Metropolis-Hastings MC: Nonsymmetric matrix a

ai—j = matrix of the probability distribution of trial displacements

Metropolis: aj.j = aj;

What if o # aj;?

(A if miaj_,; > mai_,;
.T[jO{j_,[

qdi-
Winj=1{ " mai,

1— > W, fori=j
\ k, k#i

if miaj_,; < mai_,;

Pacc = Min {1, exp(—,BAU)}

This extension of the Metropolis algorithm is attributed to W. K. Hastings
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Force bias

a

Optimum A = 0.5 (between Metropolis and heat-bath) S '.: A

Similarly:
— torque-bias (rotations)
— virial-bias (volume change)

A =1 & linearization = heat-bath

More tricks

@ Global density change (close to the critical point)
@ Tesselation to clusters and cluster moves
@ NPT of hard bodies: molecules — clusters, swell//shrink wrt cluster centers

@ Swapping particles/molecules/groups/clusters

force bias _ . exp(BAfy - Ar)
! [ exp(BAf - AF)dAT sttt
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Preferential sampling + 1o/4

Particles in the more interesting areas are moved more often.

Example: solvent molecules around a solute: ppref(r) 2 1/(1+r2/02)

Version 1:

@ Choose a solvent molecule, i, at random v

QI uro,1) < Ppref(|Fi—F0|) (Fo = solute) ’ ay <O}
@ Generate a trial configuration 7;" '\“sz

L o ppref(IF'=Fol)
@ Accept it with pacc = min {1, Porer(T=ToD) exp(—BAU)

(otherwise continue with the old configuration)

Poref(|Fi— ol)
N

Opref(A — Atr) =a(A— Atr)



Preferential sampling

Version 2:

@ Choose a solvent molecule, i, from the distribution Ppref(Ifi—Tol), i=1,...,N
An optimum algorithm with binary search has cost o« logN. Easy one:

@ sclect solvent i randomly
@ if not upo,1) < ppref(IFi—Tol), new selection
@ Perform one MC step using the molecule:
@ generate a trial configuration 7"
@ accept it with probability
Ppref(|Fitr— Fol)/SY
Poref(|Fi—Fol)/S

N
Pacc=min{1, exp(—ﬁAU)}, 5=prref(|Fi—70|)
=1
Poref(17i— Tol)

pref(A — A™) = a(A — A™) S

Both versions are of the same efficiency if well optimized

4/20
+ sl12/4



Polymers and Rosenbluth sampling 551/22/%

A polymer in an athermal (very good) solvent is modeled by a self-avoiding random walk:

1 1
" 4x3x3x3 p_4x3x3x2

p

Both polymer should have the same weight!
Remedy: Rosenbluth weight (factor) of a step = number of possible continuations = R;, the weight

of a configuration obtained by the walk is:

1 N
R=E=gRi

Generalization (the continuation is selected « Boltzmann factor):

k
Ri= Y exp[—BU(i— D]
(=1
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Generalization for continuous models + 1o

@ Instead of k possible direction on a lattice, k random trial configurations are generated
@ The new configuration is drawn with the probability given by

exp[—BU(i — ()]

i — () =
p( ) R,

k
,  Ri= ) exp[—pU(i— [M)]
(=1

N
The configuration weight is: R = l_[Ri
(=1
Limiting cases:

@ For kK = 1, the configuration weight is R = exp[—B > U(i — (t")] = exp(—,BUE(r)tal) = Boltzmann
probability of a polymer. This is the naive MC integration.

@ For kK — o0, the method is close to the previous lattice-based method; i.e., drawing the new
configuration with the Boltzmann probability at every step. (NB: this is not the importance
sampling because the Rosenbluth weights differ.)



