[firefox file://www.vscht.cz/fch/en/tools/kolafa/S403016.html] 1/20

Info

col01

Jiří Kolafa Department of Physical Chemistry ICT Prague, building A, room 325

http://www.mapy.cz/s/98vC

jiri.kolafa@vscht.cz 220 444 257

Google: Kolafa Physical and Colloid Chemistry Q

Chemical kinetics

- rate of reactions, dependence on conditions
- calculate the composition as a function of time
- reaction mechanisms

credit: people.bath.ac.uk/ch3mw/photo3.gif

Reactions:

- homogeneous (one phase)
- heterogeneous
- enzyme
- isothermal adiabatic
- isobaric isochoric

Activation:

- catalyst
- heat, other reaction, microwaves
- light (VIS, UV, X), ultrasound . . .

Rate of reaction

$$0 \to \sum_{i} \nu_{i} A_{i}$$

reactants: $v_i < 0$

products: $v_i > 0$

Rate of reaction (ξ = extent of reaction, [ξ] = mol):

$$J = \frac{\mathrm{d}\xi}{\mathrm{d}\tau} = \frac{1}{\nu_i} \frac{\mathrm{d}n_i}{\mathrm{d}\tau}$$

concentration:

$$c_i = [A_i] = n_i/V$$

unit:

$$mol dm^{-3} = mol/L = M$$

Usually per unit volume (intensive quantity):

$$r = \frac{J}{V} = \frac{1}{v_i} \frac{\mathrm{d}c_i}{\mathrm{d}\tau}$$

dimensionless (relative)

$$c_i^{\text{rel}} = \{A_i\} = c_i/c^{\text{st}}$$

r depends on stoichiometry:

$$r(2A \to A_2) = \frac{1}{2}r(A \to \frac{1}{2}A_2)$$
 $c_i^{\text{rel}} = \{A_i\} = c_i/c^{\text{st}}$

Example. Hydrogen peroxide decomposes in the presence of a catalyst by rate $d[H_2O_2]/d\tau = -0.02 \text{ mol } L^{-1} \text{ min}^{-1}$. Deretmine the rate of the reaction

$$2 H_2 O_2 \rightarrow 2 H_2 O + O_2$$

Rate (kinetic) equation

Simple reaction is given by one reaction and one kinetic equation (not necessarily elementary)

Generally:

$$r = f(c_A, c_B, \ldots, T)$$

Often:

$$r = k(T) c_{A}^{\alpha} c_{B}^{\beta} \cdots$$

where

- \bigcirc α , β = partial orders of reaction (elem.r. = integers)

Dimensionality(k) = (mol dm⁻³)¹⁻ⁿs⁻¹ Often dimensionless $c_i^{\text{rel}} = c_i/c^{\text{st}}$, then dimension(k) = s⁻¹

Half life of reaction: c_A decreases to one half

$$c_{A}(\tau_{1/2}) = \frac{c_{A}(0)}{2}$$

Homogeneous reactions: balance

$$0 \to \sum_{i} \nu_{i} A_{i}$$

Constant volume: balance in concentrations $(x = x(\tau) = \xi/V)$:

$$c_i = c_{i,0} + v_i x$$

Degree of conversion ($k = \text{key compound} \Rightarrow \nu_k < 0$):

$$\alpha = \frac{c_{k,0} - c_k}{c_{k,0}} = \frac{|\nu_k| x}{c_{k,0}}$$

It holds $0 \le \alpha \le 1$

Example. Nitryl fluoride is produced in gas phase by reaction:

$$2 NO_2(g) + F_2(g) \rightarrow 2 NO_2F(g)$$

The reaction is of the 1st order with respect to both NO_2 and F_2 . Write the kinetic equation if the reaction proceeds in constant volume. The initial concentrations are $[NO_2]_0$ a $[F_2]_0$, respectively, and the kinetic constant k.

