Elementary reactions $\begin{aligned} & \text { 1/23 } \\ & \text { col02 }\end{aligned}$	Chain reactions $\begin{gathered}\text { 5/23 } \\ \text { col02 }\end{gathered}$
stoichiometry $=$ mechanism $\left(\mathrm{Cl}^{*}+\mathrm{H}_{2} \rightarrow \mathrm{HCl}+\mathrm{H}^{*}\right)$ monomolecular reactions (decay: $\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NO}_{2}$; radioactive decay; some isomerisations) bimolecular reactions (collision; most common) $\mathrm{ClCH}_{3}+\mathrm{CN}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{CH}_{3} \mathrm{CN}$ trimolecular reactions $\mathrm{O}+\mathrm{O}_{2}+\mathrm{N}_{2} \rightarrow \mathrm{O}_{3}+\mathrm{N}_{2}$ (N_{2} carries out the surplus energy)	- initiation (typically free radicals are produced) - heat - chemical (peroxides) - light (UV) O propagation (cyclic reaction with radical recovery) - chain transfer (no branching) - chain branching - termination - recombination (of radicals) - reaction (low-reactive radical-inhibition) - deactivation at walls
Reaction mechanisms $\begin{aligned} & 2 / 23 \\ & \text { col02 }\end{aligned}$	Chain reactions - examples $\quad 6 / 23$
A (general) reaction is a sequence of elementary reactions = reaction mechanism. Example: $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ radical A^{*} activated molecule A* (energy-rich, local energy minimum) activated complex (transition state) $A B^{\ddagger}, A^{\#}$ (saddle point)	Simplified scheme of ozone cycle in stratosphere by Zellner R.: J. Anal. Chem. 340, 627 (1991) initiation: $\quad \mathrm{O}_{2}+h \nu \xrightarrow{J_{1}} 20^{\circ} \quad$ (forbidden transition) propagation: $\left.\begin{array}{rll}O^{\prime}+O_{2}+M \\ O_{3}+h \nu \xrightarrow{k_{2}} & O_{3}+M \\ \mathrm{O}_{3} & O_{2}+\mathrm{O}^{\circ}\end{array}\right\} \quad$ cycle termination: $\quad \mathrm{O}^{\circ}+\mathrm{O}_{3} \xrightarrow{\mathrm{~K}_{4}} 2 \mathrm{O}_{2}$ J_{1} is very small $\Rightarrow J_{1} k_{4} \ll J_{3} k_{2}[M] \Rightarrow J_{1}\left[\mathrm{O}_{2}\right] \ll J_{3}\left[\mathrm{O}_{3}\right] \Rightarrow\left[\mathrm{O}_{3}\right]=\left[\mathrm{O}_{2}\right] \sqrt{\frac{J_{1} k_{2}[M]}{J_{3} k_{4}}}$ Simplified scheme of ozone destruction: $\left.\begin{array}{rc} \text { initiation: } & \mathrm{CFC} \xrightarrow{\mathrm{~J}_{1}} \mathrm{Cl}^{*}+\ldots \\ \text { propagation: } & \mathrm{Cl}^{*}+\mathrm{O}_{3} \xrightarrow{\mathrm{k}_{2}} \mathrm{ClO}^{*}+\mathrm{O}_{2} \\ & \mathrm{CIO}^{*}+\mathrm{O}_{3} \xrightarrow{k_{3}} \mathrm{Cl}^{*}+2 \mathrm{O}_{2} \end{array}\right\} \quad \text { cycle }\left(\sim 10^{5}\right)$
Reaction mechanisms $\begin{gathered}3 / 23 \\ \text { col02 }\end{gathered}$	Example (not in detail) $\begin{aligned} & \text { (} \\ & \text { colo } \\ & \text { colo }\end{aligned}$
We need to get rid of unstable (unknown) intermediates. rate-determining step - fastest (parallel reactions) - slowest (consecutive reactions) Bodenstein principle of (quasi)stationary state intermediates fast reach (almost) constant concentrations $\text { e.g.: } \mathrm{A} \rightleftarrows \mathrm{~A}^{*} \rightarrow \mathrm{~B} \quad \frac{\mathrm{~d} c_{A^{*}}}{\mathrm{~d} \tau} \approx 0$ - pre-equilibrium reversible reaction part of chain $\text { e.g.: } \ldots \xrightarrow{\text { slow }} \mathrm{A}+\mathrm{B} \underset{\text { fast }}{\stackrel{\text { fast }}{\rightleftarrows}} \mathrm{C}+\mathrm{D} \xrightarrow{\text { slow }} \ldots \frac{c_{\mathrm{C}} C_{\mathrm{D}}}{c_{\mathrm{A}} C_{\mathrm{B}}} \approx K$ can be derived from the above principle (for $\gamma=1$)	
Lindemann(-Hinshelwood) mechanism 4 4/23	
$A(g) \rightarrow B(g)$ Inelastic collisions in the gas phase activate molecules:	Mechanism of Michaelis and Menten (Enzyme, Substrate, Product): $\mathrm{E}+\mathrm{S} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{ES} \xrightarrow{k_{2}} \mathrm{E}+\mathrm{P}$ stationary state (because $c_{E}, c_{E S} \ll C_{S}$): $\frac{\mathrm{d} c_{\mathrm{ES}}}{\mathrm{~d} \tau}=k_{1} C_{E C S}-\left(k_{-1}+k_{2}\right) c_{\mathrm{ES}}=0$ balance: $c_{E}+c_{E S}=c_{E O}$ Eliminating $c_{E}\left(\Rightarrow c_{E S}\right)$ from $\frac{\mathrm{d} c_{P}}{\mathrm{~d} \tau}$: also from: $\frac{d c_{p}}{d \tau}=-\frac{d c_{S}}{d \tau}=k_{1} C_{E} C_{S}-k_{-1} c_{E S}$ $\frac{\mathrm{d} c_{\mathrm{P}}}{\mathrm{~d} \tau}=k_{2} c_{\mathrm{ES}}=k_{2} \frac{c_{\mathrm{E} O}}{k_{\mathrm{M}} / c_{\mathrm{S}}+1}=v_{\max } \frac{c_{\mathrm{S}}}{k_{\mathrm{M}}+c_{\mathrm{S}}}$ where $K_{M}=\frac{k_{2}+k_{-1}}{k_{1}}=$ Michaelis constant and $v_{\max }=k_{2} c_{E 0}$ $c_{S} \gg K_{M} \Rightarrow \frac{d c_{S}}{d \tau}=-v_{\max }$ (zeroth order, most of E is saturated, ES) $c_{\mathrm{S}} \ll K_{\mathrm{M}} \Rightarrow \frac{\mathrm{d} c_{\mathrm{S}}}{\mathrm{d} \tau}=-\frac{v_{\max }}{K_{\mathrm{M}}} c_{\mathrm{S}}$ (first order, most of E is free, E)

