Electrochemistry

1/2

Subject of electrochemistry:

dissociation (solutions of electrolytes, melts of salts)

- conductivity
- phenomena at interfaces s/l (electrolysis, galvanic cells)

Conductors:

 electrons (or holes) are moving: metals, graphite, graphene, semiconductors

ions are moving (or jumping): solutions of electrolytes , molten salts, ionic liquids

both electrons and ions are moving: plasma

Solutions of electrolytes

2/28

strong electrolyte: (almost) completely ionizes (dissociates) no uncharged molecules in the solution

H₂SO₄, KOH, Ca(OH)₂, NaCl, BaSO₄, ... not necessarily to max. degree:

$$\rm H_2SO_4 \stackrel{100\,\%}{\rightarrow} H^+ + HSO_4 \stackrel{partially}{\rightarrow} 2\,H^+ + SO_4{}^{2-}$$

weak electrolyte: contains neutral (not dissociated) molecules organic acids and bases, NH₃, H₂O, . . .

standard states: solvent (water): ullet ; in dilute \odot $a_{\mathrm{water}}=1$ ions: $[^c]$ $(a_i=\gamma_ic_i/c^{\mathrm{st}})$

dissociation constant = equilibrium constant of the dissociation reaction

$$\begin{array}{ccc} \text{CH}_3\,\text{COOH} & \rightarrow & \text{CH}_3\,\text{COO}^- + \text{H}^+ \\ \text{NH}_3 + \text{H}_2\text{O} & \rightarrow & \text{NH}_4^+ + \text{OH}^- \\ \text{(COOH)}_2 & \rightarrow & \text{HOOC-COO}^- + \text{H}^+ \end{array}$$

рΗ

$$\log = \log_{10}, p = -\log p + \log_{10} \frac{r_{\text{H}^+}}{r_{\text{S}}} = -\log \frac{r_{\text{H}^+}}$$

Dissociation of water

3/28 col04

Dissociation of water:

$$H_2O \rightarrow H^+ + OH^-$$

Ionic product (autoionization constant) of water K_W :

$$K_{\rm W} = \frac{a_{\rm H} + a_{\rm OH^-}}{a_{\rm H_2O}} \approx \frac{c_{\rm H} + c_{\rm OH^-}}{(c^{\rm st})^2} \equiv [{\rm H^+}][{\rm OH^-}] \doteq 1.00 \times 10^{-14} \; (25\,{}^{\circ}{\rm C})$$

Equivalently (at 25 °C):

$$pH + pOH = pK_w = 14$$
 more accurate 13.997

 \bigcirc depends on temperature: $pK_W(100 \, ^{\circ}C) = 12.29$

heavy water: pK_w(25 °C) = 14.87 (isotopic effect: D is more strongly bound)

Dissociation of water and the acidity constant

4/28

Acidity constant (ionization constant) K_a is common in tables = equilibrium constant of deprotonisation, often given as pK_a

acids: dissociation constant of the acid

$$CH_3 COOH \rightarrow CH_3 COO^- + H^+ K_a = K_d$$

bases: dissociation constant of the conjugated acid

Example. Acidity constant of ammonium is $pK_a = 9.25$ (at 25 °C). Calculate the dissociation constant of ammonium hydroxide (water solution of NH₃).

 $HA \rightarrow H^+ + A^-$

pH of strong acids and bases

5/2

Example. Calculate pH of aqueous HCl of concentration $0.01\,\mathrm{mol\,dm^{-3}}$. $100\,\%$ dissociation to the 1st degree:

$$c_{\mathsf{H}^+} = c_{\mathsf{H}Cl} \Rightarrow \mathsf{pH} = -\log \alpha_{\mathsf{H}^+} \approx -\log c_{\mathsf{H}^+} = 2$$

Example. Calculate pH of aqueous H_2SO_4 of concentration 0.001 mol dm⁻³. It dissociates completely to the 1st degree, partially to the 2nd degree, but since here $c \ll K_2 = 1.3 \times 10^{-2}$, we can assume also 100 % dissociation.

