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Transport phenomena s13/4

Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction ...
NOT: convection, turbulence, radiation. ..

@ Flux* of mass, charge, momentum, heat, ......
J = amount (of quantity) transported per unit area
(perpendicular to the vector of flux) within time unit
Units: energy/heat flux: Jm—2s~1 = wm—2, %
current density: Am—2

\_.|l

@ Cause = (generalized, thermodynamic) force
F = — gradient of a potential
(chemical potential/concentration, electric potential, temperature)

@ Small forces—linearity

J=const-F

In gases we use the kinetic theory: molecules (simplest: hard spheres) fly through space and
sometimes collide

* also flux intensity or flux density; then, the total flux is just flux



Diffusion—macroscopic view

First Fick Law: Flux J; of compound i (units: molm—2s—1)

—

Ji=—DVc;

IS proportional to the concentration gradient

- d o0 0 dC; 9C;j 0Cj
Vci=gradc; = Ci= y
X 3y 0z

ax oy 9z

D; = diffusion coefficient (diffusivity) of molecules i, unit: m

)
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For mass
concentration
in kgm—3,
the flux is in
kgm—2s~1
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Diffusion—microscopic view s13/4

Flux is given by the mean velocity of molecules v;:
Difference of chemical poten-

Ji=Vici
Thermodynamic force = —grad of the chemical potential: tials = revers@le work needed
T to move a particle (mole) from
. = [ Hi B/ -
Fi=—V (_l) =" ¢ one state to another
Na Ci

where formula u; = uf + RT In(cy/cSY) for infinity dillution was used.

Friction force acting against molecule moving by velocity v; through a medium is:

Fi'=—fiv,
where f; is the friction coeficient. Both forces are in equilibrium:
. . . . Ji keTl .
F[r + Fi=0 le. —flfr = fiV; =fi—l = Fi=——-V¢;
Ci Ci
. e - . . : kel
On comparing with J; = —D;Vc; we get the Einstein equation: D; = T
[

(also Einstein-Smoluchowski equation, example of a more general fluctuation-dissipation theorem)
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Second Fick Law s13/4

Non-stationary phenomenon (¢ changes with time).

The amount of substance increases within
d
time dt in volume dV = dxdydz: s _,,Jm(x) __{ (z + dz)
> Ux(x) = Jx(x + dx)] dydz
X,y,Z . dy

D Ux () — Ux(x) + de})] dydz

X,Y,Z

—r

— Z gdxdydz =—V.JdV =-V.(—DVc)dV

5 32 92 3?2
= DV%cdV =D + + cdv

This type of equation is called
— = D\V?¢; “equation of heat conduction”.
ot It is a parabolic partial differ-
ential equation
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Diffusion and the Brownian motion s13/4
Instead of for c(F, t), let us solve the 2nd Fick law for the prob- ' ' ' '
ability of finding a particle, starting from origin at t = 0. We get 0.5 1 |
the Gaussian distribution with half-width « 0al oo |
2 t=3
1D: c(x,t) = (411Dt“)_1/2 exp (—X—) = 0.3 .
4Dt 5 t=5
0.2+ :
o Py —3/2 rs
3D: c(7, t) = (4nDt) exp (—m) 01L _
0.0 | '

@ 1D: (x%) =2Dt

@ 3D: (r?)=6Dt




Brownian motion as a random walk

(Smoluchowski, Einstein)

@ within time At, a particle moves randomly
— by Ax with probability 1/2
— by —Ax with probability 1/2

Using the central limit theorem:
@ in one step: Varx = (x2) = Ax?
@ in n steps (in time t = nAt): Varx = nAx?

= Gaussian normal distribution with o0 = v nAx? = v t/AtAx:

1 e—x2/202_ 1 VAte
V21O v 21t AX

which is for 2D = Ax2/At the same as c(x, t)

NB: Varx %" (x — (x))?), for (x) = 0, then Varx = (x?)

