Elementary reactions	Chain reactions 5/2
stoichiometry = mechanism (Cl ⁺ + H ₂ \rightarrow HCl + H ⁺)	 initiation (typically free radicals are produced) heat
monomolecular reactions (decay: N ₂ O ₄ → 2 NO ₂ ; radioactive decay; some isomerisations)	– neat – chemical (peroxides) – light (UV)
	 propagation (cyclic reaction with radical recovery) – chain transfer (no branching) – chain branching
bimolecular reactions (collision; most common)	termination
$CICH_3 + CN^- \rightarrow CI^- + CH_3 CN$	 recombination (of radicals) reaction (low-reactive radical—inhibition)
	– deactivation at walls
trimolecular reactions	
$O + O_2 + N_2 \rightarrow O_3 + N_2$	
(N ₂ carries out the surplus energy)	
Reaction mechanisms 2/23 col02	Chain reactions – examples
A (general) reaction is a sequence of elementary reactions = reaction mechanism .	Simplified scheme of ozone cycle in stratosphere by Zellner R.: J. Ana
Example: $2H_2 + O_2 \rightarrow 2H_2O$	$\begin{array}{c} & Chem. \ 340, 627 \ (199) \\ \text{initiation:} & O_2 + h\nu \xrightarrow{f_1} 2O & (\text{forbidden transition}) \end{array}$
$H_2 + O_2 \rightarrow HO_2 + H^{-1}$	propagation: $ \begin{array}{c} O^{\bullet} + O_2 + M & \frac{k_2}{2} & O_3 + M \\ O_3 + h\nu & \frac{J_3}{2} & O_2 + O^{\bullet} \end{array} $ cycle
	$O_3 + h\nu \xrightarrow{J_3} O_2 + 0^{\circ} \int Cycle$
$HO_2 + H_2 \rightarrow H_2O + OH$ $H^{\dagger} + O_2 \rightarrow O^{\dagger} + OH^{\dagger}$	termination: $0^{\circ} + 0_3 \xrightarrow{k_4} 2 0_2$
	J_1 is very small $\Rightarrow J_1k_4 \ll J_3k_2[M] \Rightarrow J_1[O_2] \ll J_3[O_3] \Rightarrow [O_3] = [O_2] \sqrt{\frac{J_1k_2[M]}{J_3k_4}}$
$H_2 + OH^{\bullet} \rightarrow H_2O + H^{\bullet} - H_2 + O^{\bullet} \rightarrow H^{\bullet} + OH^{\bullet}$	Simplified scheme of ozone destruction:
	initiation: CFC $\xrightarrow{J_1}$ Cl ⁺ +
radical A activated molecule A* (energy-rich, local energy minimum)	propagation: $ \begin{array}{c} Cl' + O_3 & \frac{k_2}{2} & ClO' + O_2 \\ ClO' + O_3 & \frac{k_3}{2} & Cl' + 2O_2 \end{array} $ cycle (~ 10 ⁵)
activated complex (transition state) AB^{\ddagger} , $AB^{\#}$ (saddle point)	$\begin{array}{c} \text{ClO}^{+}+O_3 \xrightarrow{k_3} \text{Cl}^{+}+2O_2 \end{array} \right) \qquad $
	termination: various
Reaction mechanisms 3/23 col02	Example (not in detail) 7/2 cold
We need to get rid of unstable (unknown) intermediates.	$H_2 + Cl_2 \rightarrow 2 HCl$
 rate-determining step fastest (parallel reactions) slowest (consecutive reactions) 	
Bodenstein principle of (quasi)stationary state	initiation: $Cl_2 \xrightarrow{k_1} 2Cl^*$
intermediates fast reach (almost) constant concentrations	propagation: $H' + Cl_2 \xrightarrow{k_2} HCl + H'$ $cycle (up to 10^6)$ $H' + Cl_2 \xrightarrow{k_3} HCl + Cl'$
e.g.: $A \rightleftharpoons A^* \to B \frac{\mathrm{d} \mathcal{C}_{A^*}}{\mathrm{d} \tau} \approx 0$	$H' + Cl_2 \xrightarrow{k_3} HCl + Cl'$
pre-equilibrium reversible reaction part of chain	termination: $2CI \xrightarrow{k_4} CI_2$
e.g.: slow $A + B \stackrel{\text{fast}}{\underset{\text{fast}}{\leftarrow}} C + D \stackrel{\text{slow}}{\rightarrow} \dots \qquad \frac{C_{CCD}}{C_{ACB}} \approx K$	dava katu tutu ka