$$c_{\mathsf{H}^+} = 2c_{\mathsf{H}_2SO_4} \Rightarrow \mathsf{pH} = -\log a_{\mathsf{H}^+} \approx -\log(2c_{\mathsf{H}^+}) = 2.7$$

more accurate 2.75 (partial dissociation + Debye–Hückel)

Example. Calculate pH of aqueous NaOH of concentration 0.01 mol dm $^{-3}$ at 25 °C. $c_{\rm OH^-}=0.01$ mol dm $^{-3}$, $c_{\rm H^+}=10^{-14}/0.01=10^{-12}$ mol dm $^{-3}$, pH = 12

Example. Calculate pH of 0.001 M aqueous Ca(OH)₂ at 25 °C.

$$c_{\text{OH}^-} = 0.002 \,\text{mol dm}^{-3}$$
, pOH = 2.7, pH = 14 – 2.7 = 11.3

Dissociation of a weak acid I

6/28 col04

Determine pH of a weak acid from known concentration.

(analytic) concentration: c_0

acidity constant: Ka

Assumptions:

 \bigcirc $c_{OH^-} \ll c_{H^+}$

 Balance:
 Compound 0 0
 eq.

 HA c_0 $c_0 - x$
 A^- 0 x

 H^+ 0 x

Equation: $\frac{[H^+][A^-]}{[HA]} = \frac{x^2}{c_0 - x} = K_a$

Correctly $\frac{x^2}{(c_0-x)c^{st}} = K_a$. We will neglect c^{st} (concentrations should be inserted in mol dm⁻³).

Dissociation of a weak acid II

col0

Equation:
$$\frac{[H^+][A^-]}{[HA]} = \frac{x^2}{c_0 - x} = K_a$$

Solution:

$$c_{H^+} = x = \sqrt{\left(\frac{K_a}{2}\right)^2 + K_a c_0} - \frac{K_a}{2} \stackrel{c_0 \gg K_a}{\approx} \sqrt{K_a c_0}$$

Summary of approximations

 \bigcirc the acid is stronger than water $(K_a \gg K_w)$

igoplus concentration c_0 is high enough ($c_0\gg K_a$), then most of the acid is not ionized

 \bigcirc c_0 is not too high so that we can use the infinite dilution approximations ($\gamma_i = 1$) Alternate form:

$$pH = \frac{1}{2}(pK_a + pc_A)$$

Degree of dissociation:

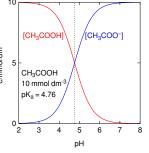
$$\alpha \approx \sqrt{\frac{K_a}{c_0}}$$

Weak acid in a buffer

col04

$$HA \rightarrow H^+ + A^-$$

How much of deprotonated form can we find in a solution of given pH?


compound	0	eq.	-			
HA	c ₀	$c_0 - x$		[A ⁻]	Ka	
A-	0	x		[HA]	[H ⁺]	
H ⁺	c _H +	c _H + ←	– main	tained	by buffe	er '

 $x = c_{A^{-}} = \frac{c_0 K_a}{c_{A^{-}} + K_a}$

Degree of dissociation:

$$\alpha = \frac{1}{c_{H^+}/K_a + 1}$$

We have assumed the infinite dilution approximations

 $\alpha = \frac{1}{2}$ for pH=p K_a

Calculate pH of rainwater at 25 °C and 1 bar.

- Henry constant of dissolution of CO_2 : $K_h = 0.033 \,\text{mol dm}^{-3} \,\text{bar}^{-1}$
- \bigcirc Acidity constant of CO₂: pK_{a1} = 6.37. This is total for reactions

$$CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$$

- OCO₂ in the air (2019/2 Mauna Loa): y = 411 ppm (18th century: y = 280 ppm)
- \bigcirc CO₃²⁻ can be neglected (p $K_{a2} = 10.32$)
- OH⁻ can be neglected

$$c_{\text{CO}_2} = K_{\text{h}} y_{\text{CO}_2} p = 0.033 \,\text{mol dm}^{-3} \,\text{bar}^{-1} \times 0.000411 \times 1 \,\text{bar}$$

= $1.36 \times 10^{-5} \,\text{mol dm}^{-3}$

Balance: $c_{H^+} = c_{HCO_3^-}$ (Not $c_{CO_2} \stackrel{?}{=} c_{CO_{2,0}} - c_{H^+}$ because CO_2 is given by equilibrium, not initial concentration.)