Example. Calculate Varu, where u is a random number from interval (—1, 1)

Xp

—x2 At

2t Ax2

show/galton.sh 6/30

s13/4
T=10
T = AT
T = 2AT
T = 3AT @—

2Ax

o o0 0 0 0 O

9/1



You do not know the central limit theorem? + 571/;/%

@ during time 2AT a walker moves
— by 2Ax with probability 1/4
— by —2Ax with probability 1/4
— by 0 with probability 1/2

@ during time 2nAT a walker moves by 2kAx with probability

2N
(n, k) = (n B k)4_”

Let us start from m(n, 0). Since

2Nn 3 (2n)! 3 (2n)! 3 2N n
(n+ 1)_ (n—'(n+1) nYn-n'(n+1) _(n)x n+1

we can write, neglecting second-order terms (o< 1/n?)

Int(n,1) =Inn(n, 0)+ In

n+1

=In1t(n,0)+ln(1— )zln1t(n,0)+ln(1—%)zIn1t(n,0)—E

n+1 n



. . 8/30
Brownian motion as random walk Il + 134

3 1 3
)zlnn(n,l)——zlnn(n, 0)————
n

Analogously: Inmt(n, 2) =Inm(n, 1)+ In (1 —
n n

n+ 2

K 2k—1
and generally: Inmt(n, k) ~ Inm(n, 0) — Z

=1

Now let us replace the sum by an integral:

k k k is large >
(2k—1) =~ (2k—1)dk =k(k—1) ~ Kk
=1 0

J
And similarly for negative k. In the limit of large k, n:

/<2
1t(n, k) = t(n, 0) exp (—7)
Again Ax = (2DAT)Y2, k = x/Ax = x/(2DAT)Y2, n = t/(2AT):

X2
n(n, k) =c(x, T) = c(x, 0)exp (—E)

After normalization (condition fn(x, T)dx = 1), we get c(x, T).
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Einstein derivation + 134

Random walk in one variable:
¢(6x) = probability density of a particle traveling by 6x in time 6t

¢(6x)

+ 00
J d(6x)dox =1, ¢(—6x) = ¢d(+6x)

— 00

The development of the density (of probability) p(x, t) within time ét:

+ 00

p(x, t+ 6t) = J p(x + 6x, t)p(6x) dbéx

— 00

p(x)

Ot 8, 0) = pOx, ) 4 6x 0 4 20 2°F
X + 6x,t) = p(X, t) + 6X— + +oeee
P P ax 2 9x2

On integration (odd terms cancel out, higher-order terms can be neglected):

p(x, t+6t) = p(x,t)+ ét—=p(x, t) + —= —@(6x) dbdx
ot 3x?2 2

— 00

3p  3%p 1 (1> 6x2
—=D— , D=— —¢(5X) déx
ot 3x 2 ot |00 2
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Langevin equation s13/4

A (colloid) particle in a viscous environment + random hits: X = dx/dt
mx = f — fx + X(t)

@ f = “normal” (conservative) force - for now f =0
@ 1 = friction coefficient; spheres: f=nmnnR (Stokes), n = 4|6 for ideally smooth|rough sphere

@ X is random force: the distribution function does not depend on ¢,
(X(1)) =0, (X(DX(t)) =As(t—t')

Multiply by x and rearrange: dz(%xz)/dt“2 = d(xx)/dt
mxx = —fxx+ XXx
m d? d
2 .2 2
——((X)—mx® = ———(X°)+ XX
2 dt2( ) 2dt( )
Apply the canonical expectation value and (X(t)x) = O:
m d? d
T (x2) — kT ==L = (x2)



Langevin equation

m d? £d
— kT = —=——(x

2
2 dt? 2dt !

This is a linear differential equation for %(xz), solvable by the separation of variables

d x2) = 2ksl + Ce—ft/mt2® 2@

dt f f
after integration

2kgT Cm
(XZ) ——t+—[1 —ft/m]
f f
At long t (neglecting the initial transient)
kgl

(x?) = 2Dt, where D = T

This is the Einstein-Smoluchowski equation to predict D from f at given T

However, in MD (for a stochastic thermostat) we rather need a formula for X(t).