$$\frac{dx}{d\tau} = -\frac{d[F_2]}{d\tau} = -\frac{1}{2}\frac{d[NO_2]}{d\tau} = \frac{1}{2}\frac{d[NO_2F]}{d\tau} = k([NO_2]_0 - 2x)([F_2]_0 - x)$$

Reaction A → **P**

Rate equation:

$$\frac{dc_A}{d\tau} = -kc_A^n \text{ for } c_A > 0$$
$$= 0 \text{ for } c_A = 0$$

Initial condition: $c_A(0) = c_{A0}$

n	<i>c</i> _A (τ)	conditions	τ _{1/2}
0	$c_{A0}-k\tau$	$\tau < c_{A0}/k$	C _{A0}
	0	$\tau \ge c_{A0}/k$	<u>2k</u>
1	$c_{A0} e^{-k\tau}$		In 2/ <i>k</i>
2	$\frac{1}{1/c_{A0}+k\tau}$		$\frac{1}{kc_{A0}}$
(1,∞)	$[c_{A0}^{1-n}-(1-n)k\tau]^{1/(1-n)}$		2 <i>n</i> −1 1 1
[0,1)	$[c_{A0}^{1-n}-(1-n)k\tau]^{1/(1-n)}$	$\tau < c_{A0}^{1-n}/[(1-n)k]$	$\left \frac{2^{n-1}-1}{(n-1)k} c_{A0}^{1-n} \right $
	0	$\tau \ge c_{A0}^{1-n}/[(1-n)k]$	

Reaction $A + B \rightarrow P$ (1st order to both A and B)

Both partial orders $\alpha = \beta = 1$ (total order = 2)

Rate equation:

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = kc_{\mathsf{A}}c_{\mathsf{B}} = k(c_{\mathsf{A}0} - x)(c_{\mathsf{B}0} - x)$$

Initial condition:

$$x(0) = 0$$
 or $c_A(0) = c_{A0}$, $c_B(0) = c_{B0}$,

Solution (integrated form):

 \bigcirc $c_{A0} = c_{B0}$: the same as previous slide

$$\bigcirc c_{A0} \neq c_{B0}: (c_{A0} - c_{B0})k\tau = \ln\left(\frac{c_{A0} - x}{c_{B0} - x}\frac{c_{B0}}{c_{A0}}\right) = \ln\left(\frac{c_{A}}{c_{B}}\frac{c_{B0}}{c_{A0}}\right) \Rightarrow$$

$$c_{A} = (c_{A0} - c_{B0}) \frac{c_{A0}\epsilon}{c_{A0}\epsilon - c_{B0}}$$

$$c_{B} = (c_{A0} - c_{B0}) \frac{c_{B0}}{c_{A0}\epsilon - c_{B0}} \text{ where } \epsilon = \exp[(c_{A0} - c_{B0})k\tau]$$

Example: $NO_2^-(aq) + NH_4^+(aq) \rightarrow N_2(g) + 2H_2O(l)$

Kinetic measurements

- igcup Integral data: $c_i(au)$
- igoplus Differential data: rates $dc_i/d\tau$:
 - flow reactor (steady state) $dc_i/d\tau \propto c_i^{in} c_i^{out}$
 - initial reaction rate (small extent)
- Fast reaction: lasers

Proxies to $c_i(\tau)$:

- mechanical:
 - (g): pressure (manometry) / volume (volumetry)
 - (I): difference of volume (dillatometry), densitometry
 - (s/g): mass (gravimetry)
 - (l/g): vapor pressure
- optical: spectrophotometry, refractometry, polarimetry
- electric: conductometry, potentiometry, polarography
- chromatography, mass spectrometry

symbol ∝ means "proportional to"

Determining the order and rate constant

Example. For reaction A \rightarrow P with rate equation dc/d = $-kc^n$

Fitting (correlation, regression): the integrated form of the kinetic equation, $c_A = c_A(c_{A0}, k, n; \tau)$, is fitted to the data by the **least square method**

