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Subject of electrochemistry:

dissociation (solutions of electrolytes, melts of salts)

conductivity

phenomena at interfaces s/l (electrolysis, galvanic cells)

Conductors:

electrons (or holes) are moving:
metals, graphite, graphene, semiconductors

ions are moving (or jumping):

solutions of electrolytes , molten salts, ionic liquids

both electrons and ions are moving:
plasma

Solutions of electrolytes
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strong electrolyte: (almost) completely ionizes (dissociates)
no uncharged molecules in the solution
H2SO4, KOH, Ca(OH)2, NaCl, BaSO4, . . .
not necessarily to max. degree:

H2SO4
100%→ H+ + HSO4−

partially→ 2H+ + SO42−

weak electrolyte: contains neutral (not dissociated) molecules
organic acids and bases, NH3, H2O, . . .

standard states: solvent (water): •; in dilute � water = 1
ions: [c] ( = γc/cst)

dissociation constant = equilibrium constant of the dissociation reaction

CH3COOH → CH3COO− + H+

NH3 + H2O → NH4+ + OH−
(COOH)2 → HOOC-COO− + H+

pH log = log10, p = −log

pH = − logH+
γH+=1= − log cH+

cst
= − log cH+

mol dm−3
?
= − log[H+] ?= − log{H+}

Dissociation of water
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Dissociation of water:

H2O → H+ + OH−

Ionic product (autoionization constant) of water Kw:

Kw =
H+OH−

H2O
≈ cH+cOH−

(cst)2
≡ [H+][OH−] .= 1.00×10−14 (25 ◦C)

Equivalently (at 25 ◦C):

pH+ pOH = pKw = 14 more accurate 13.997

depends on temperature: pKw(100 ◦C) = 12.29

heavy water: pKw(25 ◦C) = 14.87
(isotopic effect: D is more strongly bound)

Dissociation of water and the acidity constant
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Acidity constant (ionization constant) Ka is common in tables = equilibrium con-
stant of deprotonisation, often given as pKa

acids: dissociation constant of the acid

CH3COOH → CH3COO− + H+ Ka = Kd

bases: dissociation constant of the conjugated acid

NH4+ → NH3 + H+ (Ka) ×(−1)
H2O → H+ + OH− (Kw) ×(+1)

NH3 + H2O → NH4+ + OH− Kd = Kw/Ka

Example. Acidity constant of ammonium is pKa = 9.25 (at 25 ◦C). Calculate the
dissociation constant of ammonium hydroxide (water solution of NH3). 1.78×10−5

pH of strong acids and bases
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Example. Calculate pH of aqueous HCl of concentration 0.01 mol dm−3.
100 % dissociation to the 1st degree:

cH+ = cHC ⇒ pH = − logH+ ≈ − log cH+ = 2

Example. Calculate pH of aqueous H2SO4 of concentration 0.001 mol dm−3.
It dissociates completely to the 1st degree, partially to the 2nd degree, but since
here c� K2 = 1.3×10−2, we can assume also 100 % dissociation.

cH+ = 2cH2SO4 ⇒ pH = − logH+ ≈ − log(2cH+) = 2.7

more accurate 2.75 (partial dissociation + Debye–Hückel)

Example. Calculate pH of aqueous NaOH of concentration 0.01 mol dm−3 at 25 ◦C.

cOH− = 0.01mol dm−3, cH+ = 10
−14/0.01 = 10−12mol dm−3, pH = 12

Example. Calculate pH of 0.001 M aqueous Ca(OH)2 at 25 ◦C.

cOH− = 0.002mol dm−3, pOH = 2.7, pH = 14 − 2.7 = 11.3

Dissociation of a weak acid I
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HA → H+ + A−

Determine pH of a weak acid from known concentration.
(analytic) concentration: c0
acidity constant: Ka

Assumptions:

cOH− � cH+

γ = 1 (approximation of infinite dilution)

Balance:

compound 0 eq.

HA c0 c0 − 
A− 0 

H+ 0 

Equation:
[H+][A−]
[HA]

=
2

c0 − 
= Ka

Correctly 2

(c0−)cst = Ka. We will neglect cst (concentrations should be inserted in

mol dm−3).

Dissociation of a weak acid II
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Equation:
[H+][A−]
[HA]

=
2

c0 − 
= Ka

Solution:

cH+ =  =

√√√�Ka

2

�2
+ Kac0 −

Ka

2

c0�Ka≈
Æ
Kac0

Summary of approximations:

the acid is stronger than water (Ka� Kw)

concentration c0 is high enough (c0� Ka), then most of the acid is not ionized

c0 is not too high so that we can use the infinite dilution approximations (γ = 1)

Alternate form:

pH = 1
2 (pKa + pcA)

Degree of dissociation:

α ≈
√√√Ka

c0

Weak acid in a buffer
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HA → H+ + A−

How much of deprotonated form can we find in a solution of given pH?

compound 0 eq.