11/30
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Fluctuation-dissipation theorem s13/4
Langevin equation for f = 0: X
1

2= -5+ Txe N

m m t
where X(t) is the (Gaussian) random force: (X(t)) =0, (X()X(t')) =Aé(t—t'), A =7

Explicit solution for velocity - initial problem x(0) is relaxing exponentially to 0, more impulses
X(t) are integrated:

impulse

t— oo

0

f 1 ¢ Foro v hist 1 f 1 [ f
x(t) = x(0)e ml + — J X(t")e mt—t)qg¢/ el x(0) = — f X(H)emldt = — J X(—t)e midt
m 0 m m 0

—00

We want T! The expected kinetic energy:

.2 1 —Lt 1% INa— Lt g
(Mmx<)=m —J X(—t)e ™ m dt-;f X(—t)e m- dt
m Jo 0

1 © o0 f / 1 0 f A
= —J dt’J dtAs(t — t/)e~ m{t+t) =—J dtAe~m?t = —
m Jo 0 m Jo 2f

2(kgT)?

(mx2) =kgT = A= 2fkgl =
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Langevin thermostat and Brownian dynamics s13/4

In the simulation, X(t) is replaced by an impulse AE/+vh every timestep h, where £ is a random
number with the normalized normal distribution.

@ As a thermostat: All degrees of freedom are sampled (also the momentum in the periodic b.c.)
@ Momentum and center of mass not conserved

@ As Brownian dynamics: kinetic model of implicit solvent

Dissipative particle dynamics (DPD)

Good for coarse-grained models:

@ Groups of atoms (e.g., 4H>0 in the MARTINI force field, bead in a polymer) are replaced by a
superparticle. Its properties are adjusted (empirically, by a comparison with a full-atom simula-

tion).

@ Internal motion is approximated by random forces so that (for t — o0), both the Brownian
motion and hydrodynamic behavior is correct; particularly, the momentum is conserved.



Dissipative particle dynamics (DPD)

Equations of motion
5 2C , zD , 7R
mr,—Z(fU +F7 + 1)
J#L
where fUC is a Conservative pair force.
Dissipation of velocity in the direction of 7 (= CoM conserved):

F..
—oD D - A A - [j
fij =—fw-(ry) (V- PPy, Fj=—

Random force also acts in the direction of 7y:
fii = owR(ry)&fy
The “fluctuation-dissipation theorem” is:
wb = [wR]Z, 0 = 2kglf

@ £ =&(t) = normalized Gaussian force, (E(0)E(t)) = 6(t)
@ w (or wj) = short-ranged, e.g., wR(r) =1 —r/reytoff

@ . utoff ~ the typical size of coarse-graining

14/30
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[§] =s71/°
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Kinetic quantities s13/4

We are interested in coefficients of (linear) response to a (small) perturbation:

Jcompound A =—DVca

fheat — —fUT
0V
— =P

n 5y Xy

Methods:

@ EMD (equilibrium molecular dynamics), simulation in equilibrium
e.g., D; = lim¢—oo ([ ri(t) — ri(0)]1%)/6t

@ NEMD (non-equilibrium molecular dynamics), simulation under an external force or perturbation



Linear response theory: static perturbation s13/4
@ a perturbation with energy AH, H’ = H + A added 1
@ we measure quantitity B in the canonical ensemble (with perturbation) B= @

J Bexp(—B#H")dpdg _ [ B(t) exp(—BH)(1 — BAH)dpdg
[exp(—BH")dpdq ~ [ exp(—BH)(1— BAH)dpdq
_ BIZPBAH) | (B)— BBAH))L + BAH)) ~ (B) — B(LHB) — (%) (B))
1—B(AH)

0

= (B)— pcov(B, Ar) PEC _p(B A%

(B)

Example. Classical harmonic oscillator H = %xz, perturbation AH = gx, we measure B = Xx:

