Electrochemistry

Subject of electrochemistry:

- dissociation (solutions of electrolytes, melts of salts)
- conductivity
- phenomena at interfaces s/l (electrolysis, galvanic cells)

Conductors:

- electrons (or holes) are moving: metals, graphite, graphene, semiconductors
- ions are moving (or jumping):

solutions of electrolytes , molten salts, ionic liquids

both electrons and ions are moving: plasma

Solutions of electrolytes

strong electrolyte: (almost) completely ionizes (dissociates) no uncharged molecules in the solution H_2SO_4 , KOH, Ca(OH)₂, NaCl, BaSO₄, ... not necessarily to max. degree:

 $H_2SO_4 \xrightarrow{100\%} H^+ + HSO_4 \xrightarrow{\text{partially}} 2 H^+ + SO_4^{2-}$

weak electrolyte: contains neutral (not dissociated) molecules organic acids and bases, NH₃, H₂O, ...

standard states: solvent (water): •; in dilute $\odot a_{water} = 1$ ions: $[c] (a_i = \gamma_i c_i / c^{st})$

dissociation constant = equilibrium constant of the dissociation reaction

$$\begin{array}{rcl} CH_3 \,COOH & \rightarrow & CH_3 \,COO^- + \,H^+ \\ NH_3 + H_2O & \rightarrow & NH_4^+ + \,OH^- \\ (COOH)_2 & \rightarrow & HOOC\text{-}COO^- + \,H^+ \end{array}$$

pH = $-\log a_{H^+} \stackrel{\gamma_{H^+}=1}{=} -\log \frac{c_{H^+}}{c^{st}} = -\log \frac{c_{H^+}}{mol dm^{-3}} \stackrel{?}{=} -\log[H^+] \stackrel{?}{=} -\log\{H^+\}$

Dissociation of water

Dissociation of water:

$$H_2O \rightarrow H^+ + OH^-$$

lonic product (autoionization constant) of water K_w:

$$K_{\rm W} = \frac{a_{\rm H} + a_{\rm OH}}{a_{\rm H_2O}} \approx \frac{c_{\rm H} + c_{\rm OH}}{(c^{\rm st})^2} \equiv [\rm H^+][\rm OH^-] \doteq 1.00 \times 10^{-14} \ (25 \,^{\circ}\text{C})$$

Equivalently (at 25 $^{\circ}\text{C}$):

 $pH + pOH = pK_w = 14$ more accurate 13.997

depends on temperature: $pK_w(100 \circ C) = 12.29$

heavy water: $pK_w(25 °C) = 14.87$ (isotopic effect: D is more strongly bound)

Dissociation of water and the acidity constant

Acidity constant (ionization constant) K_a is common in tables = equilibrium constant of deprotonisation, often given as pK_a

acids: dissociation constant of the acid

```
CH_3 COOH \rightarrow CH_3 COO^- + H^+ \quad K_a = K_d
```

bases: dissociation constant of the conjugated acid

NH_4^+	\rightarrow	$NH_3 + H^+$	(K _a)	×(-1)
H ₂ O	\rightarrow	$H^+ + OH^-$	(K _W)	×(+1)
$NH_3 + H_2O$	\rightarrow	$NH_4^+ + OH^-$	$K_{\rm d} = K_{\rm w}/K_{\rm a}$	

Example. Acidity constant of ammonium is $pK_a = 9.25$ (at 25 °C). Calculate the dissociation constant of ammonium hydroxide (water solution of NH₃).