The sum of squares is minimized over 3 unknowns parameters c_{A0} , k, n

τ	С	τ	С	τ	С	τ	С
min	$\overline{\text{mol L}^{-1}}$						
0.0	2.446	1.4	0.549	2.8	0.253	4.2	0.141
0.2	1.779	1.6	0.489	3.0	0.218	4.4	0.132
0.4	1.518	1.8	0.433	3.2	0.203	4.6	0.121
0.6	1.091	2.0	0.369	3.4	0.188	4.8	0.115
0.8	0.972	2.2	0.341	3.6	0.172	5.0	0.101
1.0	0.773	2.4	0.313	3.8	0.165		
1.2	0.675	2.6	0.272	4.0	0.161		

Mathematically:

$$s^{2} = \min_{c_{A0}, k, n} \frac{1}{N - 3} \sum_{i=1}^{N} \left[\frac{c_{A}(c_{A0}, k, n; \tau) - c_{i}}{\sigma_{i}} \right]^{2}$$

where σ_i = standard error^a of conc. $c_{A,i}$ (its estimate); for large N then $s^2 = 1$. If σ_i are not known, they can be calculated from $s^2 = 1$ assuming that all σ_i are the same.

^aor uncertainty – called differently in statistics and in metrology

Old fashined methods...

Integral method trial-and-error: For several orders n, we calculate the rate constant from pairs $c(\tau_1)$, $c(\tau_2)$.

For $A \rightarrow P$:

$$k = \begin{cases} \frac{c_{A1}^{1-n} - c_{A2}^{1-n}}{(n-1)(\tau_1 - \tau_2)} & n \neq 1\\ -\frac{\ln(c_{A1}/c_{A2})}{\tau_1 - \tau_2} & n = 1 \end{cases}$$

Example (see previous data):

$ au_1$	$ au_2$	n=1	n = 2	n = 1.5
0	1	1.152	0.885	0.996
1	2	0.739	1.416	1.018
2	3	0.526	1.877	0.991
3	4	0.303	1.624	0.701
4	5	0.466	3.690	1.309

Differential method: rates for two times (or compositions) known

$$n = \frac{\ln(r_1/r_2)}{\ln(c_{A1}/c_{A2})}$$

Isolation method (Ostwald):

$$r = kc_A^{\alpha}c_B^{\beta}: c_B \gg c_A \text{ (surplus B)} \Rightarrow r = k'c_A^{\alpha}$$

Order of reaction graphically

Now obsolete!

- integral method
 - 1. order: $\ln c_A = \ln c_{A0} k\tau \Rightarrow \text{ straight line in } (\tau, \ln c_A)$
 - 2. order: $-1/c_A = -1/c_{A0} k\tau \Rightarrow$ straight line in $(\tau, -1/c_A)$
 - $\frac{3}{2}$. order: $-2/c_A^{1/2} = -2/c_{A0}^{1/2} k\tau \Rightarrow \text{ straight line in } (\tau, -2/c_A^{1/2})$
- differential method
 - tangent to $c_A(\tau) \Rightarrow$ derivative $r(\tau)$
 - $\ln r = \ln k + n \ln c_A \Rightarrow \text{straight line in } (\ln c_A, \ln r)$

Consecutive reactions of the 1st order

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

Kinetic equations:

$$\frac{dc_A}{d\tau} = -k_1 c_A$$

$$\frac{dc_B}{d\tau} = k_1 c_A - k_2 c_B$$

$$\frac{dc_C}{d\tau} = k_2 c_B$$

Initial conditions:

$$c_A(0) = c_{A0}, c_B(0) = 0, c_C(0) = 0$$

Solution:

$$c_{A} = c_{A0}e^{-k_{1}\tau}$$
 $c_{B} = \frac{k_{1}}{k_{2}-k_{1}}c_{A0}\left[e^{-k_{1}\tau}-e^{-k_{2}\tau}\right] \text{ for } k_{1} \neq k_{2}$
 $= k_{1}c_{A0}\tau e^{-k_{1}\tau} \text{ for } k_{1} = k_{2}$
 $c_{C} = c_{A0}-c_{A}-c_{B}$

Max. concentration:

$$\tau_{\text{max}} = \frac{\ln(k_1/k_2)}{k_1 - k_2}$$
 for $k_1 \neq k_2$
 $1/k_1$ for $k_1 = k_2$

- radioactive decay
 - pharmacokinetics:
 k₁ = absorption const.
 k₂ = elimination const.