Michaelis-Menten kinetics II $\quad 9 / 23$	Babel of units $\quad 13 / 23$
Experimentally available: K_{M} and $v_{\max }=k_{2} c_{\mathrm{E} 0}$ (often not both $c_{\text {EO }}$ and k_{2} simultaneously) $\frac{\mathrm{d} c \mathrm{~s}}{\mathrm{~d} \tau}=-v_{\max } \frac{1}{K_{\mathrm{M}} / c_{\mathrm{S}}+1}$ Integrated form $K_{\mathrm{M}} \ln \frac{c_{\mathrm{S}} 0}{c_{\mathrm{S}}}+c_{\mathrm{SO} 0}-c_{\mathrm{S}}=v_{\max } \tau$ cannot solve for $c_{\mathrm{S}}(\tau)$ (using elem. functions) \Rightarrow numerical solution	 Example: $1 \mu \mathrm{~g}$ of enzyme ($M=40 \mathrm{kDa}$) in the excess of substrate provides the reaction rate of $6 \mu \mathrm{~mol}$ of substrate $/ \mathrm{min}$. What is the turnover number (in s^{-1})?
Metabolism of alcohols $\quad 10 / 23$	Inhibition $14 / 23$ col02
Alcohol dehydrogenase, various types In liver and the lining of the stomach Further oxidation to acids and $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ $\begin{aligned} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} & \rightarrow \mathrm{CH}_{3} \mathrm{CHO} \text { hangover } \\ \mathrm{CH}_{2} \mathrm{OH} \mathrm{CH}_{2} \mathrm{OH} & \rightarrow \ldots \rightarrow(\mathrm{COOH})_{2} \text { (kidney stones) } \\ \mathrm{CH}_{3} \mathrm{OH} & \rightarrow \mathrm{HCHO}(\stackrel{\text { Q }}{2} \text {) } \rightarrow \mathrm{HCOOH} \text { (..) } \end{aligned}$ Example. Calculate the time needed to metabolize $c_{S 0}=1 \mathrm{wt}$. \%o of ethanol to $c_{S}=0.1 \%$ o Data: $v_{\text {max }}=0.12 \mathrm{~g} \mathrm{~L}^{-1}$ hod $^{-1}$, $K_{\mathrm{M}}=0.06 \mathrm{~g} \mathrm{~L}^{-1}$ $\rho_{\text {blood }}=1.06 \mathrm{~g} \mathrm{~cm}^{-3} \Rightarrow 1 \mathrm{wt} . \%=1.06 \mathrm{~g} \mathrm{~L}^{-1}$ Oth order: $\tau=\frac{c_{S 0}-c s}{v_{\max }}=\frac{(1-0.24) \times 1.06}{0.12} \mathrm{~h}=6.7 \mathrm{~h}$ More accurate: $\tau=\frac{K_{\mathrm{M}} \ln \frac{c_{S 0}}{C_{\mathrm{S}}}+\mathrm{CSO}_{5}-c_{\mathrm{S}}}{v_{\max }}=7.4 \mathrm{~h}$ human:	- reversible O irreversible reversible inhibition: the inhibitor is bound non-covalently (H-bonds, etc.), decreases the turnover irreversible inhibition: "catalyst poisoning", usually covalently bound \Rightarrow inactive complex EI*
$\begin{array}{ll}\text { Michaelis-Menten kinetics III } & 11 / 23 \\ \text { col02 }\end{array}$	$\begin{array}{ll}\text { Competitive reversible inhibition } & 15 / 23 \\ \text { coloz }\end{array}$
Rate: Linear in ($1 / c_{\mathrm{S}}, 1 / v$) $v=-\frac{d c_{\mathrm{S}}}{d \tau}=v_{\max } \frac{1}{k_{\mathrm{M}} / c_{\mathrm{S}}+1}$ (Lineweaver \& Burk): $\frac{1}{v}=\frac{K_{\mathrm{M}}}{v_{\max }} \frac{1}{c_{S}}+\frac{1}{v_{\max }}$ $\underbrace{1 / v}_{0}$	$\begin{aligned} & \quad \mathrm{E}+\mathrm{S} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{ES} \xrightarrow{k_{2}} \mathrm{E}+\mathrm{P} \\ & \quad+ \\ & \mathrm{I} \\ & k_{i} \downarrow \uparrow k_{i-1} \\ & \quad \mathrm{EI} \end{aligned}$ The inhibitor binds to the same site as the substrate ("competes" with the substrate)
Example-carbonic anhydrase \quad [plot/anhydrase.sh] $12 / 23$	$\begin{array}{ll}\text { Uncompetitive reversible inhibition } & 16 / 23 \\ \text { colo2 }\end{array}$
[according to DeVoe, Kistiakowski, JACS 83, 274 (1961)]	$\begin{array}{ccccc} \mathrm{E}+\mathrm{S} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} & \mathrm{ES} & \xrightarrow{k_{2}} & \mathrm{E}+\mathrm{P} \\ & + & & \\ & & \\ & k_{i}^{\prime} \downarrow \uparrow k_{i-1}^{\prime} & & \\ & & \mathrm{ESI} & \xrightarrow{k_{2}^{i}} & \\ & \mathrm{E}+\mathrm{P} \end{array}$ The inhibitor binds to the enzyme-substrate complex Also anti-competitive often partial (slows down the reaction)

