Info

Jiří Kolafa
Department of Physical Chemistry
ICT Prague, building A, room 325
http://www.mapy.cz/s/98vC
jiri.kolafa@vscht.cz
220444257
Google: Kolafa Physical and Colloid Chemistry Q 3rd floor

Chemical kinetics

rate of reactions, dependence on conditions
calculate the composition as a function of time
reaction mechanisms

Chemical kinetics

Reactions:

homogeneous (one phase)

- heterogeneous
- enzyme
isothermal - adiabatic
- isobaric - isochoric

Activation:

catalyst
heat, other reaction, microwaves

- light (VIS, UV, X), ultrasound . . .

$$
0 \rightarrow \sum_{i} \nu_{i} A_{i}
$$

Rate of reaction ($\xi=$ extent of reaction, $[\xi]=\mathrm{mol}$):

$$
J=\frac{\mathrm{d} \xi}{\mathrm{~d} \tau}=\frac{1}{\nu_{i}} \frac{\mathrm{~d} n_{i}}{\mathrm{~d} \tau}
$$

Usually per unit volume (intensive quantity):

$$
r=\frac{J}{V}=\frac{1}{v_{i}} \frac{\mathrm{~d} c_{i}}{\mathrm{~d} \tau}
$$

r depends on stoichiometry:

$$
r\left(2 \mathrm{~A} \rightarrow \mathrm{~A}_{2}\right)=\frac{1}{2} r\left(\mathrm{~A} \rightarrow \frac{1}{2} \mathrm{~A}_{2}\right) \quad \begin{aligned}
& \text { concentration: } \\
& c_{i}^{\text {rel }}=\left\{\mathrm{A}_{i}\right\}=c_{i} / c^{\text {st }}
\end{aligned}
$$

concentration:
$c_{i}=\left[\mathrm{A}_{i}\right]=n_{i} / V$
unit:
$\mathrm{moldm}^{-3}=\mathrm{mol} / \mathrm{L}=\mathrm{M}$
dimensionless (relative)

Example. Hydrogen peroxide decomposes in the presence of a catalyst by rate $\mathrm{d}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] / \mathrm{d} \tau=-0.02 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$. Deretmine the rate of the reaction

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

Rate (kinetic) equation

Simple reaction is given by one reaction and one kinetic equation (not necessarily elementary)
Generally:

$$
r=f\left(c_{A}, c_{B}, \ldots, T\right)
$$

Often:

$$
r=k(T) c_{A}^{\alpha} c_{B}^{\beta} \cdots
$$

where
$k(T)=$ rate constant (kinetic constant)
$\alpha, \beta=$ partial orders of reaction (elem.r. = integers)
$n=\alpha+\beta \cdots=$ (total) reaction order
Dimensionality $(k)=\left(\mathrm{mol} \mathrm{dm}^{-3}\right)^{1-n_{S^{-1}}}$
Often dimensionless $c_{i}^{\text {rel }}=c_{i} / c^{\text {st }}$, then dimension $(k)=s^{-1}$
Half life of reaction: c_{A} decreases to one half

$$
c_{A}\left(\tau_{1 / 2}\right)=\frac{c_{A}(0)}{2}
$$

$$
0 \rightarrow \sum_{i} \nu_{i} A_{i}
$$

Constant volume: balance in concentrations $(x=x(\tau)=\xi / V)$:

$$
c_{i}=c_{i, 0}+v_{i} x
$$

Degree of conversion ($k=$ key compound $\Rightarrow \nu_{k}<0$):

$$
\alpha=\frac{c_{k, 0}-c_{k}}{c_{k, 0}}=\frac{\left|v_{k}\right| x}{c_{k, 0}}
$$

It holds $0 \leq \alpha \leq 1$
Example. Nitryl fluoride is produced in gas phase by reaction:

$$
2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g})
$$

The reaction is of the 1 st order with respect to both NO_{2} and F_{2}. Write the kinetic equation if the reaction proceeds in constant volume. The initial concentrations are $\left[\mathrm{NO}_{2}\right]_{0}$ a $\left[\mathrm{F}_{2}\right]_{0}$, respectively, and the kinetic constant k.