Configurational bias Monte Carlo + 571/5/%

Instead of one trial configuration in the Metropolis method, let us consider k of them (continuous
models: random sample | lattice models: all possible). A trial configurations is drawn from the
probability distribution:

exp[—BU(7})]

p(F") = R ,  Ry= Z exp[—BU(7")]
r
. . . . Rer
It is accepted with probability min {1, R } where
old
Id,t :
Rold = exp[—BU(F°'%)] + Z exp[—BUP)%™)] Rold = ) exp[—BU(P'Y)]
(=2 -~
(l"’lold'tr = random configuration generated in the same way)

NB: for lattices, it may happen Rp|d = Rtr, which is the heat bath method
Stochastic matrix

( exp[—RBU(F;
X Pl R'B_ Yl for Rj > R;
Wi_,j = { J R
exp[—BU(7))]R;
xjsj for Rj <R
\ Rj Ri
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Simulations of molecular systems s12/4

@ Small molecules may be rigid (nitrogen, water, methane)
@ Large molecules must be flexible ... except (some) bonds
Vibrating (classical) bonds:

& simplicity and consistency of the & technical problems with too stiff springs (short

model timestep in v MD, short trial moves in MC)
& code simplicity @ Vibrational frequencies (esp. for hydrogens) are so
high that cannot be treated by classical mechanics

@ more realistic description of flexibility
anyway

@ transfer of energy between the fast vibrations and
slow degrees of freedom is slow (they are decou-
pled), unless a stochastic thermostat is used

@ flexible models are more complicated theoretically
Fixed (constrained) bonds: just opposite
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MC: molecules s12/4

Example of a wrong algorithm for a linear molecule with axis (6, ¢): )

' = 6+ A6uj_11]
o = ¢+ Adur_1 1]

Example of a correct algorithm for a general body: .
@ choose an axis randomly:

—any of X, y, Z in the body frame
— any of X, y, Z Cartesian coordinates in 3D space ¢
—any random vector

@ rotate by angle Aaur—1,17, where up_1,17 is a random number uniformly distributed in [—1, 1]
Rotation by Aa around z-axis:

cosAa —sinAa O
sinAa cosAa O
0 0 1
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Quaternions + <12/4

Quaternion: S
g=w+Xi+yj+ zk

2=j2=k?==1, ij=—ji=k, ijk=—1 (a cykl.)

2 2

1P =w? +x%+y% + 2z

Set {|g| = 1,9 ~ —q} is isomorphic with SO(3) (group of rotations), which can be used in MC,
kinematics, and dynamics

Matrix of rotation:

w2 + x2 —y? — 72 2XYy — 2ZW 22X + 2yw
Q= 2XY + 2ZzwW w2 —x2 4 y2 — 72 2yZ — 2XW
27X — 2y W 2yZ + 2XW w2 —x2 —y2— 72

There are 4 algebras (above R or a field) with division, which are a vector space with a norm so
that |xy| = |x||y|: real numbers, complex numbers, quaternions (multiplication is not commutative)
and octonions (Cayley algebra, multiplication is not commutative nor associative).

Field is something with operations + — */ with the same structure as R.

Algebra is a vector space over a field (of “scalars”) with “-”, where (x+y)-z=x-z+y-z, z-(x+y) =
z-X+z-y, (ax)-(by)=(ab)(x-y) for vectors X, y, z and scalars aq, b.
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MC: Molecules with internal degrees of freedom s12/4

@ Cartesian coordinates — generalized coordinates (Jacobian is needed - difficult)

@ Cartesian coordinates — orthogonal coordinates (Jacobian does not change while moving along
one coordinate)

@ Frozen degrees of freedom (bonds)
Polymers:

@ standard moves

@ crankshaft move

@ reptation for linear homopolymers: a tail bead is cut off and moved at the head
— one random new position = standard Metropolis |
— more trial moves = configurational bias MC

‘*\ :
@ various enhance sampling methods: 11 HEA 3
umbrella sampling, parallel tempering, Wang-Landau

http://www.youtube.com/watch?v=rCTSG-SrShk&feature=related
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MD: bonds s12/4

Integration of the equations of motion for systems with fixed
bond lengths or angles is not the same as the infinitely-large
force constant limit of the corresponding flexible system.