Mixed inhibition: the inhibitor bound both to E and ES
(Pure) non-competitive inhibition: inhibitor affects a different part of the enzyme, $k_{i}=k_{i}^{\prime}, k_{i-1}=k_{i-1}^{\prime}$

Reversible inhibition: some math	$18 / 23$
col02	

E	+ S	$\underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}}$	ES	$\xrightarrow{\mathrm{K}_{2}}$	$E+P$
+			+		
1			1		
$k_{i} \downarrow \uparrow k_{i-1}$			$k_{i}^{\prime} \downarrow \uparrow k_{i-1}^{\prime}$		
El			ESI		

stationary state:

$$
\frac{\mathrm{d} c_{\mathrm{ES}}}{\mathrm{~d} \tau}=k_{1} c_{\mathrm{E}} C_{S}-\left(k_{-1}+k_{2}\right) c_{\mathrm{ES}}-k_{i}^{\prime} C_{I} C_{E S}+k_{i-1}^{\prime} c_{\mathrm{ESI}}=0
$$

pre-equilibrium:

$$
c_{\mathrm{EI}}=\frac{k_{i}}{k_{i-1}} c_{\mathrm{E}} C_{l}, \quad c_{\mathrm{ESI}}=\frac{k_{i}^{\prime}}{k_{i-1}^{\prime}} c_{\mathrm{ES}} C_{l}
$$

balance: $c_{E}+c_{E S}+c_{E I}+c_{E S I}=c_{E O}$
we assume $c_{I} \gg c_{E} \Rightarrow c_{1} \approx c_{10}$ is known (no balance of I needed)

