Elementary reactions

stoichiometry = mechanism $(Cl^{+} + H_2 \rightarrow HCl + H^{+})$

monomolecular reactions (decay: $N_2O_4 \rightarrow 2NO_2$; radioactive decay; some isomerisations)

bimolecular reactions (collision; most common)

 $CICH_3 + CN^- \rightarrow CI^- + CH_3 CN$

trimolecular reactions

$$O + O_2 + N_2 \rightarrow O_3 + N_2$$

(N₂ carries out the surplus energy)

Reaction mechanisms

A (general) reaction is a sequence of elementary reactions = **reaction mechanism**.

Example: $2H_2 + O_2 \rightarrow 2H_2O$

radical A

activated molecule A* (energy-rich, local energy minimum) activated complex (transition state) AB[‡], AB[#] (saddle point)

Reaction mechanisms

We need to get rid of unstable (unknown) intermediates.

- rate-determining step
 - fastest (parallel reactions)
 - slowest (consecutive reactions)
- Bodenstein principle of (quasi)stationary state intermediates fast reach (almost) constant concentrations

e.g.: $A \rightleftharpoons A^* \to B$ $\frac{dc_{A^*}}{d\tau} \approx 0$

pre-equilibrium reversible reaction part of chain fact

e.g.: ...
$$\stackrel{\text{slow}}{\rightarrow} A + B \stackrel{\text{fast}}{\underset{\text{fast}}{\leftarrow}} C + D \stackrel{\text{slow}}{\rightarrow} \dots \qquad \frac{CCCD}{CACB} \approx K$$

can be derived from the above principle (for $\gamma = 1$)

Lindemann(-Hinshelwood) mechanism

 $A(g) \rightarrow B(g)$

Inelastic collisions in the gas phase activate molecules:

 $A + A \quad \stackrel{k_1}{\leftarrow} \quad A + A^*$ $A^* \quad \stackrel{k_2}{\longrightarrow} \quad B$ $c_{A^*} \ll c_A \quad \Rightarrow \quad \text{stationary state} \quad \frac{dc_{A^*}}{d\tau} = 0 \quad \Rightarrow$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2 \frac{k_1 c_A^2}{k_2 + k_{-1} c_A}$

4/23

credit: (Lindemann) Wikipedia

$$-dc_A/d\tau = dc_B/d\tau$$

• $k_{-1}c_A \gg k_2$ (ambient pressures): $\frac{dc_B}{d\tau} = \frac{k_2k_1}{k_{-1}}c_A$ 1st order • $k_{-1}c_A \ll k_2$ (low pressures): $\frac{dc_B}{d\tau} = k_1c_A^2$ 2nd order

E.g.: cyclopropane \rightarrow propene, N₂O₅ \rightarrow NO₂ + NO₃, dimethyldiazene (azomethane) CH₃-N=N-CH₃ \rightarrow C₂H₆ + N₂

Chain reactions

- initiation (typically free radicals are produced)
 - heat
 - chemical (peroxides)
 - light (UV)

propagation (cyclic reaction with radical recovery)

- chain transfer (no branching)
- chain branching

termination

- recombination (of radicals)
- reaction (low-reactive radical—inhibition)
- deactivation at walls

Chain reactions – examples

6/23 col02

Simplified scheme of ozone cycle in stratosphere

 $\begin{array}{ccc}
O^{\bullet} + O_2 + M & \xrightarrow{k_2} & O_3 + M \\
O_3 + h\nu & \xrightarrow{J_3} & O_2 + O^{\bullet}
\end{array}$

propagation:

termination: $O^{\dagger} + O_{3} \xrightarrow{k_{4}} 2O_{7}$

by Zellner R.: J. Anal. Chem. 340, 627 (1991)

initiation: $O_2 + h\nu \xrightarrow{J_1} 20^{\bullet}$ (forbidden transition)

cycle

 $J_1 \text{ is very small } \Rightarrow J_1k_4 \ll J_3k_2[M] \Rightarrow J_1[O_2] \ll J_3[O_3] \Rightarrow [O_3] = [O_2] \sqrt{\frac{J_1k_2[M]}{J_2k_4}}$