[ x? exp(—,B%xz)dx g
= —B(AH = — 2 = — = ——
(x) =—B(AHx) =—B({gx“) =—Bg fexp(—,B%xz)dx P

which is correct, because the potential minimum was actually only shifted:

y_ Ko, o _K( . 9Y
H —2x +gv><—2 x+K + const



Linear response theory: motivation (Green-Kubo)
Diffusivity from MSD in 1D (Einstein):

(x2) = 2Dt (t— co0)

1d ; |
D(t) = ——([X()—x(0)]?) = ([x(t) — x(0)]X(t))

<[ t

0
= — J (X(t—t”))’((t))dt”=J (x(0)x(t""))dt”
t 0

We are interested in the limit t — oo: c,(t)

0 0

D=J (x(0)x(t)) dt
0)

This is a simple example of the Green-Kubo formula

t t
J >'<(f-“’)o't’]>'<(t)>=< J >'<(t’)>'<(t)dt’> (subst. t/ = t—t")

17/30
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MSD = mean squared
deviation/displacement

(a(t1)b(t2))
— (a(t1 + At)b(ty + At))

velocity-velocity

correlatipn fu_nc.:
Cv(t) — ((Xl(o)xl(t))

x1(0)x1(0))

1 1
0.5 1
t/ps

1.5

Interpretation: The longer a velocity at time t is (positively) correlated with the velocity at time

0, the further the particle travels, and the diffusivity is higher.
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Linear response theory: principles s13/4

@ We work in the Hamiltonian formalism (positions and momenta)
preferably using distribution functions (in g, p).

@ At time t =0 an impuls changes the value of the Hamiltonian by AH = H¢>o — He<o.
@ n case of a time-dependent perturbation, we integrate over time.
Example of a result for diffusion (Green-Kubo formula in 3D):

1 (. .

D = —J (Fi(t) - 7(0))dt
3Jo

Another example — viscosity:

V oo
"~ keT Jo
where Pxy are components of the pressure tensor. No corresponding Einstein relation exists!

n (Pxy(0)Pxy(t))dt
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Linear response theory: time-dependent perturbation s13/4
Hamilton’s equations:
. O0H _p _ oH y
9= ap m P= g
Perturbation (impuls) at time t = 0:
p

q= E—Apfs(t), p=f+Aqé(t)

where Ap = 2 and Ag= for some A =A(q, p).

p

Example: A = Fix3 or Ax1 = F1, Ag=0for g #x1 a Ap = 0. A has unit energyxtime

(A(0) is energy jump),
p1,x =f1,x + F16(t) F1 has unit forcextime

: = momentum.
Stepwise change of the total energy by:

Hit>0— Ht<o = H(@—Ap, p+Ag)—H(q,p)
OH oH

_ Z(__Ap+ _Aq) S (6-Ap + G- Ag) = A(0)

aq ap
>0 for a hit in the direction of particle flight,

Example: #t>0 —Ht<o = /1x1(0) { <0 for a hit against the direction of particle flight
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Linear response theory s13/4

A perturbation (leading to a jump in H) will be turned off (using a 6-impuls) at t = 0. The system
Is canonical for t < 0, but | will measure (run simulation) using a non-perturbed state H = H¢>0.

Let us measure quantity B, (B) = 0. The response:

| B(t) exp[—BH¢>0 + BA(0)]dpdg

(B())ast) = -
© | exp[—BHe=0 + BA(0)]dpdq
By expanding for small BA(0) we get 1
(B(t))as(t) = B{A(0) B(t))t>0 oy () = X0 )
-
where the expectation value right is measured for t > 0 so 05| e |
that Ht=o has changed, but the distribution has not. ot '
Example: B =x1 (then Hi>0— Hi<o = F1x1(0)):
(Xl(t))AcS(t) — flﬁ(xl(o)xl(t)) Ok d o N,
velocity relaxation folowing a hit | |
« time correlation function velocity-velocity 0 0.5 1 1.5
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Linear response theory: Green-Kubo s13/4

Long-time perturbation: A(t) = constant for t > 0. Limit t — oo;

(B)a = p fo (A(0)B(D))dt

E.g., system in an electric field: dipolar relaxation/electric conductivity (heats up!)