Equation:

$$\frac{[H^+][HCO_3^-]}{[CO_2]} = K_{a1}$$

$$-\log 1.36 \times 10^{-5}$$

$$[H^+] = \sqrt{K_{a1}[CO_2]}, \quad pH = \frac{1}{2}(pK_{a1} + p[CO_2]) = \frac{1}{2}(6.37 + 4.87) = 5.62$$
 the real pH is usually lower (HNO₃, H₂SO₄) (18th cent.: pH = 5.70)

Simultaneous equilibria: very dilute solutions

Dissociation of water has to be taken into account.

$$\begin{array}{ccc} HA \rightarrow H^{+} + A^{-} & (K_{a}) \\ H_{2}O \rightarrow H^{+} + OH^{-} & (K_{W}) \end{array}$$

"Explicit" balance

compound	0	eq.
HA	<i>c</i> ₀	$c_0 - x$
Α-	0	x
H ⁺	0	x + y
OH-	0	У

Equations

$$\frac{(x+y)x}{c_0-x} = K_a$$

$$(x+y)y = K_{W}$$

(K_{W}) "Implicit" balance

compound	balance
Α	$[A^{-}] + [HA] = c_0$
charge	$[H^+] - ([A^-] + [OH^-]) = 0$

Equations

$$\frac{[H^+][A^-]}{[HA]} = K_a$$

 $[H^+][OH^-] = K_w$

🔵 4 equations, 4 unknowns: [H⁺],[HA],[A⁻],[OH⁻]

2 equations, 2 unknowns: x, y

pH of a weak base

12/28

8 9 10

Example. Calculate pH of aqueous solution of ethylamine of concentration $c_0 = \frac{1}{1000}$ $0.01\,\mathrm{mol\,dm^{-3}}$ at 25 °C. The acidity constant of ethylammonium is $K_a=1.6\times10^{-3}$

$$C_2H_5NH_2 + H_2O \rightarrow C_2H_5NH_3^+ + OH^-$$

Dissociation constant of ethylamine: $K_d = \frac{K_W}{K_a} = \frac{1 \times 10^{-14}}{1.6 \times 10^{-11}} = 0.000\,625$

Assumptions: $[H^+] \ll [OH^-]$, $\gamma = 1$. And in the same way as for weak acids:

Balance:
$$\begin{array}{c|cccc} compound & 0 & eq. \\ \hline C_2H_5NH_2 & c_0 & c_0-x \\ C_2H_5NH_3^+ & 0 & x \\ OH^- & 0 & x \\ \end{array}$$

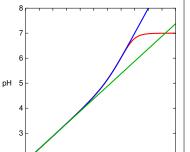
Equil.:
$$\frac{[C_2H_5NH_3^+][OH^-]}{[C_2H_5NH_2]} = \frac{x^2}{c_0 - x} = K_d$$

$$x = [\mathsf{OH}^-] = \sqrt{\left(\frac{K_\mathsf{d}}{2}\right)^2 + K_\mathsf{d}c_0} - \frac{K_\mathsf{d}}{2} \overset{c_0 \gg K_\mathsf{d}}{\approx} \sqrt{K_\mathsf{d}c_0}$$

$$pH = \frac{1}{2}(pK_a + pK_w - pc_0)$$

0.22 and 0.22 He = 11.34, approx.: 11.40; 0.22

Very dilute solutions


CH₃COOH, p $K_a = 4.76$

— "exact"

$$-$$
 [H⁺] = $\sqrt{\left(\frac{K_a}{2}\right)^2 + K_a c_0} - \frac{K_a}{2}$

$$- [H^+] = \sqrt{K_a c_0}$$
 (approximate formula)

In a realistic region of concentrations the simplified formula is sufficient

4 5 6

p[C₂H₅COOH]

