water.def = commented simulation parameters

11/12
+ sl11/4

@ To start simulation, use the Berensen thermostat and the default method Verlet+Shake:
guest@403-a324-01:~/VY$ cookce spce water -s

thermostat="Berendsen"
init="crystal"
Stop the simulation by pressing

ctrl-C

at temperature around 500 K
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@ Now try various thermostats (-w0 prevents writing the final configuration):
guest@403-a324-01:~/VY$ cookce spce water -s -w0
tau.T=...
thermostat="..."

Nosé-Hoover combined with Verlet+Shake uses a velocity predictor (there are other methods, too)

You may try also the Gear integration combined with the Berendsen and Nosé-Hoover thermostat
(Gear 4th order = option -m4), e.qg.:

guest@403-a324-01:~/VY$ cookce spce water -m4 -s -w0

thermostat="Nose-Hoover"

The Gear integration is less accurate with thermostat="Andersen" and "Maxwell" (higher-order
terms are not accurate)

@ After a few ps run look at the convergence profile of temperatures:
guest@403-a324-01:~/VY$ showcp -p water Tkin
(white = total Tjn, yellow = rotational, cyan = translational)