Rate equation:

$$
\begin{aligned}
\frac{\mathrm{d} c_{\mathrm{A}}}{\mathrm{~d} \tau} & =-k c_{\mathrm{A}}^{n} & & \text { for } c_{\mathrm{A}}>0 \\
& =0 & & \text { for } c_{A}=0
\end{aligned}
$$

Initial condition: $c_{A}(0)=c_{A 0}$

Solution (integrated form):

n	$C_{A}(\tau)$	conditions	$\tau_{1 / 2}$
0	$c_{A 0}-k \tau$	$\tau<C_{\text {A }} / k$	CA0
	0	$\tau \geq C_{\text {AO }} / k$	$2 k$
1	$C_{A 0} \mathrm{e}^{-k \tau}$		In 2/k
2	$\frac{1}{1 / r_{1}+k \tau}$		$\frac{1}{k c^{\prime \prime}}$
$(1, \infty)$	$\left[c_{A 0}^{1-n}-(1-n) k \tau\right]^{1 /(1-n)}$		
[0,1)	$\left[c_{\mathrm{A} 0}^{1-n}-(1-n) k \tau\right]^{1 /(1-n)}$	$\begin{aligned} & \tau<c_{A 0}^{1-n} /[(1-n) k] \\ & \tau \geq c_{A 0}^{1-n} /[(1-n) k] \end{aligned}$	$\frac{2^{n-1}-1}{(n-1) k} c_{A 0}^{1-n}$

Reaction $A+B \rightarrow P$ (1st order to both A and $B)$

Both partial orders $\alpha=\beta=1$ (total order $=2$)
Rate equation:

$$
\frac{\mathrm{d} x}{\mathrm{~d} \tau}=k c_{\mathrm{A}} C_{\mathrm{B}}=k\left(c_{\mathrm{AO}}-x\right)\left(c_{\mathrm{B} O}-x\right)
$$

Initial condition:

$$
x(0)=0 \text { or } c_{A}(0)=c_{A 0}, c_{B}(0)=c_{B 0}
$$

τ

Solution (integrated form):
$c_{A 0}=c_{B 0}$: the same as previous slide
$c_{A 0} \neq c_{B 0}:\left(c_{A 0}-c_{B 0}\right) k \tau=\ln \left(\frac{c_{A 0}-x}{c_{B 0}-x} \frac{c_{B 0}}{c_{A 0}}\right)=\ln \left(\frac{c_{A}}{c_{\mathrm{B}}} \frac{c_{B 0}}{c_{A 0}}\right) \Rightarrow$

$$
\begin{aligned}
c_{A} & =\left(c_{A 0}-c_{B 0}\right) \frac{c_{A 0} \epsilon}{c_{A 0} \epsilon-c_{B 0}} \\
c_{B} & =\left(c_{A 0}-c_{B 0}\right) \frac{c_{B 0}}{c_{A 0} \epsilon-c_{B}}
\end{aligned} \text { where } \epsilon=\exp \left[\left(c_{A 0}-c_{B 0}\right) k \tau\right] \quad \mathrm{e}^{x}
$$

Example: $\mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Integral data: $c_{i}(\tau)$
Differential data: rates $\mathrm{d} c_{i} / \mathrm{d} \tau$:

- flow reactor (steady state) $\mathrm{d} c_{i} / \mathrm{d} \tau \propto c_{i}^{\text {in }}-c_{i}^{\text {out }}$
- initial reaction rate (small extent)
symbol \propto means "proportional to"