Simplified scheme of ozone destruction:

initiation: $CFC \xrightarrow{J_1} Cl^{\bullet} + \dots$ $\begin{array}{cccc} CI &+ O_3 & \xrightarrow{k_2} & CIO &+ O_2 \\ CIO &+ O_3 & \xrightarrow{k_3} & CI &+ 2O_2 \end{array} \end{array} \right\} \quad \text{cycle } (\sim 10^5)$ propagation: termination: various

Example (not in detail)

$$H_2 + CI_2 \rightarrow 2 HCI$$

initiation:
$$Cl_2 \xrightarrow{k_1} 2Cl^*$$

propagation: $Cl^* + H_2 \xrightarrow{k_2} HCl + H^*$
 $H^* + Cl_2 \xrightarrow{k_3} HCl + Cl^*$ cycle (up to 10⁶)
termination: $2Cl^* \xrightarrow{k_4} Cl_2$

$$\frac{dc_{HCI}}{d\tau} = k_2 c_{CI} \cdot c_{H_2} + k_3 c_{H} \cdot c_{CI_2} \stackrel{\text{steady state}}{=} 2k_2 \sqrt{\frac{k_1}{k_4} c_{CI_2}^{1/2} c_{H_2}}$$

[xoctave; xcat ../octave/MichaelisMentenova.m Michaelis Menten] 8/23 Enzyme catalysis: Michaelis–Menten kinetics col02

Mechanism of Michaelis and Menten (Enzyme, Substrate, Product):

$$E + S \stackrel{k_1}{\underset{k_{-1}}{\leftarrow}} ES \stackrel{k_2}{\xrightarrow{}} E + P$$

stationary state (because $c_E, c_{ES} \ll c_S$):

$$\frac{dc_{ES}}{d\tau} = k_1 c_E c_S - (k_{-1} + k_2) c_{ES} = 0$$

balance: $c_{\rm E} + c_{\rm ES} = c_{\rm E0}$

Eliminating $c_{\rm E}$ ($\Rightarrow c_{\rm ES}$) from $\frac{dc_{\rm P}}{d\tau}$:

also from:
$$\frac{dc_P}{d\tau} = -\frac{dc_S}{d\tau} = k_1 c_E c_S - k_{-1} c_{ES}$$

$$\frac{dc_{P}}{d\tau} = k_{2}c_{ES} = k_{2}\frac{c_{E0}}{K_{M}/c_{S}+1} = v_{max}\frac{c_{S}}{K_{M}+c_{S}}$$

where $K_{\rm M} = \frac{k_2 + k_{-1}}{k_1}$ = Michaelis constant and $v_{\rm max} = k_2 c_{\rm E0}$ • $c_{\rm S} \gg K_{\rm M} \Rightarrow \frac{dc_{\rm S}}{d\tau} = -v_{\rm max}$ (zeroth order, most of E is saturated, ES) • $c_{\rm S} \ll K_{\rm M} \Rightarrow \frac{dc_{\rm S}}{d\tau} = -\frac{v_{\rm max}}{K_{\rm M}} c_{\rm S}$ (first order, most of E is free, E)

Michaelis-Menten kinetics II

Experimentally available: $K_{\rm M}$ and $v_{\rm max} = k_2 c_{\rm E0}$ (often not both $c_{\rm E0}$ and k_2 simultaneously)

$$\frac{\mathrm{d}c_{\mathrm{S}}}{\mathrm{d}\tau} = -v_{\mathrm{max}} \frac{1}{K_{\mathrm{M}}/c_{\mathrm{S}}+1}$$

credit: wikipedia

Integrated form

 $K_{\rm M} \ln \frac{c_{\rm S0}}{c_{\rm S}} + c_{\rm S0} - c_{\rm S} = v_{\rm max} \tau$

credits: pitt.edu, Wikipedie

 \Leftrightarrow cannot solve for $c_{\rm S}(\tau)$ (using elem. functions) \Rightarrow numerical solution

Metabolism of alcohols

Alcohol dehydrogenase, various types In liver and the lining of the stomach Further oxidation to acids and $H_2O + CO_2$

> CH₃ CH₂OH → CH₃ CHO hangover CH₂OH CH₂OH → ... → (COOH)₂ (kidney stones) CH₃OH → HCHO (\bigotimes) → HCOOH (\bigotimes)