../maple; xmaple lysine.mws]_{14/28} col04

Simultaneous equilibria: ion speciation

 (K_{a3})

[cd show; blend -g lysine] 13/28

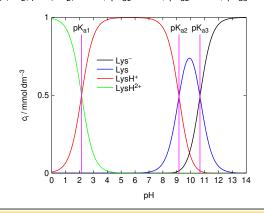
Aminoacids, ionization degree according to pH. E.g., HIS, LYS:

$$AH_3^{2+} \rightarrow AH_2^{+} + H^{+}$$
 (K_{a1})
 $AH_2^{+} \rightarrow AH + H^{+}$ (K_{a2})
 $AH \rightarrow A^{-} + H^{+}$ (K_{a3})

 $\mathrm{H^{+}}$ easily detaches from $\mathrm{AH_{3}^{2+}}$, hardly from AH $\Rightarrow K_{a1} > K_{a2} > K_{a3} \text{ or } pK_{a1} < pK_{a2} < pK_{a3}.$

Balance:

$$[A^{-}] + [AH] + [AH2+] + [AH32+] = c0$$


Equation:

$$\begin{split} \frac{[AH_2^+][H^+]}{[AH_3^{2+}]} &= K_{a1} \\ \frac{[AH][H^+]}{[AH_2^+]} &= K_{a2} \\ \frac{[A^-][H^+]}{[AH]} &= K_{a3} \end{split}$$

Lysine

 NH_2 -(CH_2)₄- $CH(NH_2$)-COOH, $pK_{a1} = 2.15$, $pK_{a2} = 9.16$, $pK_{a3} = 10.67$

0

From real life

Titanium dental implants are treated (e.g.) in a phosphoric acid solution. Calculate the needed concentration (in pure water) for pH = 3.42. Data: $pK_{\alpha 1}$ = 2.18, $pK_{\alpha 2}$ = 7.198, $pK_{\alpha 3} = 12.319$.

> 0.38 mmol/L (H₃PO₄ neglected) (_pOq₂H+pOq_EH) J\lomm 0p.0

Salt of weak acid + strong base

E.g., M=Na, A=CH3COO.

$$MA \rightarrow M^+ + A^- (100\%)$$

 $A^- + H_2O \rightarrow AH + OH^- x (hydrolysis)$

compound	0	eq.	conditions
M ⁺	<i>c</i> ₀	<i>c</i> ₀	
A	c_0	$c_0 - x$	
OH-	0	x	
HA	0	x	
H ⁺	0	K _W /x	for $[OH^-] \gg [H^+]$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \approx \frac{\frac{K_{W}}{x}(c_{0} - x)}{x}$$

Solution:

$$x = \sqrt{\frac{c_0 K_W}{K_a} + \left(\frac{K_W}{2K_a}\right)^2} - \frac{K_W}{2K_a} \approx \sqrt{\frac{c_0 K_W}{K_a}} \ \Rightarrow \ \mathrm{pH} \approx \frac{1}{2} (\mathrm{pK}_W + \mathrm{pK}_a - \mathrm{pc}_0)$$

where the last approximation holds for $c_0 \gg \frac{K_W}{K_a} \& x \gg \sqrt{K_W}$, i.e., $c_0 \gg K_a$

Little soluble salts of strong electrolytes

Solubility product = equilibrium constant of dissociation.

- \bigcirc activities of salts (s) are $a_{\text{salt}} = 1$

$$BaSO_4 \rightarrow Ba^{2+} + SO_4^{2-} \qquad K_s = \frac{a_{Ba^{2+}}a_{SO_4^{2-}}}{a_{BaSO_4}} = [Ba^{2+}][SO_4^{2-}]$$

$$Mg(OH)_2 \rightarrow Mg^{2+} + 2OH^- \qquad K_s = [Mg^{2+}][OH^-]^2$$

$$As_2S_3 \rightarrow 2As^{3+} + 3S^{2-} \qquad K_s = [As^{3+}]^2[S^{2-}]^3$$

 $As^{3+} + OH^{-} \rightarrow AsOH^{2+}...$

Example. How much Mg(OH)₂ (in mg) dissolves in 1 L of pure water? Data: $K_S = 2.6 \times 10^{-11}$, $M(Mg(OH)_2) = 58.3 \text{ g mol}^{-1}$