Fast reaction: lasers
Proxies to $c_{i}(\tau)$:
mechanical:
(g): pressure (manometry) / volume (volumetry)
(I): difference of volume (dillatometry), densitometry
(s/g): mass (gravimetry)
(l/g): vapor pressure
optical: spectrophotometry, refractometry, polarimetry
electric: conductometry, potentiometry, polarography
chromatography, mass spectrometry

Determining the order and rate constant

Example. For reaction $\mathrm{A} \rightarrow \mathrm{P}$ with rate equation $\mathrm{d} c / \mathrm{d}=-k c^{n}$
Fitting (correlation, regression): the integrated form of the kinetic equation, $c_{A}=c_{A}\left(c_{A 0}, k, n ; \tau\right)$, is fitted to the data by the least square method

The sum of squares is minimized over 3 unknowns parameters $C_{A 0}, k, n$

| $\frac{\tau}{\min }$ | $\frac{c}{\mathrm{~mol} \mathrm{~L}^{-1}}$ | $\frac{\tau}{\min }$ | $\frac{c}{\mathrm{~mol} \mathrm{~L}^{-1}}$ | $\frac{\tau}{\min }$ | $\frac{c}{\mathrm{molL}^{-1}}$ | $\frac{\tau}{\min }$ | $\frac{c}{\mathrm{~mol} \mathrm{~L}^{-1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 2.446 | 1.4 | 0.549 | 2.8 | 0.253 | 4.2 | 0.141 |
| 0.2 | 1.779 | 1.6 | 0.489 | 3.0 | 0.218 | 4.4 | 0.132 |
| 0.4 | 1.518 | 1.8 | 0.433 | 3.2 | 0.203 | 4.6 | 0.121 |
| 0.6 | 1.091 | 2.0 | 0.369 | 3.4 | 0.188 | 4.8 | 0.115 |
| 0.8 | 0.972 | 2.2 | 0.341 | 3.6 | 0.172 | 5.0 | 0.101 |
| 1.0 | 0.773 | 2.4 | 0.313 | 3.8 | 0.165 | | |
| 1.2 | 0.675 | 2.6 | 0.272 | 4.0 | 0.161 | | |

Mathematically:

$$
s^{2}=\min _{c_{A 0}, k, n} \frac{1}{N-3} \sum_{i=1}^{N}\left[\frac{c_{\mathrm{A}}\left(c_{\mathrm{A} O}, k, n ; \tau\right)-c_{i}}{\sigma_{i}}\right]^{2}
$$

where $\sigma_{i}=$ standard error ${ }^{a}$ of conc. $c_{A, i}$ (its estimate); for large N then $s^{2}=1$. If σ_{i} are not known, they can be calculated from $s^{2}=1$ assuming that all σ_{i} are the same.
${ }^{\text {a }}$ or uncertainty - called differently in statistics and in metrology

O Integral method trial-and-error: For several orders n, we calculate the rate constant from pairs $c\left(\tau_{1}\right), c\left(\tau_{2}\right)$.
For $A \rightarrow P$:

$$
k= \begin{cases}\frac{c_{\mathrm{A} 1}^{1-n}-c_{\mathrm{A} 2}^{1-n}}{(n-1)\left(\tau_{1}-\tau_{2}\right)} & n \neq 1 \\ -\frac{\ln \left(c_{\mathrm{A} 1} / c_{\mathrm{A} 2}\right)}{\tau_{1}-\tau_{2}} & n=1\end{cases}
$$

Example (see previous data):

τ_{1}	τ_{2}	$n=1$	$n=2$	$n=1.5$
0	1	1.152	0.885	0.996
1	2	0.739	1.416	1.018
2	3	0.526	1.877	0.991
3	4	0.303	1.624	0.701
4	5	0.466	3.690	1.309

Differential method: rates for two times (or compositions) known

$$
n=\frac{\ln \left(r_{1} / r_{2}\right)}{\ln \left(c_{A 1} / c_{A 2}\right)}
$$