Example. Calculate the time needed to metabolize $c_{S0} = 1$ wt. $\%_0$ of ethanol to $c_S = 0.1\%_0$ Data: $v_{max} = 0.12 \text{ g L}^{-1} \text{ hod}^{-1}$, $K_{\rm M} = 0.06 \, {\rm g} \, {\rm L}^{-1}$. $\rho_{\rm blood} = 1.06 \,{\rm g}\,{\rm cm}^{-3} \Rightarrow 1 \,{\rm wt}. \,\%_{00} = 1.06 \,{\rm g}\,{\rm L}^{-1}$ 0th order: $\tau = \frac{c_{S0} - c_S}{v_{max}} = \frac{(1 - 0.24) \times 1.06}{0.12}$ h = 6.7 h v_{max} More accurate: $\tau = \frac{K_{\rm M} \ln \frac{c_{\rm S0}}{c_{\rm S}} + c_{\rm S0} - c_{\rm S}}{-1000} = 7.4 \, \rm h$ Vmax

human:

Michaelis-Menten kinetics III

Rate:

[plot/anhydrase.sh] 12/23

$$CO_2 + H_2O \rightarrow HCO_3^- + H^+$$

$[CO_2]/mmoldm^{-3}$	$v/mol dm^{-3} s^{-1}$
1.25	2.78×10^{-5}
2.5	5.00×10^{-5}
5.0	8.33×10^{-5}
20.0	16.7×10^{-5}

credit: chemistry.umeche.maine.edu

*col*02

 $K_{M} = 0.01 \text{ mol dm}^{-3}$, $v_{max} = 25 \times 10^{-5} \text{ mol dm}^{-3} \text{ s}^{-1}$

[according to DeVoe, Kistiakowski, JACS 83, 274 (1961)]

Babel of units

Enzyme activity unit (amount of substance / time)

 \bigcirc SI: mol s⁻¹ (katal)

more common: μ mol/min ("enzyme unit", U)

Specific activity (per kg of enzyme)

• SI: mol s⁻¹ kg⁻¹

 $\mu mol min^{-1} mg^{-1}$

Turnover number (per mole),

```
SI: mol s<sup>-1</sup> mol<sup>-1</sup> = s<sup>-1</sup>
```

 \bigcirc often min⁻¹ etc.

Deprecated units: $1 M = 1 mol dm^{-3}$ $1 \text{ m} = 1 \text{ mol kg}^{-3}$ $(1 \,\mathrm{mol}\,\mathrm{dm}^{-3})$ $1 Da = 1 g mol^{-1}$ $1 \, \text{bar} = 10^5 \, \text{Pa}$ $1 \text{\AA} = 10^{-10} \text{ m}$ $1 \, \text{cal}_{\text{th}} = 4.184 \, \text{J}$ (thermochemical) $1 \text{ cal}_{\text{it}} = 4.1868 \text{ J}$ (intl./IAPWS) $1 \, \text{cal}_{\text{IUNS}} = 4.182 \, \text{J}$

(dalton) (food)

Molar mass: $g \mod^{-1} = Da$ (dalton) or $1 g \mod^{-1}/N_A = \frac{1}{12}m(^{12}C) = 1 u = 1.660539 \times 10^{-27} kg = 1 Da$

Example: $1\mu g$ of enzyme (M = 40 kDa) in the excess of substrate provides the reaction rate of $6\mu mol$ of substrate/min. What is the turnover number (in s⁻¹)?

t_2000⊅

Inhibition

irreversible

reversible inhibition: the inhibitor is bound non-covalently (H-bonds, etc.), decreases the turnover

irreversible inhibition: "catalyst poisoning", usually covalently bound \Rightarrow inactive complex EI*

Competitive reversible inhibition

The inhibitor binds to the same site as the substrate ("competes" with the substrate)

Uncompetitive reversible inhibition

$$E + S \stackrel{k_{1}}{\leftarrow}_{k-1} ES \stackrel{k_{2}}{\longrightarrow} E + P$$

$$+ I$$

$$k_{i}' \downarrow \uparrow k_{i-1}'$$

$$ESI \stackrel{k_{2}'}{\longrightarrow} E + P$$

The inhibitor binds to the enzyme-substrate complex

Also anti-competitive

often partial (slows down the reaction)