Example:

Pix=fix+F1 = (Xl)A=~7:1,3fO (x1(0)x1(t))

Vi 0 0]
Einstein-Smoluchowski: BD;= ;li = D =J (x1(0)x1(t))dt
0

For /1 = Exq1 we get the ionic mobility

(x1) q1D1

Ul = =

EX kBT
and after multiplicating by the charge per mole we get the Nernst-Einstein equation for the limiting
molar conductivity

oo _ (Xq1Na) _ q1D1
1 Ex RT
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Green-Kubo — Einstein s13/4

@ Einstein:

K = f (X(0)X(t))dt
0

t
fo (X(0)X(t"))dt" = [ (X(0)X(t")]5

interchange t — —t (NB: X(0) — —X(0)) and shift by t =

t 1d
f (X(O)X(t’))df’=Ed—([X(t)—X(O)]Z)
0 t

In the limit t — oo then
2tk = ([X(t)— X(0)]%)

E.g., for the diffusion:
1 [® _ cf. NEMD: apply force to a parti-
@ Green-Kubo D = §J (Fi(t) - Fi(0))dt cle while cooling, D; = kT (v;)/ F;,

0 calculate limit /; — 0

1
@ Einstein 2tD = 5(m-(t)— 7:(0)|2)
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Conductivity s13/4

@ NEMD (non-equilibrium molecular dynamics), electric field E is turned on (in periodic b.c.). The
current density is measured:
j=kKE
Cooling is needed (thermostat). Extrapolation E — 0.

@ EMD - Green-Kubo:

kBTf (i(t) -j(0))

@ EMD - Einstein

d 1 °
K = tILrQo JE6KkaTY <{Zi:ch'[ri(t)— Fi(O)]} >

NB: No Einstein relation for viscosity is known



Using the Einstein formula

Conductivity of molten NaCl using EMD:

MSD(t)/nm?

0.1

0.08 -

O
o
>

I
o
~

l l l l

—— Nat
CI

10

MSD(t)/arb.u.

24/30

sl13/4
l l l l
— Kohlrausch Na*t + CI
— whole box
| | | |
2 4 6 8 10
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Not so easy: corrections

The periodic image of a particle is L far away and diffusing always in the same direction!

o oovumoooooo o ooanouooooo
.u«ouoooo”noooocooooooono oS00 oooooono
”.m“.m.“.mu..m.“.“..u.wm. o .....a......... o .....».........
AL A L
P Tk ..»a”.....a.mm.....a”.....
R AR R KR R LA
$oasse h.w. %asse pw. et u.w
W&o 0490°50,%2 00 06 0o 0SC0% e ®0 J0g°Ss
LR LG X

Pure liquid in 3D:

2.873kgl
6mnL

Dppc +

D =

Ty

o O(N_1/3)

2.873R
L

D

Dpgc—D

where R = kgT/6mnD

.Q.. O.

@ pure fluid: determine viscosity and include corrections

@ generally: calculate for several L and extrapolate

XY
““O“.“.
) ® @ 0l
...."......... ,

® ....“.OO

B. Dunweg and K. Kremer, J. Chem. Phys., 1993, 99, 6093-6997

|.-C. Yeh and G. Hummer, J. Phys. Chem. B, 2004, 108, 15873-15879

Both viscosity and diffusivity can be obtained without extrapolation from one simulation in an

orthorhombic box with L>/Lx
J. Busch and D. Paschek, J. Phys. Chem. B 2023, 127, 7983-7987

Lz/Ly =2.79336:


https://doi.org/10.1063/1.465445
https://doi.org/10.1021/jp0477147
https://doi.org/10.1021/acs.jpcb.3c04492