Isolation method (Ostwald):

$$
r=k c_{A}^{\alpha} c_{\mathrm{B}}^{\beta}: c_{\mathrm{B}} \gg c_{\mathrm{A}}(\text { surplus } \mathrm{B}) \Rightarrow r=k^{\prime} c_{\mathrm{A}}^{\alpha}
$$

Order of reaction graphically

Now obsolete!
O integral method

1. order: $\ln c_{A}=\ln c_{A 0}-k \tau \Rightarrow$ straight line in $\left(\tau, \ln c_{A}\right)$
2. order: $-1 / c_{A}=-1 / c_{A 0}-k \tau \Rightarrow$ straight line in $\left(\tau,-1 / c_{A}\right)$
$\frac{3}{2}$. order: $-2 / c_{A}^{1 / 2}=-2 / c_{A 0}^{1 / 2}-k \tau \Rightarrow$ straight line in $\left(\tau,-2 / c_{A}^{1 / 2}\right)$
differential method

- tangent to $c_{A}(\tau) \Rightarrow$ derivative $r(\tau)$
- $\ln r=\ln k+n \ln c_{A} \Rightarrow$ straight line in $\left(\ln c_{A}, \ln r\right)$

$$
\mathrm{A} \xrightarrow{k_{1}} \mathrm{~B} \xrightarrow{k_{2}} \mathrm{C}
$$

Kinetic equations:

$$
\begin{aligned}
& \frac{d c_{\mathrm{A}}}{\mathrm{~d} \tau}=-k_{1} c_{\mathrm{A}} \\
& \frac{\mathrm{~d} c_{\mathrm{B}}}{\mathrm{~d} \tau}=k_{1} c_{\mathrm{A}}-k_{2} c_{\mathrm{B}} \\
& \frac{\mathrm{~d} c_{\mathrm{C}}}{\mathrm{~d} \tau}=k_{2} c_{\mathrm{B}}
\end{aligned}
$$

Initial conditions:

$$
c_{A}(0)=c_{A 0}, c_{B}(0)=0, c_{C}(0)=0
$$

Solution:

$$
\begin{aligned}
c_{\mathrm{A}} & =c_{\mathrm{AO}} \mathrm{e}^{-k_{1} \tau} \\
c_{\mathrm{B}} & =\frac{k_{1}}{k_{2}-k_{1}} c_{\mathrm{AO}}\left[\mathrm{e}^{-k_{1} \tau}-\mathrm{e}^{-k_{2} \tau}\right] \text { for } k_{1} \neq k_{2} \\
& =k_{1} c_{A O} \tau \mathrm{e}^{-k_{1} \tau} \text { for } k_{1}=k_{2} \\
c_{\mathrm{C}} & =c_{A O}-c_{\mathrm{A}}-c_{\mathrm{B}}
\end{aligned}
$$

C

Max. concentration:

$$
\tau_{\max }=
$$

$$
\frac{\ln \left(k_{1} / k_{2}\right)}{k_{1}-k_{2}} \text { for } k_{1} \neq k_{2}
$$

$$
1 / k_{1} \text { for } k_{1}=k_{2}
$$

Oradioactive decay

- pharmacokinetics:
$k_{1}=$ absorption const.
$k_{2}=$ elimination const.

Application to pharmacokinetics

Distribution volume V_{d} is the volume of water in which the dissolved drug would have the same concentration as it has in blood plasma.
$V_{\mathrm{d}}=\frac{\text { mass of drug }}{\text { mass conc. in plasma }}$
Often give per 1 kg of patient's weight

$$
V_{\mathrm{d}}=\frac{\text { mass of drug }}{(\text { mass conc. in plasma }) \times(\text { mass of patient })}
$$

volume	$V_{\mathrm{d}} /\left(\mathrm{Lkg}^{-1}\right)$	
water total	0.6	children more, seniors less
intracellular	0.4	
extracellular	0.2	
blood total	0.08	
plasma	$0.04-0.05$	

water-soluble compound, permeates through membranes, does not bind to anything: $V_{d} \approx 0.6 \mathrm{Lkg}^{-1}$ (e.g., ethanol)
lipophilic compound: higher (even hundreds)
slow permeation through membranes etc.: more compartments needed