HA c0 c0 − 
A− 0 

H+ cH+ cH+ ← maintained by buffer

[A−]
[HA]

=
Ka

[H+]

 = cA− =
c0Ka

cH+ + Ka

Degree of dissociation:

α =
1

cH+ /Ka + 1

We have assumed the infinite dilution ap-
proximations
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Calculate pH of rainwater at 25 ◦C and 1 bar.
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Henry constant of dissolution of CO2: Kh = 0.033mol dm−3 bar−1

Acidity constant of CO2: pKa1 = 6.37. This is total for reactions

CO2 + H2O → H2CO3 → H+ + HCO3−

CO2 in the air (2019/2 Mauna Loa): y = 411ppm (18th century: y = 280 ppm)

CO32− can be neglected (pKa2 = 10.32)

OH− can be neglected

cCO2 = KhyCO2p = 0.033mol dm−3 bar−1 × 0.000411 × 1bar
= 1.36×10−5mol dm−3

Balance: cH+ = cHCO3
− (Not cCO2

?
= cCO2.0 − cH+ because CO2 is given by equilib-

rium, not initial concentration.)

Equation:
[H+][HCO3−]

[CO2]
= Ka1 ↙

− log1.36×10−5

[H+] =
Æ
Ka1[CO2], pH = 1

2(pKa1 + p[CO2]) =
1
2(6.37 + 4.87) = 5.62

the real pH is usually lower (HNO3, H2SO4) (18th cent.: pH = 5.70)

pH of a weak base
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Example. Calculate pH of aqueous solution of ethylamine of concentration c0 =
0.01mol dm−3 at 25 ◦C. The acidity constant of ethylammonium is Ka = 1.6×10−11.

C2H5NH2 + H2O → C2H5NH3+ + OH−

Dissociation constant of ethylamine: Kd =
Kw

Ka
=

1×10−14
1.6×10−11 = 0.000625

Assumptions: [H+] � [OH−], γ = 1. And in the same way as for weak acids:

Balance:

compound 0 eq.

C2H5NH2 c0 c0 − 
C2H5NH3+ 0 

OH− 0 

Equil.:
[C2H5NH3+][OH−]

[C2H5NH2]
=

2

c0 − 
= Kd

 = [OH−] =

√√√�Kd

2

�2
+ Kdc0 −

Kd

2

c0�Kd≈
Æ
Kdc0

or:

pH = 1
2(pKa + pKw − pc0)

pH=11.34,approx.:11.40;α=0.22

Simultaneous equilibria: very dilute solutions
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Dissociation of water has to be taken into account.

HA → H+ + A− (Ka)
H2O → H+ + OH− (Kw)

“Explicit” balance

compound 0 eq.

HA c0 c0 − 
A− 0 

H+ 0  + y
OH− 0 y

Equations

( + y)

c0 − 
= Ka

( + y)y = Kw

2 equations, 2 unknowns: , y

“Implicit” balance

compound balance

A [A−] + [HA] = c0
charge [H+] − ([A−] + [OH−]) = 0

Equations

[H+][A−]
[HA]

= Ka

[H+][OH−] = Kw

4 equations, 4 unknowns:
[H+], [HA], [A−], [OH−]

Very dilute solutions
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CH3COOH, pKa = 4.76

“exact”

[H+] =
s�

Ka
2

�2
+ Kac0 − Ka

2

[H+] =
p
Kac0

(approximate formula)

In a realistic region of concentrations the
simplified formula is sufficient
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Simultaneous equilibria: ion speciation
[cd show; blend -g lysine]13/28

co04

Aminoacids, ionization degree according to pH. E.g., HIS, LYS:

AH32+ → AH2+ + H+ (Ka1)
AH2+ → AH+ H+ (Ka2)

AH → A− + H+ (Ka3)

H+ easily detaches from AH32+, hardly from AH
⇒ Ka1 > Ka2 > Ka3 or pKa1 < pKa2 < pKa3.

Balance:

[A−] + [AH] + [AH2+] + [AH32+] = c0

Equation:

[AH2+][H+]

[AH32+]
= Ka1

[AH][H+]

[AH2+]
= Ka2

[A−][H+]
[AH]

= Ka3

Lysine
[cd ../maple; xmaple lysine.mws]14/28
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NH2-(CH2)4-CH(NH2)-COOH, pKa1 = 2.15, pKa2 = 9.16, pKa3 = 10.67
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From real life
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Titanium dental implants are treated (e.g.) in a phosphoric
acid solution. Calculate the needed concentration (in pure
water) for pH = 3.42. Data: pK1 = 2.18, pK2 = 7.198,
pK3 = 12.319.