Not so easy: corrections

Ar

EvdW=-0.2380684 kcal/mol, RvdwW=1.910992 AA
T=143.76 (T*=1.2)

rho=1344.2582 kg/m3 (rhox=0.8)

viscosity (Green-Kubo): eta=0.00017543 Pa.s
D is in le-9 m™2/s
Dcorr = Dsim + 2.837xkxT / (6*pixetaxl)

250 B 0.2 4.217 0.019 4.954
250 B 1 4.229 0.022 4.966
250 N 0.2 4.210 0.021 4.947
250 N 1 4.220 0.022 4.957
2000 B 0.2 4.560 0.012 4.928
2000 B 1 4.567 0.011 4.935
2000 N 0.2 4.568 0.013 4.936
2000 N 1 4.578 0.010 4.947

2000: L=46.21296 AA
250: L=23.10648 AA
N=Nose+Gear

B=Berendsen (+Shake)

26/30
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SPCE water

NNNNANANNNANN

T=298.15 K

viscosity (N=250): 0.00058(6) Pa.s
L=19.575161 AA (N=250)

NB: later results, N=300
viscosity=0.00073(4) Pa.s
Dsim=2.390(8), D=2.80(2) [1le-9 m™2/s]

[J. Malohlava (University of Ostrava) and J. Kolafa
(2010), unpublished results.]



EMD viscosity s13/4
Green-Kubo:
V (0 0]
Nab = ——= (Pap(t)Pap(0))dt, a #b
KT Jo
Nab = Nba

Curiously, also diagonal elements can be used™:

3V [(*® , , 1
Naa=77= | (Paa(IPGa(O)dt, PLo=Paa—2 D, Pob
0 b=x,y,z
It is not so accurate. Recommended mixing:

3 2 1 1
n= g’?off + g’?trleSSr Noff = 3 Z Nab, Ntrless = gznaa-
ab=xy,yz,zx a

& : more accurate than NEMD

@ : Pop Nneeded (sometimes problematic or not available)

*Daivis P.J., Evans D.].: Comparison of constant pressure and constant volume nonequilibrium simulations of sheared
model decane, J. Chem. Phys. 100, 541 (1993)
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NEMD s13/4

NEMD = Non-equilibrium molecular dynamics
@ as a real experiment (turn on a field, gradient of temperature, ...)

@ problem: linearity (extrapolation to zero perturbation)

@ problem: cooling needed

@ viscosity: E C E C E C E C
— SLODD (Lees-Edwards) -~ B -~ B - B -~ B
— transfer of momentum A -------- D;-i---A- -------- D A -------- DA ------- D;f
; C C C C
— cos-modulated force E gE gE gE |
B B B B
JAL D______A ________ D A DA D __
¢ c c C
éE s E g E g E g
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NEMD viscosity s13/4
laminar flow:
I t Q. Lx:Ly:L=1:1": . . . . .
@ clongated box (e.g., Lx : Ly : Lz 3) pressure-induced in a pipe: Poiseuille
@ modulated force drag-induced: Couette
7 c (2112[) 5, A= (L0,0)neb (1,1,0)
;= m;CrCos n, n=(10,0) neono
I 2 V2

@ correction so that total force = 0

Navier-Stokes equations for the Poiseuille flow of incompressible fluid:
nv°v+f=0, (1)

- 2TZ
f=pCf(cos i )h’

V4

where p = >,;m;/V. Solution:

CrpL? 21z
y=- Zcos( )ﬁ
4m2n L

Thus, n is calculated from the velocity profile, fcl)‘z v(z)-ficos (ZL—"ZZ) dz



NEMD viscosity

Dissipation of energy:

dE 1 V (Crol\?
—=—fn(w)2dv=_( 1P ) |
dt 2 n\ 4mn

@ one can also determine n from the dissipation (less accurate)

@ one can estimate how the cooling constant of a thermostat (e.g., Berendsen)

p0|4d/Shear.Sh 30/30
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@ extrapolation Cf — 0 needed 1.8 :
¢
@ less accurate than Green-Kubo 16 % i
(]
@ pressure tensor not needed _ 1ar . |
o
E 12F i
& | ]
10 _
0.8+ -