Balance: $[OH^-] = 2[Mg^{2+}] = 2c$

Equation: $K_S = [Mg^{2+}][OH^{-}]^2 = c(2c)^2 = 4c^3$

but: $S^{2-} + H_2O \rightarrow HS^- + OH^-...$

Solution: $c = [Mg(OH)_2] = (K_s/4)^{1/3} = 0.0001866 \text{ mol dm}^{-3}$,

 $c_{\rm W} = c M_{\rm Mg(OH)_2} = 11 \, \rm mg \, dm^{-3}$

Often problems with hydrolysis, complexation, ...

Case study: system $CaCO_3(s,aq) + CO_2(g,aq)$

+ ^{19/28} col04

Karsts, seawater, ...

Henry constant of CO_2 in water : $K_h = 0.033 \, \text{mol dm}^{-3} \, \text{bar}^{-1}$

Partial pressure of p_{CO_2} is known (atmosphere)

Balance

- CO₂ given by p_{CO₂}
 ⇒ no balance of H_xCO₃
- \bigcirc CaCO₃(s) is in surplus \Rightarrow no balance of Ca
- charge balance:

$$2[Ca^{2+}] + [H^{+}] - 2[CO_3^{2-}] - [HCO_3^{-}] - [OH^{-}] = 0$$

credit: www.explorecrete.co

Little soluble salts: more ions

Calcium oxalate: $K_s(CaC_2O_4) = 3.9 \times 10^{-9}$.

- a) how much dissolves in pure water?
- b) how much dissolves in blood?

([Ca²⁺] = 2.4 mmol dm⁻³)
$${\sf CaC_2O_4} \ \to \ {\sf Ca^{2+}} + {\sf C_2O_4}^{2-}$$

 $K_s = [Ca^{2+}][C_2O_4^{2-}]$

Solution:

a)
$$[C_2O_4^{2-}] = [Ca^{2+}] = \sqrt{K_S}$$

 $\doteq 62 \,\mu\text{mol dm}^{-3}$

hydrolysis of $C_2O_4^{2-}$ unimportant (62.49 vs. 62.45 μ mol dm⁻³)

- b) $[C_2O_4^{2-}] = K_s/[Ca^{2+}] \doteq 1.6 \,\mu\,\text{mol}\,\text{dm}^{-3}$
- Solubility decreases in a presence of one of the ions (CaCl₂, Na₂C₂O₄)
- igoplus But: upon adding $H_2C_2O_4$ the solubility slightly increases because $C_2O_4{}^{2-}$ is protonated at lower pH
- Other ions (e.g., NaCl) slightly increase solubility (more later . . .)

Case study: system CaCO₃(s,aq) + CO₂(g,aq) + co₁₀

Equation:

$$[CO_2] = y_{CO_2}pK_h$$
 (given)

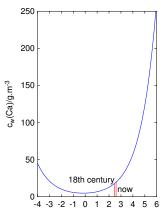
$$[Ca^{2+}][CO_3^{2-}] = K_s$$
 (1)

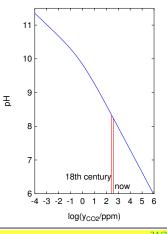
$$\frac{[H^+][HCO_3^-]}{[CO_2]} = K_{a1}$$
 (2)

$$\frac{[H^+][CO_3^{2-}]}{[HCO_3^-]} = K_{a2}$$
 (3)

$$[H^+][OH^-] = K_W \tag{4}$$

+ charge balance:


$$2[Ca^{2+}] + [H^{+}] - 2[CO_3^{2-}] - [HCO_3^{-}] - [OH^{-}] = 0$$
 (5)


 \Rightarrow 5 equations, 5 unknowns: [Ca²⁺], [CO₃²⁻], [H⁺], [HCO₃²⁻], [OH⁻].