0.40mmol/L(H3PO4+H2PO4−)
0.38mmol/L(H3PO4neglected)

credit: Wikipedia

Salt of weak acid + strong base + 16/28
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E.g., M=Na, A=CH3COO.

MA → M+ + A− (100%)
A− + H2O → AH+ OH−  (hydrolysis)

compound 0 eq. conditions

M+ c0 c0
A− c0 c0 − 

OH− 0 

HA 0 

H+ 0 Kw/ for [OH−] � [H+]

Ka =
[H+][A−]
[HA]

≈
Kw
 (c0 − )



Solution:

 =

√√√c0Kw

Ka
+
�
Kw

2Ka

�2
− Kw

2Ka
≈
√√√c0Kw

Ka
⇒ pH ≈ 1

2(pKw + pKa − pc0)

where the last approximation holds for c0� Kw
Ka

& �p
Kw, i.e., c0� Ka



Little soluble salts of strong electrolytes
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Solubility product = equilibrium constant of dissociation.

activities of salts (s) are salt = 1

γ = 1 assumed for ions

BaSO4 → Ba2+ + SO42− Ks =
Ba2+SO4

2−

BaSO4

= [Ba2+][SO42−]

Mg(OH)2 → Mg2+ + 2OH− Ks = [Mg2+][OH−]2

As2S3 → 2As3+ + 3S2− Ks = [As3+]2[S2−]3

but: S2− + H2O → HS− + OH− . . . As3+ + OH− → AsOH2+ . . .

Example. How much Mg(OH)2 (in mg) dissolves in 1 L of pure water?
Data: Ks = 2.6×10−11, M(Mg(OH)2) = 58.3g mol−1

Balance: [OH−] = 2[Mg2+] = 2c
Equation: Ks = [Mg2+][OH−]2 = c(2c)2 = 4c3
Solution: c = [Mg(OH)2] = (Ks/4)1/3 = 0.0001866mol dm−3,

cw = cMMg(OH)2 = 11mg dm−3

Often problems with hydrolysis, complexation, . . .

Little soluble salts: more ions
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Calcium oxalate: Ks(CaC2O4) = 3.9×10−9.
a) how much dissolves in pure water?
b) how much dissolves in blood?

([Ca2+] = 2.4mmol dm−3)

CaC2O4 → Ca2+ + C2O42−

Ks = [Ca2+][C2O42−]
Solution:
a) [C2O42−] = [Ca2+] =

p
Ks

.
= 62μmol dm−3 oxalis
hydrolysis of C2O42− unimportant (62.49 vs. 62.45μmol dm−3)

b) [C2O42−] = Ks/[Ca2+]
.
= 1.6μmol dm−3

Solubility decreases in a presence of one of the ions (CaCl2, Na2C2O4)

But: upon adding H2C2O4 the solubility slightly increases because C2O42− is
protonated at lower pH

Other ions (e.g., NaCl) slightly increase solubility (more later . . . )

Case study: system CaCO3(s,aq) + CO2(g,aq) + 19/28
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Karsts, seawater, . . .

CaCO3(s) → Ca2+ + CO32− pKs = 8.35 (calcite)

CO2 + H2O → [H2CO3] → H+ + HCO3− pKa1 = 6.37 or 6.35
HCO3− → H+ + CO32− pKa2 = 10.25 or 10.33

H2O → H+ + OH− pKw = 14

Henry constant of CO2 in water : Kh = 0.033mol dm−3 bar−1

Partial pressure of pCO2 is known (atmosphere)
Balance

CO2 given by pCO2

⇒ no balance of HCO3

CaCO3(s) is in surplus ⇒ no balance of Ca

charge balance:

2 [Ca2+] + [H+] − 2 [CO32−] − [HCO3−] − [OH−] = 0
credit: www.explorecrete.com

Case study: system CaCO3(s,aq) + CO2(g,aq)
[cd ../maple; xmaple vapenec+co2.mws]
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Equation:

[CO2] = yCO2pKh (given)

[Ca2+][CO32−] = Ks (1)

[H+][HCO3−]
[CO2]

= Ka1 (2)

[H+][CO32−]
[HCO3−]

= Ka2 (3)

[H+][OH−] = Kw (4)

+ charge balance:

2 [Ca2+] + [H+] − 2 [CO32−] − [HCO3−] − [OH−] = 0 (5)

⇒ 5 equations, 5 unknowns:
[Ca2+], [CO32−], [H+], [HCO32−], [OH−].