Reversible inhibition: some math	$19 / 23$ col02

balance + pre-equilibrium \Rightarrow

$$
\begin{aligned}
c_{\mathrm{EO}} & =c_{\mathrm{E}}+c_{\mathrm{EI}}+c_{\mathrm{ES}}+c_{\mathrm{ESI}} \\
& =\left(1+\frac{c_{\mathrm{EI}}}{c_{\mathrm{E}}}\right) c_{\mathrm{E}}+\left(1+\frac{c_{\mathrm{ESI}}}{c_{\mathrm{EI}}}\right) c_{\mathrm{ES}} \\
& =\left(1+\frac{k_{i}}{k_{i-1}} c_{I}\right) c_{\mathrm{E}}+\left(1+\frac{k_{i}^{\prime}}{k_{i-1}^{\prime}} c_{\mathrm{I}}\right) c_{\mathrm{ES}} \\
& \equiv \alpha c_{\mathrm{E}}+\alpha^{\prime} c_{\mathrm{ES}}
\end{aligned}
$$

stationary state \Rightarrow

$$
0=k_{1} c_{\mathrm{E}} c_{\mathrm{S}}-\left(k_{-1}+k_{2}\right) c_{\mathrm{ES}}
$$

by inserting (the same as without inhibition):

$$
v=\frac{\mathrm{d} C_{\mathrm{P}}}{\mathrm{~d} \tau}=k_{2} C_{\mathrm{ES}}=k_{2} \frac{c_{\mathrm{E} 0}}{\alpha \frac{k_{-1}+k_{2}}{k_{1}} \frac{1}{c_{\mathrm{S}}}+\alpha^{\prime}}=v_{\max } \frac{1}{\alpha K_{\mathrm{M}} / c_{\mathrm{S}}+\alpha^{\prime}}
$$

Lineweaver-Burk:

$$
\frac{1}{v}=\frac{\alpha K_{\mathrm{M}}}{v_{\max }} \frac{1}{C_{\mathrm{S}}}+\frac{\alpha^{\prime}}{v_{\max }}
$$

Reversible inhibition: Lineweaver-Burk

$$
\begin{gathered}
\frac{1}{v}=\frac{\alpha K_{\mathrm{M}}}{v_{\max }} \frac{1}{c 厶 大 S^{s}}+\frac{\alpha^{\prime}}{v_{\max }}, \quad \alpha=1+\frac{k_{i}}{k_{i-1}} c_{1}, \quad \alpha^{\prime}=1+\frac{k_{i}^{\prime}}{k_{i-1}^{\prime}} c_{1} \\
\underbrace{1 / v}_{\frac{\alpha_{1}^{\prime}}{\alpha K_{\mathrm{M}}} 0} 1 / \mathrm{c}_{\mathrm{S}}
\end{gathered}
$$

Reversible inhibition - summary

$$
\frac{1}{v}=\frac{\alpha K_{\mathrm{M}}}{v_{\max }} \frac{1}{c_{\mathrm{S}}}+\frac{\alpha^{\prime}}{v_{\max }}, \quad \alpha=1+\frac{k_{i}}{k_{i-1}} c_{l}, \quad \alpha^{\prime}=1+\frac{k_{i}^{\prime}}{k_{i-1}^{\prime}} c_{1}
$$

No inhibition: $\alpha=\alpha^{\prime}=1$

Competitive:

$$
\alpha>1
$$

inhibitor binds to the free enzyme in the L-B diagram: greater K_{M} the same $v_{\text {max }}$

Uncompetitive:

$$
\alpha^{\prime}>1
$$

inhibitor binds to
the enzyme-substrate complex
in the L-B diagram:
smaller K_{M} smaller $v_{\text {max }}$

Mixed (non-competitive): $\alpha, \alpha^{\prime}>1$ inhibitor binds to both the free enzyme and enzyme-substrate complex in the L-B diagram: the same K_{M} smaller $V_{\text {max }}$

Photochemistry instant

Photon energy $=h \nu=$ energy source for the reaction
Planck constant: $h=6.62607 \times 10^{-34} \mathrm{Js}$
Frequency ν, wave number $\tilde{v}=1 / \lambda$, wave length λ. It holds: $c=\lambda \nu$.
Quantum yield

$$
\Phi=\frac{\# \text { of molecules transformed/decomposed/... }}{\# \text { of photons absorbed }}
$$

Chain reactions: $\Phi>1$. Example:

$$
\begin{aligned}
2 \mathrm{HI} & \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2} \\
\mathrm{HI}+h \nu & \rightarrow \mathrm{H}^{*}+\mathrm{I}^{*} \\
\mathrm{H}^{*}+\mathrm{HI} & \rightarrow \mathrm{H}_{2}+\mathrm{I}^{*} \\
2 \mathrm{I}^{*} & \rightarrow \mathrm{I}_{2} \\
\Phi & =2
\end{aligned}
$$

Example: How much HI decomposes by absorbing energy of 100 J in the form of light of wave length 254 nm ?
Qua
time vs. substrate conc.