Application to pharmacokinetics

Simplification:

one compartment
1st order kinetics (other options: Oth order, Michaelis-Menten)

- absorption k_{1}, elimination k_{2}
- "initial" weight concentration:

$$
c_{\mathrm{A} O}=\frac{\text { mass of drug }}{\text { mass of patient } \times V_{\mathrm{d}}}
$$

One shot

see "consecutive reactions"

Repeated shots

k-times by τ_{a}
(in times $0, \tau_{\mathrm{a}}, 2 \tau_{\mathrm{a}}, \ldots(k-1) \tau_{\mathrm{a}}$)

After many cycles (∞ series) for $\tau_{1}=\tau-$ $(k-1) \tau_{\mathrm{a}}=$ time from the last shot:

$$
\begin{aligned}
c_{\mathrm{B}} & =\frac{k_{1} c_{\mathrm{AO}}}{k_{2}-k_{1}}\left[\frac{\mathrm{e}^{-k_{1} \tau_{1}}}{1-\mathrm{e}^{-k_{1} \tau_{\mathrm{a}}}}-\frac{\mathrm{e}^{-k_{2} \tau_{1}}}{1-\mathrm{e}^{-k_{2} \tau_{\mathrm{a}}}}\right], k_{1} \neq k_{2} \\
& =\frac{k_{1} c_{\mathrm{A} 0} \mathrm{e}^{-k_{1} \tau_{1}}}{1-\mathrm{e}^{-k_{1} \tau_{\mathrm{a}}}}\left[\tau+\frac{\tau_{\mathrm{a}} \mathrm{e}^{-k_{1} \tau_{\mathrm{a}}}}{1-\mathrm{e}^{-k_{1} \tau_{\mathrm{a}}}}\right], k_{1}=k_{2}
\end{aligned}
$$

Example. Both reactions of the first order

$$
\begin{array}{lll}
\mathrm{A} & \xrightarrow{k_{1}} & \mathrm{~B} \\
\mathrm{~A} & \xrightarrow{k_{2}} & \mathrm{C}
\end{array}
$$

Rate equations:

$$
\begin{aligned}
\frac{\mathrm{d} c_{\mathrm{A}}}{\mathrm{~d} \tau} & =-k_{1} c_{\mathrm{A}}-k_{2} c_{\mathrm{A}} \\
\frac{\mathrm{~d} c_{\mathrm{B}}}{\mathrm{~d} \tau} & =k_{1} c_{\mathrm{A}} \\
\frac{\mathrm{~d} c_{\mathrm{C}}}{\mathrm{~d} \tau} & =k_{2} c_{\mathrm{A}}
\end{aligned}
$$

Solution for $c_{A}(0)=c_{A 0}, c_{B}(0)=0, c_{C}(0)=0$:

$$
\begin{aligned}
c_{A} & =c_{A O} \exp \left[-\left(k_{1}+k_{2}\right) \tau\right] \\
c_{\mathrm{B}} & =c_{A O} \frac{k_{1}}{k_{1}+k_{2}}\left\{1-\exp \left[-\left(k_{1}+k_{2}\right) \tau\right]\right\} \\
c_{C} & =c_{A 0} \frac{k_{2}}{k_{1}+k_{2}}\left\{1-\exp \left[-\left(k_{1}+k_{2}\right) \tau\right]\right\}
\end{aligned}
$$