Mixed (non-competitive) reversible inhibition

Mixed inhibition: the inhibitor bound both to E and ES

(Pure) non-competitive inhibition: inhibitor affects a different part of the enzyme, $k_i = k'_i$, $k_{i-1} = k'_{i-1}$

Reversible inhibition: some math

stationary state:

$$\frac{dc_{ES}}{d\tau} = k_1 c_E c_S - (k_{-1} + k_2) c_{ES} - k'_i c_{I} c_{ES} + k'_{i-1} c_{ESI} = 0$$

pre-equilibrium:

$$c_{\rm EI} = \frac{k_i}{k_{i-1}} c_{\rm E} c_{\rm I}, \quad c_{\rm ESI} = \frac{k'_i}{k'_{i-1}} c_{\rm ES} c_{\rm I}$$

balance: $c_{E} + c_{ES} + c_{EI} + c_{ESI} = c_{E0}$

we assume $c_I \gg c_E$, $\Rightarrow c_I \approx c_{10}$ is known (no balance of I needed)

Reversible inhibition: some math

19/23 *col*02

balance + pre-equilibrium \Rightarrow

$$C_{EO} = C_{E} + C_{EI} + C_{ES} + C_{ESI}$$

$$= \left(1 + \frac{C_{EI}}{C_{E}}\right) c_{E} + \left(1 + \frac{C_{ESI}}{C_{EI}}\right) c_{ES}$$

$$= \left(1 + \frac{k_{i}}{k_{i-1}} c_{I}\right) c_{E} + \left(1 + \frac{k'_{i}}{k'_{i-1}} c_{I}\right) c_{ES}$$

$$\equiv \alpha c_{E} + \alpha' c_{ES}$$

stationary state \Rightarrow

$$0 = k_1 c_{\rm E} c_{\rm S} - (k_{-1} + k_2) c_{\rm ES}$$

by inserting (the same as without inhibition):

$$v = \frac{dc_{P}}{d\tau} = k_{2}c_{ES} = k_{2}\frac{c_{E0}}{\alpha \frac{k_{-1} + k_{2}}{k_{1}}\frac{1}{c_{S}} + \alpha'} = v_{\max}\frac{1}{\alpha K_{M}/c_{S} + \alpha'}$$

Lineweaver–Burk:

$$\frac{1}{v} = \frac{\alpha K_{\rm M}}{v_{\rm max}} \frac{1}{c_{\rm S}} + \frac{\alpha'}{v_{\rm max}}$$

Reversible inhibition: Lineweaver–Burk

 $\frac{1}{v} = \frac{\alpha K_{\rm M}}{v_{\rm max}} \frac{1}{c_{\rm S}} + \frac{\alpha'}{v_{\rm max}}, \quad \alpha = 1 + \frac{k_i}{k_{i-1}} c_{\rm I}, \quad \alpha' = 1 + \frac{k_i'}{k_{i-1}'} c_{\rm I}$ K-N mat 1/v α' **v**_{max} 0 $\frac{\alpha'}{\alpha K_M}$ 0 $1/c_{S}$

20/23 *col*02

Reversible inhibition

time vs. substrate conc.

Lineweaver-Burk

Reversible inhibition – summary

Photochemistry instant

Photon energy = $h\nu$ = energy source for the reaction

Planck constant: $h = 6.62607 \times 10^{-34}$ Js

Frequency ν , wave number $\tilde{\nu} = 1/\lambda$, wave length λ . It holds: $c = \lambda \nu$.

Quantum yield

 $\Phi = \frac{\text{\# of molecules transformed/decomposed/...}}{\text{\# of photons absorbed}}$

Chain reactions: $\Phi > 1$. Example:

 $2 HI \rightarrow H_2 + I_2$ $HI + h\nu \rightarrow H^{\dagger} + I^{\dagger}$ $H^{\dagger} + HI \rightarrow H_2 + I^{\dagger}$ $2I^{\dagger} \rightarrow I_2$

$$\Phi = 2$$

Example: How much HI decomposes by absorbing energy of 100J in the form of light of wave length 254 nm?