Case study: system CaCO3(s,aq) + CO2(g,aq) + 21/28
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Solubility of limestone in rainwater
(recalculated to Ca2+)
19.7 mg dm−3 2015 (400 ppm CO2), pH=8.23
17.6 mg dm−3 before industrial revolution (280 ppm CO2), pH=8.33

For comparison:
4.8 mg dm−3 in pure water (no CO2, pH=9.9)
2.7 mg dm−3 hydrolysis neglected (cstpKs, pH=7)

Contents of Ca2+ and pH (more ions present. . . ):
Blood: 100 mg dm−3, pH = 7.35–7.45
Sea: 400 mg dm−3, pH = 7.5–8.4

Case study: system CaCO3(s,aq) + CO2(g,aq) + 22/28
co04
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Buffers
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Buffer = solution able to keep pH (almost) constant if acid or base is added.

Typical example: solution of a weak acid HA ([HA] = cacid) + its salt MA (of strong
base, [MA] = [M+] = cbase), e.g., CH3COOH + CH3COONa

acid base

compound 0 eq.

M+ cbase cbase

A− cbase cbase + 
H+ 0 

HA cacid cacid −  Ka =
[H+][A−]
[HA]

=
(cbase + )

cacid − 
Approximate solution:

 = Ka
cacid − 
cbase + 

≈ Ka
cacid

cbase
[H+] = Ka

cacid

cbase
pH = pKa + log10

cbase

cacid

Henderson–Hasselbalch equation
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[H+] = Ka
cacid

cbase
pH = pKa + log10

cbase

cacid

Assumptions and generalization:

[OH−], [H+] � cacid, cbase; cacid
roughly≈ cbase, cacid, cbase� Ka; γ = 1

Holds true also for a mixture of a weak base B (B + H2O → BH+ + OH−) and its
salt BHX (of strong acid), cacid = [BHX] = [X−], cbase = [B]

Maximum buffer capacity for cacid = cbase (see below)



Buffer capacity + 25/28
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Let us add a small amount dc of a strong base MOH ⇒ dc of HA is neutralized to MA
(=“base”). Add strong acid = remove strong base

cacid → cacid − dc
cbase → cbase + dc

Buffer capacity = β =
dc

d(pH)
= − ln 10 [H+] dc

d[H+]

the amount of a
strong base needed
to increase pH by 1

The same assumptions as Henderson–Hasselbalch:

ln 10
.
= 2.3026

[H+](c) = Ka
cacid

cbase

[H+](c + dc) = Ka
cacid − dc
cbase + dc

= Ka
cacid

cbase

�
1 − dc

�
1

cacid
+

1

cbase

��

d[H+]

dc
= −Ka

cacid

cbase

�
1

cacid
+

1

cbase

�
= −cacid + cbase

cacidcbase
[H+]

β = ln 10
cacidcbase

cacid + cbase

Maximum capacity
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β = ln 10
cacidcbase

cacid + cbase

Given A (cA,total = cacid + cbase), β reaches maximum at cacid = cbase

Maximum buffer capacity is reached for an equimolar mixture

Example: acetate buffer, cacid = cbase = 0.1mol dm−3, pH = pKa = 4.76
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graphs: exact solution with γ = 1

Bicarbonate (hydrogen carbonate) buffer
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Main part of the blood buffer system

Henry constant of CO2 in water at body temperature:
Kh = 0.025mol dm−3 bar−1

Acidity constant of CO2 at body temperature: pKa1 = 6.1 for

CO2 + H2O → H2CO3 → H+ + HCO3−

Contents of hydrogen carbonates (mostly NaHCO3):
[HCO3−] = 24 mmol dm−3 = cbase

pH = 7.35 to 7.45

[H+] = Ka1
cacid

cbase

cacid =
[H+]cbase

Ka1
, pCO2 =

cacid

Kh
=
[H+]cbase

Ka1Kh

⇒ pCO2 = 5.4 to 4.3 kPa (∼ 5 vol.% in alveolar air)

Outside range ⇒ respiratory acidosis/alkalosis

Phosphate buffer NaH3−PO4
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H3PO4:
pKa1 = 2.148
pKa2 = 7.198
pKa3 = 12.319
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NaH2PO4 + Na2HPO4

Hasselbalch

Henderson-

exact (γ=1)

[NaxH3−xPO4] = 0.01 mol/L

isotonic, pH=7.4: NaCl, KCl, Na2HPO4 (base), KH2PO4 (acid)
(Phosphate buffered saline)

NB: The deviation caused by nonideality is not negligible in concentrated solutions.
The experimental pH is by about 0.5 less than calculated. E.g., the maximum ca-
pacity is for pH = 6.8, not 7.2.