Application to pharmacokinetics

Distribution volume V_d is the volume of water in which the dissolved drug would have the same concentration as it has in blood plasma.

$$V_{\rm d} = \frac{\rm mass~of~drug}{\rm mass~conc.~in~plasma}$$

Often give per 1 kg of patient's weight

$$V_{\rm d} = \frac{\rm mass~of~drug}{({\rm mass~conc.~in~plasma}) \times ({\rm mass~of~patient})}$$

volume	$V_{\rm d}/({\rm Lkg}^{-1})$	
water total	0.6	children more, seniors less
intracellular	0.4	
extracellular	0.2	
blood total	0.08	
plasma	0.04-0.05	

- water-soluble compound, permeates through membranes, does not bind to anything: $V_d \approx 0.6 \, \text{Lkg}^{-1}$ (e.g., ethanol)
- lipophilic compound: higher (even hundreds)
- slow permeation through membranes etc.: more compartments needed

Application to pharmacokinetics

Simplification:

- one compartment
- 1st order kinetics (other options: 0th order, Michaelis-Menten)
- igoplus absorption k_1 , elimination k_2
- "initial" weight concentration:

$$c_{A0} = \frac{\text{mass of drug}}{\text{mass of patient} \times V_{d}}$$

One shot

see "consecutive reactions"

Repeated shots

k-times by τ_a (in times 0, τ_a , $2\tau_a$, ... $(k-1)\tau_a$)

After many cycles (∞ series) for $\tau_1 = \tau - (k-1)\tau_a$ = time from the last shot:

$$c_{B} = \frac{k_{1}c_{A0}}{k_{2} - k_{1}} \left[\frac{e^{-k_{1}\tau_{1}}}{1 - e^{-k_{1}\tau_{a}}} - \frac{e^{-k_{2}\tau_{1}}}{1 - e^{-k_{2}\tau_{a}}} \right], k_{1} \neq k_{2}$$

$$= \frac{k_{1}c_{A0}e^{-k_{1}\tau_{1}}}{1 - e^{-k_{1}\tau_{a}}} \left[\tau + \frac{\tau_{a}e^{-k_{1}\tau_{a}}}{1 - e^{-k_{1}\tau_{a}}} \right], k_{1} = k_{2}$$

Concurrent reactions

Example. Both reactions of the first order

$$A \xrightarrow{k_1} B$$

$$A \xrightarrow{\kappa_2} C$$

Rate equations:

$$\frac{\mathrm{d}c_{\mathsf{A}}}{\mathrm{d}\tau} = -k_1c_{\mathsf{A}} - k_2c_{\mathsf{A}}$$

$$\frac{dc_{B}}{d\tau} = k_{1}c_{A}$$

$$\frac{dc_C}{d\tau} = k_2 c_A$$

Solution for $c_A(0) = c_{A0}$, $c_B(0) = 0$, $c_C(0) = 0$:

$$c_{\mathsf{A}} = c_{\mathsf{A}0} \exp[-(k_1 + k_2)\tau]$$

$$c_{\rm B} = c_{\rm A0} \frac{k_1}{k_1 + k_2} \{1 - \exp[-(k_1 + k_2)\tau]\}$$

$$c_{\rm C} = c_{\rm A0} \frac{k_2}{k_1 + k_2} \{1 - \exp[-(k_1 + k_2)\tau]\}$$

Variants: $A+B\rightarrow$, $A+C\rightarrow$, $A\gg B$, C

if both reactions are of the same order:

Wegscheider principle:

$$\frac{c_{\rm B}}{c_{\rm C}} = \frac{k_1}{k_2}$$

Reversible reactions

Example. Both reactions of the 1st order:

$$A \quad \stackrel{k_1}{\underset{k_{-1}}{\rightleftarrows}} \quad \mathsf{B}$$

Rate equation:

$$\frac{\mathrm{d}c_{\mathsf{A}}}{\mathrm{d}\tau} = -k_1c_{\mathsf{A}} + k_{-1}c_{\mathsf{B}}$$

Balance for $c_A(0) = c_{A0}$, $c_B(0) = 0$:

$$C_A + C_B = C_{A0}$$

Solution:

$$c_{A} = \frac{c_{A0}}{k_{1} + k_{-1}} \left[k_{1} e^{-(k_{1} + k_{-1})\tau} + k_{-1} \right]$$

Equilibrium:

$$\lim_{\tau \to \infty} c_{A} = \frac{k_{-1}}{k_{1} + k_{-1}} c_{A0}$$

Equilibrium constant:
$$\frac{c_{\rm B}(\infty)}{c_{\rm A}(\infty)} = \frac{k_1}{k_{-1}} = K$$

racemization (1 chiral C): K = 1

Law of mass action

Guldberg-Waage:

Let both reactions in

$$A + B \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} C + D$$

are elementary (of 1st order wrt all compounds)

Rate equation:

$$\frac{\mathrm{d}c_{\mathsf{A}}}{\mathrm{d}\tau} = -k_1 c_{\mathsf{A}} c_{\mathsf{B}} + k_{-1} c_{\mathsf{C}} c_{\mathsf{D}}$$

Equilibrium: $\frac{dc_A}{d\tau} = 0$ or

$$\frac{c_{\mathsf{C}}c_{\mathsf{D}}}{c_{\mathsf{A}}c_{\mathsf{B}}} = \frac{k_1}{k_{-1}} = K$$

where *K* si the equilibrium constant

credit: Wikipedia

Potential energy surface (PES)

Nuclei are much heavier than electrons ⇒ electrons are faster (Born–Oppenheimer approximation): electrons follow nuclei

Potential energy surface: energy as a function of coordinates of all nuclei

Better: after removing redundand coordinates because of symmetry (rotations, translations)

A reaction proceeds by the least obstacle way = over the saddle point (better: close to it) = **transition state**

credits: http://www.ucl.ac.uk/~ucecmst/publications.html, http://theory.cm.utexas.edu/henkelman/research/ltd/

Transition state theory (Eyring): $k = (RT/N_A h) \exp(-[G_m^{\dagger} - G_m^{reactants}]/RT)$

T-dependence of the reaction rate (Arrhenius)

$$\frac{\mathrm{d} \ln K}{\mathrm{d} T} = \frac{\Delta_{\mathrm{r}} H_{\mathrm{m}}^{\oplus}}{RT^{2}} \xrightarrow{\Delta_{\mathrm{r}} H_{\mathrm{m}}^{\oplus} = \mathrm{const}} K = K_{0} \mathrm{e}^{-\frac{\Delta_{\mathrm{r}} H_{\mathrm{m}}^{\oplus}}{RT}} = \frac{k_{1}}{k_{-1}} = \frac{A_{1} \mathrm{e}^{-\frac{E_{1}^{*}}{RT}}}{A_{2} \mathrm{e}^{-\frac{E_{-1}^{*}}{RT}}} \xrightarrow{"\Rightarrow"} k = A \mathrm{e}^{-\frac{E^{*}}{RT}}$$

 $E^* = activation energy$, A = prefactor

$$\Delta_{\rm r} H_{\rm m}^{\oplus} = E_1^* - E_{-1}^*$$

Typical E^* : 50–110 kJ mol⁻¹

Rule of the thumb:

1.5-3× per 10°C

reaction coordinate

Kinetic theory of gases (Boltzmann): $k = 2N_A\sigma(RT/\pi M)^{1/2} \exp(-E^*/RT)$