Case study: system $CaCO_3(s,aq) + CO_2(g,aq)$

- Solubility of limestone in rainwater (recalculated to Ca²⁺)
 - $19.7 \,\mathrm{mg}\,\mathrm{dm}^{-3}\,2015$ (400 ppm CO₂), pH=8.23
 - $17.6\,\mathrm{mg}\,\mathrm{dm}^{-3}$ before industrial revolution (280 ppm CO₂), pH=8.33
- For comparison:
 - $4.8 \,\mathrm{mg}\,\mathrm{dm}^{-3}$ in pure water (no CO₂, pH=9.9)
 - $2.7\,\mathrm{mg\,dm^{-3}}$ hydrolysis neglected ($c^{\mathrm{st}}\sqrt{K_{\mathrm{S}}}$, pH=7)
- Contents of Ca²⁺ and pH (more ions present...):
 Blood: 100 mg dm⁻³, pH = 7.35-7.45
 Sea: 400 mg dm⁻³, pH = 7.5-8.4

Case study: system $CaCO_3(s,aq) + CO_2(g,aq)$

Buffers 23/col

Buffer = solution able to keep pH (almost) constant if acid or base is added.

Typical example: solution of a weak acid HA ([HA] = c_{acid}) + its salt MA (of strong base, [MA] = [M⁺] = c_{base}), e.g., CH₃COOH + CH₃COONa

 $\begin{array}{c|cccc} \textbf{Compound} & \textbf{0} & \textbf{eq.} \\ \hline \textbf{M}^+ & \textbf{\textit{C}}_{\textbf{base}} & \textbf{\textit{C}}_{\textbf{base}} \\ \textbf{A}^- & \textbf{\textit{C}}_{\textbf{base}} & \textbf{\textit{C}}_{\textbf{base}} + \textbf{\textit{x}} \\ \textbf{H}^+ & \textbf{0} & \textbf{\textit{x}} \\ \hline \textbf{HA} & \textbf{\textit{C}}_{\textbf{acid}} & \textbf{\textit{C}}_{\textbf{acid}} - \textbf{\textit{x}} \\ \end{array}$

base				
acid	base			
CH₃COOH	CH₃COO⁻			
H+/	Na ⁺			
$K = [H^+][A^-] = x(c_{base} + x)$				
Na - THAI -	C X			

Approximate solution:

$$x = K_a \frac{c_{acid} - x}{c_{base} + x} \approx K_a \frac{c_{acid}}{c_{base}}$$

$$[H^+] = K_a \frac{c_{acid}}{c_{base}}$$

$$pH = pK_a + \log_{10} \frac{c_{base}}{c_{acid}}$$

Henderson-Hasselbalch equation

log(y_{CO2}/ppm)

 $[H^{+}] = K_{a} \frac{c_{acid}}{c_{base}} \qquad pH = pK_{a} + log_{10} \frac{c_{base}}{c_{acid}}$

Assumptions and generalization:

- $\bigcirc \text{ [OH^-], [H^+]} \ll c_{\text{acid}}, c_{\text{base}}; c_{\text{acid}} \overset{\text{roughly}}{\approx} c_{\text{base}}, c_{\text{acid}}, c_{\text{base}} \gg K_a; \gamma_i = 1$
- Holds true also for a mixture of a weak base B (B + $H_2O \rightarrow BH^+ + OH^-$) and its salt BHX (of strong acid), $c_{acid} = [BHX] = [X^-]$, $c_{base} = [B]$
- \bigcirc Maximum buffer capacity for $c_{acid} = c_{base}$ (see below)

Buffer capacity

+ ^{25/28}
col04

Let us add a small amount dc of a strong base MOH \Rightarrow dc of HA is neutralized to MA Add strong acid = remove strong base (="base").