What to fix:
@ nothing - short timestep, bad equipartition (convergence of different degrees of freedom)

@ bonds with hydrogen only — longer timestep allowed, better (but not the best) equipartition
GROMACS: special algorithm for H, h =4 ps

@ all bond lengths - larger systematic errors, not good for rigid geometries (fullerene) and heavy
atoms

& all bond lengths + angles with hydrogens — cheap and less precise, but longer timestep allowed
+ good equipartition

& all bond lengths + all angles - WRONG except small molecules
Methods:
@ SHAKE (+Verlet)

& Lagrangian constraint dynamics
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Dihedral angle distribution of butane s12/4

United-atom model (CHARMM19) of butane
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Fixed constraints in MD: SHAKE ii‘éiﬁ

Matematical pendulum:
h?
F(t+h) = Pverlet(t+ h)— Efc(t)

(£) —fe(t)

m

2F(t)— F(t— h) + hzf

h?fc(t)

— AF(E)

IF(t+ h)|? = |F(D)]? = 12

[ Pverlet(t + h) — AF(t)]% = F(t)?
Pverlet(t + h)2 — 2APyeriet(t + h) - F(t) + A2 F(1)? = F(£)?

N |Pverlet(t + h)|2 — |F(t)|2 _ |Pverlet(t + h)|2 — 2 N |Pverlet(t + h)|2 — 2
2verlet(t + h) - F(t) 2verlet(t + h) - F(t) 212
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SHAKE s12/4
General atom-atom bond:
. . 1/mi .
Fi(t+h) = Herlet,i(t+h)+ A o 1/mjrij
. . 1/mj
ri(t+h) = Hverlet,j(t+h)—A mi+ 1/mjrij
where
- |PVerlet, ij(t + h)|2 — (2 N |Pverlet, ij(t + h)|2 — (2
" 2Pveriet, it + h) - Fy(t) 212
@ Based on the Verlet method Fij =rj—Tri, rij=|rl

@ Center-of-mass is conserved (integral of motion)!

@ Complex molecules: repeat iteratively until converged
@ Speed up: superrelaxation

@ Velocity version: RATTLE, more variants

@ For m; =00, 7;=(0, 0, 0), F =T =F;j = mathematical pendulum
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Exercise: Conformations of butane + 15/4

Task: Study the dihedral angle distribution of the dihedral angle in the CHARMM model of butane
at an elevated temperature.

Try:

@ flexible angles and bonds

@ flexible angles, fixed bonds (SHAKE)

@ fixed angles and bonds

@ optionally with the dihedral potential and 1-4 interaction turned off

Howtos:
blend -h99 = angles with atoms heavier than 99 g/mol — equivalent bonds
cook -u9999 = bonds with K < 9999 K/A2/mol will be flexible,
other fixed
To turn all 1-4 interactions off one has to edit butane.ble:
— table dihedrals: write K= 0
— table sites erase x in term *0 (interactions 1-4 — nothing)
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Exercise: Conformations of butane + <124

@ unzip ../dihedral.zip

@ flexible angles and bonds:
guest@403-a324-01:~/VY$ blend -o butane butane
guest@403-a324-01:~/VY$ cookcedih butane dih -s -u9999

@ flexible angles, rigid bonds:
guest@403-a324-01:~/VY$ blend -o butane butane
guest@403-a324-01:~/VY$ cookcedih butane dih -s

@ fixed angles and bonds:
guest@403-a324-01:~/VY$ blend -o butane -h99 butane
guest@403-a324-01:~/VY$ cookcedih butane dih -s
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Results T s12/4
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Optimization |

For short-ranged pair potentials (also r-space Ewald):
@ all pairs (N < 300)
@ neighbor list (N ~ 1000)

@ domain-decomposition algorithms: linked-cell list method
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Optimization II + ﬁ%?ﬁ

A couple of tricks:

@ MD: multiple timestep MD

@ MC: multimoves (near the critical point — critical slowing-down)
@ MC: identity change, non-Boltzmann sampling, ...

& hybrid MC/MD (not very good)

Programming tricks:

@ cache

@ nearest neighbors in periodic boundary conditions

@ tables: pair potential calculated by splines

Parallel code:

@ usually based on domain decomposition (linked-cell list)
@ standard computers 4-32 cores

@ Graphics Processing Units: thousands of processors, more difficult to program