can be derived from the above principle (for $\gamma = 1$)	$\frac{dc_{HCl}}{d\tau} = k_2 c_{Cl} \cdot c_{H_2} + k_3 c_{H} \cdot c_{Cl_2} \stackrel{\text{steady state}}{=} 2k_2 \sqrt{\frac{k_1}{k_4} c_{Cl_2}^{1/2} c_{H_2}}$
	$d\tau = c_1 c_2 = 11 c_2 = \sqrt{k_4 c_2 c_2}$
can be derived from the above principle (for $\gamma = 1$)	$d\tau = c_1 + c_2 = 11 + c_2 = \sqrt{k_4 + c_2 + c_2}$
4/23	
Lindemann(-Hinshelwood) mechanism	[xoctave; xcat/octave/MichaelisMentenova.m Michaelis Menten] 8/2 Enzyme catalysis: Michaelis-Menten kinetics colo
Lindemann(-Hinshelwood) mechanism $\frac{4/23}{col02}$ A(g) \rightarrow B(g)	[xoctave; xcat/octave/MichaelisMentenova.m Michaelis Menten] 8/2 Enzyme catalysis: Michaelis–Menten kinetics colo Mechanism of Michaelis and Menten (Enzyme, Substrate, Product):
Lindemann(-Hinshelwood) mechanism $\frac{4/23}{col02}$ A(g) \rightarrow B(g)Inelastic collisions in the gas phase activate molecules:	[xoctave; xcat/octave/MichaelisMentenova.m Michaelis Menten] $_{8/2}$ Enzyme catalysis: Michaelis–Menten kinetics column Mechanism of Michaelis and Menten (E nzyme, S ubstrate, P roduct): $E + S \stackrel{k_1}{\underset{k=1}{\leftarrow}} ES \stackrel{k_2}{\to} E + P$
Lindemann(-Hinshelwood) mechanism $\frac{4/23}{col02}$ A(g) \rightarrow B(g)Inelastic collisions in the gas phase activate molecules:A + A $\frac{k_1}{k_{-1}}$ A + A $\frac{k_1}{k_{-1}}$	[xoctave; xcat/octave/MichaelisMentenova.m Michaelis Menten] $_{8/2}$ Enzyme catalysis: Michaelis-Menten kinetics Mechanism of Michaelis and Menten (E nzyme, S ubstrate, P roduct): $E + S \stackrel{k_1}{\underset{k_{-1}}{\rightarrow}} ES \stackrel{k_2}{\rightarrow} E + P$ stationary state (because $c_E, c_ES \ll c_S$):
Lindemann(-Hinshelwood) mechanism $4/23$ colo2A(g) \rightarrow B(g)Inelastic collisions in the gas phase activate molecules: $A + A \xrightarrow{k_1}_{k-1} A + A^*$ $A^* \xrightarrow{k_2} B$ Image: A + A A + A^* = A + A^* = A^* = A^*	Enzyme catalysis: Michaelis-Menten kinetics Mechanism of Michaelis and Menten (Enzyme, Substrate, Product): $E + S \xrightarrow{k_1}_{k_{-1}} ES \xrightarrow{k_2} E + P$ stationary state (because c _E , c _E S \ll c _S): $\frac{dc_{ES}}{d\tau} = k_1 c_{E} c_{S} - (k_{-1} + k_2) c_{ES} = 0$
Lindemann(-Hinshelwood) mechanism $4/23$ colo2 $A(g) \rightarrow B(g)$ $A(g) \rightarrow B(g)$ Inelastic collisions in the gas phase activate molecules: $A + A \stackrel{k_1}{\underset{k=1}{k}} A + A^*$ $A^* \stackrel{k_2}{\underset{k=3}{k}} B$ $C_{A^*} \ll c_A \Rightarrow$ stationary state $\frac{dc_{A^*}}{d\tau} = 0 \Rightarrow$ credit (Lindemann) Wikipedia	[xoctave: xcat/octave/MichaelisMentenova.m Michaelis Menten] 8/2 Enzyme catalysis: Michaelis-Menten kinetics colo Mechanism of Michaelis and Menten (Enzyme, Substrate, Product): $E + S \stackrel{k_1}{\underset{k_{-1}}{\leftarrow}} ES \stackrel{k_2}{\rightarrow} E + P$ stationary state (because c _E , c _E S \ll c _S): $\frac{dc_{ES}}{d\tau} = k_1 c_E c_S - (k_{-1} + k_2) c_{ES} = 0$ balance: c _E + c _E S = c _E O
