[firefox file:///www.vscht.cz/fch/en/tools/kolafa/S403016.html] 1/20	Chemical kinetics
Jiří Kolafa Department of Physical Chemistry ICT Prague, building A, room 325 http://www.mapy.cz/s/98vC jiri.kolafa@vscht.cz 220 444 257 Google: Kolafa Physical and Colloid Chemistry Q	 rate of reactions, dependence on conditions calculate the composition as a function of time reaction mechanisms
Chemical kinetics [show show/ardioxin -S35 -x-2 -li% -q0] 3/20 col01	Rate of reaction 4/20 col01
Reactions:	$0 \rightarrow \sum \nu_i a_i$ reactants: $\nu_i < 0$
homogeneous (one phase)	Rate of reaction (ξ = extent of reaction, [ξ] = mol):
heterogeneous	
enzyme	$J = \frac{d\xi}{d\tau} = \frac{1}{\nu_i} \frac{dn_i}{d\tau}$ concentration: $c_i = [A_i] = n_i/V$
● <u>isothermal</u> – adiabatic	Usually per unit volume (intensive quantity): $J 1 dc_i$ unit: $mol dm^{-3} = mol/L = M$
isobaric – isochoric	$r = \frac{J}{V} = \frac{1 \mathrm{d}c_i}{v_i \mathrm{d}\tau} \qquad \qquad \text{mol } \mathrm{d}m^{-3} = \mathrm{mol}/\mathrm{L} = \mathrm{M}$
Activation:	r depends on stoichiometry:
catalyst	$r(2A \rightarrow A_2) = \frac{1}{2}r(A \rightarrow \frac{1}{2}A_2) \text{concentration:} \\ c_i^{\text{rel}} = \{A_i\} = c_i/c^{\text{st}}$
heat, other reaction, microwaves	
light (VIS, UV, X), ultrasound	Example. Hydrogen peroxide decomposes in the presence of a catalyst by rate $d[H_2O_2]/d\tau = -0.02 \text{ mol } L^{-1} \text{ min}^{-1}$. Deretmine the rate of the reaction
	$2 H_2 O_2 \rightarrow 2 H_2 O + O_2$
	¹ –nim ¹ –1 lom 10.0
Rate (kinetic) equation 5/20 col01	Homogeneous reactions: balance
Simple reaction is given by one reaction and one kinetic equation (not necessarily elementary)	$0 \to \sum_{i} \nu_i A_i$
Generally:	Constant volume: balance in concentrations ($x = x(\tau) = \xi/V$):
$r = f(c_A, c_B, \ldots, T)$	$c_i = c_{i,0} + v_i x$
Often:	Degree of conversion (k = key compound $\Rightarrow v_k < 0$):
$r = k(T) c_{\rm A}^{\alpha} c_{\rm B}^{\beta} \cdots$	$\alpha = \frac{c_{k,0} - c_k}{c_{k,0}} = \frac{ \nu_k x}{c_{k,0}}$
where	K,0 K,0
• $k(T) =$ rate constant (kinetic constant) • α , β = partial orders of reaction (elem.r. = integers)	It holds $0 \le \alpha \le 1$ Example. Nitryl fluoride is produced in gas phase by reaction:
• $\alpha, \beta = \beta$ and a orders of reaction (cleaning = integers); • $n = \alpha + \beta \cdots = (\text{total})$ reaction order	$2 \operatorname{NO}_2(q) + F_2(q) \rightarrow 2 \operatorname{NO}_2F(q)$
Dimensionality(k) = $(\text{mol dm}^{-3})^{1-n}s^{-1}$	The reaction is of the 1st order with respect to both NO ₂ and F_2 . Write the kineti
Often dimensionless $c_i^{\text{rel}} = c_i/c^{\text{st}}$, then dimension $(k) = s^{-1}$	equation if the reaction proceeds in constant volume. The initial concentrations are
Half life of reaction: c_A decreases to one half $c_A(0)$	[NO ₂] ₀ a [F ₂] ₀ , respectively, and the kinetic constant k. $(\chi = 0[\zeta + 1])(\chi = 0[\zeta - 0])\chi = \frac{\lambda p}{\zeta} = -\frac{\lambda p}{\zeta} = -\frac{\lambda p}{\zeta} = -\frac{\lambda p}{\zeta} = -\frac{\lambda p}{\zeta}$
$c_{A}(\tau_{1/2}) = \frac{c_{A}(0)}{2}$	$\frac{ x }{ x } = -\frac{dt}{q(L_{2})} = -\frac{5}{7}\frac{dt}{q(NO_{2})} = \frac{5}{7}\frac{dt}{q(NO_{2}E_{1})} = k([NO_{2}]_{0} - X)([E_{2}]_{0} - X)$
Reaction A → P [plot/kinnd.sh] 7/20 col01 col01	Reaction A + B \rightarrow P (1st order to both A and B) [plot/kin2.sh] 8/20 col0
Rate equation:	Both partial orders $\alpha = \beta = 1$ (total order = 2)
$\frac{dc_A}{d\tau} = -kc_A^n \text{ for } c_A > 0$ $= 0 \text{for } c_A = 0 \qquad c_A$	Rate equation:
$d\tau = 0$ for $c_A = 0$ c_A	$\frac{\mathrm{d}x}{\mathrm{d}\tau} = kc_{\mathrm{A}}c_{\mathrm{B}} = k(c_{\mathrm{A}0} - x)(c_{\mathrm{B}0} - x)$
Initial condition: $c_A(0) = c_{A0}$	Initial condition:
Solution (integrated form):	$x(0) = 0 \text{ or } c_A(0) = c_{A0}, \ c_B(0) = c_{B0},$
	Solution (integrated form):
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	• $c_{A0} = c_{B0}$: the same as previous slide
0	• $c_{A0} \neq c_{B0}$: $(c_{A0} - c_{B0})k\tau = \ln\left(\frac{c_{A0} - x}{c_{B0} - x}\frac{c_{B0}}{c_{A0}}\right) = \ln\left(\frac{c_A}{c_B}\frac{c_{B0}}{c_{A0}}\right) \Rightarrow$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\frac{1/c_{A0}+k\tau}{(1,\infty)} \frac{kc_{A0}}{[c_{A0}^{1-n}-(1-n)k\tau]^{1/(1-n)}}$	$c_{A} = (c_{A0} - c_{B0}) \frac{c_{A0}e}{c_{A0}e - c_{B0}}$ exp x = e ^x
$\frac{ c_{A0}^{(1,0)} c_{A0}^{(1,0)}(1-n)k\tau ^{1/(1-n)}}{ c_{A0}^{(1,0)}-(1-n)k\tau ^{1/(1-n)} \tau < c_{A0}^{1-n}/[(1-n)k] } \frac{2^{n-1}-1}{(n-1)k}c_{A0}^{1-n}$	$c_{\rm B} = (c_{\rm A0} - c_{\rm B0}) \frac{c_{\rm B0}}{c_{\rm A0}\epsilon - c_{\rm B0}} \text{ where } \epsilon = \exp[(c_{\rm A0} - c_{\rm B0})k\tau]$
$0 \qquad \qquad \tau \ge c_{A0}^{1-n}/[(1-n)k]$	Example: $NO_2^-(aq) + NH_4^+(aq) \rightarrow N_2(g) + 2H_2O(l)$