$$c_{\text{acid}} \rightarrow c_{\text{acid}} - dc$$

 $c_{\text{base}} \rightarrow c_{\text{base}} + dc$

Buffer capacity =
$$\beta = \frac{dc}{d(pH)} = -\ln 10[H^+] \frac{dc}{d[H^+]}$$

the amount of a strong base needed to increase pH by 1

The same assumptions as Henderson-Hasselbalch:

$$[H^+](c) = K_a \frac{c_{acid}}{c_{base}}$$

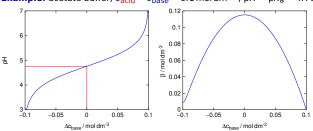
$$[H^{+}](c+dc) = K_{a} \frac{c_{\text{acid}} - dc}{c_{\text{base}} + dc} = K_{a} \frac{c_{\text{acid}}}{c_{\text{base}}} \left[1 - dc \left(\frac{1}{c_{\text{acid}}} + \frac{1}{c_{\text{base}}} \right) \right]$$

$$\frac{\mathrm{d}[\,\mathrm{H}^{+}\,]}{\mathrm{d}c} = -K_{\mathrm{a}}\frac{c_{\mathrm{acid}}}{c_{\mathrm{base}}} \bigg(\frac{1}{c_{\mathrm{acid}}} + \frac{1}{c_{\mathrm{base}}}\bigg) = -\frac{c_{\mathrm{acid}} + c_{\mathrm{base}}}{c_{\mathrm{acid}}c_{\mathrm{base}}} [\,\mathrm{H}^{+}\,]$$

$$\beta = \ln 10 \frac{c_{\text{acid}}c_{\text{base}}}{c_{\text{acid}} + c_{\text{base}}}$$

 $ln 10 \doteq 2.3026$

Maximum capacity


26/28

$$\beta = \ln 10 \frac{c_{\text{acid}}c_{\text{base}}}{c_{\text{acid}} + c_{\text{base}}}$$

Given A ($c_{A,total} = c_{acid} + c_{base}$), β reaches maximum at $c_{acid} = c_{base}$

Maximum buffer capacity is reached for an equimolar mixture

Example: acetate buffer,
$$c_{\text{acid}} = c_{\text{base}} = 0.1 \,\text{mol dm}^{-3}$$
, pH = p $K_{\text{a}} = 4.76$

graphs: exact solution with $\gamma = 1$

pacity is for pH = 6.8, not 7.2.

Bicarbonate (hydrogen carbonate) buffer

27/28

Main part of the blood buffer system

- Henry constant of CO₂ in water at body temperature: $K_{\rm h} = 0.025\,{\rm mol\,dm^{-3}\,bar^{-1}}$
- \bigcirc Acidity constant of CO₂ at body temperature: $pK_{a1} = 6.1$ for

$$CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$$

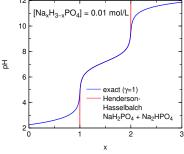
- Contents of hydrogen carbonates (mostly NaHCO₃): $[HCO_3^-] = 24 \,\mathrm{mmol\,dm}^{-3} = c_{\mathrm{base}}$
- pH = 7.35 to 7.45

$$[H^+] = K_{a1} \frac{c_{acid}}{c_{base}}$$

$$c_{\text{acid}} = \frac{[\text{H}^+]c_{\text{base}}}{K_{\text{a1}}}, \ \ \rho_{\text{CO}_2} = \frac{c_{\text{acid}}}{K_{\text{h}}} = \frac{[\text{H}^+]c_{\text{base}}}{K_{\text{a1}}K_{\text{h}}}$$

 $\Rightarrow p_{\text{CO}_2} = 5.4 \text{ to } 4.3 \text{ kPa } (\sim 5 \text{ vol.}\% \text{ in alveolar air})$

Outside range ⇒ respiratory acidosis/alkalosis


Phosphate buffer $Na_XH_{3-X}PO_4$

28/28

$$pK_{a1} = 2.148$$

$$pK_{a2} = 7.198$$

$$pK_{a2} = 7.136$$

 $pK_{a3} = 12.319$

isotonic, pH=7.4: NaCl, KCl, Na₂HPO₄ (base), KH₂PO₄ (acid) (Phosphate buffered saline)

NB: The deviation caused by nonideality is not negligible in concentrated solutions. The experimental pH is by about 0.5 less than calculated. E.g., the maximum ca-