Variants: $A+B \rightarrow, A+C \rightarrow, A \gg B, C$
if both reactions are of the same order:
Wegscheider principle:

$$
\frac{c_{\mathrm{B}}}{c_{\mathrm{C}}}=\frac{k_{1}}{k_{2}}
$$

Reversible reactions

Example. Both reactions of the 1st order:

$$
\mathrm{A} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{~B}
$$

Rate equation:

$$
\frac{\mathrm{d} c_{\mathrm{A}}}{\mathrm{~d} \tau}=-k_{1} c_{\mathrm{A}}+k_{-1} c_{\mathrm{B}}
$$

Balance for $c_{A}(0)=c_{A 0}, c_{B}(0)=0$:

$$
c_{A}+c_{B}=c_{A 0}
$$

Solution:

$$
c_{\mathrm{A}}=\frac{c_{\mathrm{A} 0}}{k_{1}+k_{-1}}\left[k_{1} \mathrm{e}^{-\left(k_{1}+k_{-1}\right) \tau}+k_{-1}\right]
$$

Equilibrium:

$$
\lim _{\tau \rightarrow \infty} c_{A}=\frac{k_{-1}}{k_{1}+k_{-1}} c_{A O}
$$

Equilibrium constant: $\frac{c_{\mathrm{B}}(\infty)}{c_{A}(\infty)}=\frac{k_{1}}{k_{-1}}=K$

Law of mass action

Guldberg-Waage:
Let both reactions in

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{C}+\mathrm{D}
$$

are elementary (of 1st order wrt all compounds)
Rate equation:

$$
\frac{\mathrm{d} c_{\mathrm{A}}}{\mathrm{~d} \tau}=-k_{1} c_{A} c_{\mathrm{B}}+k_{-1} c_{C} c_{\mathrm{D}}
$$

Equilibrium: $\frac{d c_{A}}{d \tau}=0$ or

$$
\frac{C_{C} C_{D}}{C_{A} C_{B}}=\frac{k_{1}}{k_{-1}}=K
$$

where K si the equilibrium constant

Potential energy surface (PES)

Nuclei are much heavier than electrons \Rightarrow electrons are faster (Born-Oppenheimer approximation): electrons follow nuclei

Potential energy surface: energy as a function of coordinates of all nuclei
Better: after removing redundand coordinates because of symmetry (rotations, translations)

A reaction proceeds by the least obstacle way = over the saddle point (better: close to it) = transition state

credits: http://www.ucl.ac.uk/~ucecmst/publications.html, http://theory.cm.utexas.edu/henkelman/research/ltd/
Transition state theory (Eyring): $k=\left(R T / N_{\mathrm{A}} h\right) \exp \left(-\left[G_{\mathrm{m}}^{\ddagger}-G_{\mathrm{m}}^{\text {reactants }}\right] / R T\right)$

T-dependence of the reaction rate (Arrhenius)

$$
\frac{\mathrm{d} \ln K}{\mathrm{~d} T}=\frac{\Delta_{\mathrm{r}} H_{\mathrm{m}}^{\ominus}}{R T^{2}} \stackrel{\Delta_{\mathrm{r}} H_{\mathrm{m}}^{\ominus}=\text { const }}{\Rightarrow} K=K_{0} \mathrm{e}^{-\frac{\Delta_{r} H_{\mathrm{m}}^{\ominus}}{R T}}=\frac{k_{1}}{k_{-1}}=\frac{A_{1} \mathrm{e}^{-\frac{E_{1}^{*}}{R T}}}{A_{2} \mathrm{e}^{-\frac{E_{-1}^{*}}{R T}}} " \Rightarrow " k=A \mathrm{e}^{-\frac{E^{*}}{R T}}
$$

$E^{*}=$ activation energy, $A=$ prefactor

$\Delta_{\mathrm{r}} H_{\mathrm{m}}^{\ominus}=E_{1}^{*}-E_{-1}^{*}$
Typical E^{*} : $50-110 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Rule of the thumb:
$1.5-3 \times$ per $10^{\circ} \mathrm{C}$
reaction coordinate