Lindemann(-Hinshelwood) mechanism $4/23 \\ colo2$ A(g) \rightarrow B(g)Inelastic collisions in the gas phase activate molecules: $A + A = \begin{cases} k_1 \\ k_{-1} \end{cases} A + A^* \\ k_{-1} \end{cases} A + A^*$ $A^* = \begin{cases} k_2 \\ k_{-1} \end{cases} B$	[xoctave: xcat/octave/MichaelisMentenova.m Michaelis Menten] 8/2 Enzyme catalysis: Michaelis-Menten kinetics cold Mechanism of Michaelis and Menten (Enzyme, Substrate, Product): $E + S \stackrel{k_1}{\underset{k_{-1}}{\leftarrow}} ES \stackrel{k_2}{\rightarrow} E + P$ stationary state (because $c_E, c_{ES} \ll c_S$): $\frac{dc_{ES}}{d\tau} = k_1 c_E c_S - (k_{-1} + k_2) c_{ES} = 0$
Lindemann(-Hinshelwood) mechanism $4/23$ colo2A(g) \rightarrow B(g)Inelastic collisions in the gas phase activate molecules:Image: A + A $\stackrel{k_1}{\underset{k=1}{\leftarrow}} A + A^*$ $A^* \stackrel{k_2}{\underset{k=1}{\leftarrow}} B$ Image: C_A * \ll c_A \Rightarrow stationary state $\frac{dc_{A^*}}{d\tau} = 0 \Rightarrow$ $c_{A^*} \ll c_A \Rightarrow$ stationary state $\frac{dc_{A^*}}{d\tau} = 0 \Rightarrow$ Image: C_A/d\tau = dc_B/d\tau	[xoctave; xcat ./octave/MichaelisMentenova.m Michaelis Menten] 8/2 Enzyme catalysis: Michaelis-Menten kinetics colo Mechanism of Michaelis and Menten (Enzyme, Substrate, Product): $E + S \stackrel{k_1}{\leftarrow} ES \stackrel{k_2}{\to} E + P$ stationary state (because c _E , c _E S \ll c _S): $\frac{dc_{ES}}{d\tau} = k_1 c_E c_S - (k_{-1} + k_2) c_{ES} = 0$ balance: c _E + c _{ES} = c _{E0} Eliminating c _E (\Rightarrow c _E S) from $\frac{dc_P}{d\tau}$: also from: $\frac{dc_P}{d\tau} = k_1 c_E c_S - k_{-1} c_E$
Lindemann(-Hinshelwood) mechanism $A(g) \rightarrow B(g)$ Inelastic collisions in the gas phase activate molecules: $A + A \xrightarrow[k_{-1}]{k_{-1}} A + A^{*}$ $A^{*} \xrightarrow{k_{2}} B$ $c_{A^{*}} \ll c_{A} \Rightarrow \text{ stationary state } \frac{dc_{A^{*}}}{d\tau} = 0 \Rightarrow$ $-\frac{dc_{A}}{d\tau} = \frac{dc_{B}}{d\tau} = k_{2} \frac{k_{1}c_{A}^{2}}{k_{2}+k_{-1}c_{A}}$ $d_{A} = \frac{k_{1}c_{A}}{d\tau} = k_{2} \frac{k_{1}c_{A}}{k_{2}+k_{-1}c_{A}}$ $d_{A} = \frac{dc_{B}}{d\tau} = k_{2} \frac{k_{1}c_{A}}{k_{2}+k_{-1}c_{A}}$	[xoctave: xcat/octave/MichaelisMentenova.m Michaelis Menten] 8/2 Enzyme catalysis: Michaelis-Menten kinetics color Mechanism of Michaelis and Menten (Enzyme, Substrate, Product): $E + S \stackrel{k_1}{\leftarrow} ES \stackrel{k_2}{\rightarrow} E + P$ stationary state (because c _E , c _{ES} << c _S): $\frac{dc_{ES}}{d\tau} = k_1 c_E c_S - (k_{-1} + k_2) c_{ES} = 0$ balance: c _E + c _{ES} = c _{EO} Eliminating c _E (\Rightarrow c _{ES}) from $\frac{dc_P}{d\tau}$: $\frac{dc_P}{d\tau} = k_2 c_{ES} = k_2 \frac{c_{EO}}{K_M/c_S + 1} = v_{max} \frac{c_S}{K_M + c_S}$

Mixed (non-compatible) reversible inhibition
$$\frac{1}{1000}$$
 $E \rightarrow 5 \frac{1}{24}$ ES $\frac{1}{24}$ E $K = 1 + 5 \frac{1}{24}$ ES $\frac{1}{24} + p$ $\frac{1}{24} + p$ $K = 1 + 5 \frac{1}{24}$ ES $\frac{1}{24} + p$ $\frac{1}{24} + p$ Hood inhibition the inhibition tarticles a officient part of the enzyme $\frac{1}{24} + \frac{1}{24} + \frac{1}{2$