4/28 col04

pH of strong acids and bases

Example. Calculate pH of aqueous HCl of concentration 0.01 mol dm^{-3} . 100 % dissociation to the 1st degree:

 $c_{\mathrm{H}^+} = c_{\mathrm{H}Cl} \Rightarrow \mathrm{pH} = -\log a_{\mathrm{H}^+} \approx -\log c_{\mathrm{H}^+} = 2$

Example. Calculate pH of aqueous H₂SO₄ of concentration 0.001 mol dm⁻³. It dissociates completely to the 1st degree, partially to the 2nd degree, but since here $c \ll K_2 = 1.3 \times 10^{-2}$, we can assume also 100% dissociation.

$$c_{\mathrm{H}^+} = 2c_{\mathrm{H}_2SO_4} \Rightarrow \mathrm{pH} = -\log a_{\mathrm{H}^+} \approx -\log(2c_{\mathrm{H}^+}) = 2.7$$

more accurate 2.75 (partial dissociation + Debye–Hückel)

Example. Calculate pH of aqueous NaOH of concentration 0.01 mol dm⁻³ at 25 °C. $c_{OH^-} = 0.01 \text{ mol dm}^{-3}$, $c_{H^+} = 10^{-14}/0.01 = 10^{-12} \text{ mol dm}^{-3}$, pH = 12

Example. Calculate pH of 0.001 M aqueous Ca(OH)₂ at 25 °C.

$$c_{OH^{-}} = 0.002 \text{ mol dm}^{-3}$$
, pOH = 2.7, pH = 14 – 2.7 = 11.3

$HA \rightarrow H^+ + A^-$

Determine pH of a weak acid from known concentration.

(analytic) concentration: c_0 acidity constant: K_a

Assumptions:

COH[−] ≪ CH⁺

 $\mathbf{O} \gamma_i = 1$ (approximation of infinite dilution)

	compound	0	eq.	
Balance:	HA	C ₀	$c_0 - x$	Equation: $\frac{[H^+][A^-]}{[HA]} = \frac{x^2}{c_0 - x} = K_a$
Dalance.	A	0	x	$\frac{1}{[HA]} = \frac{1}{c_0 - x} = K_a$
	H ⁺	0	x	

Correctly $\frac{x^2}{(c_0-x)c^{st}} = K_a$. We will neglect c^{st} (concentrations should be inserted in mol dm⁻³).

Dissociation of a weak acid II

Equation:
$$\frac{[H^+][A^-]}{[HA]} = \frac{x^2}{c_0 - x} = K_a$$

Solution:

$$c_{\mathrm{H}^{+}} = x = \sqrt{\left(\frac{K_{\mathrm{a}}}{2}\right)^{2} + K_{\mathrm{a}}c_{0}} - \frac{K_{\mathrm{a}}}{2} \overset{c_{0} \gg K_{\mathrm{a}}}{\approx} \sqrt{K_{\mathrm{a}}c_{0}}$$

Summary of approximations:

- the acid is stronger than water $(K_a \gg K_w)$
- concentration c_0 is high enough ($c_0 \gg K_a$), then most of the acid is not ionized
- \bigcirc c_0 is not too high so that we can use the infinite dilution approximations ($\gamma_i = 1$) Alternate form:

$$pH = \frac{1}{2}(pK_a + pc_A)$$

Degree of dissociation:

$$\alpha \approx \sqrt{\frac{K_a}{c_0}}$$

 $HA \rightarrow H^+ + A^-$

How much of deprotonated form can we find in a solution of given pH?

 $\alpha = \frac{1}{2}$ for pH=pK_a

Calculate pH of rainwater at 25 °C **and 1 bar.**

- Henry constant of dissolution of CO_2 : $K_h = 0.033 \text{ mol dm}^{-3} \text{ bar}^{-1}$
- Acidity constant of CO_2 : $pK_{a1} = 6.37$. This is total for reactions

$$CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$$

- CO₂ in the air (2019/2 Mauna Loa): y = 411 ppm (18th century: y = 280 ppm)
- CO_3^{2-} can be neglected (p $K_{a2} = 10.32$)

OH⁻ can be neglected

$$C_{CO_2} = K_h y_{CO_2} p = 0.033 \text{ mol dm}^{-3} \text{ bar}^{-1} \times 0.000411 \times 1 \text{ bar}$$

= 1.36 × 10⁻⁵ mol dm⁻³

Balance: $c_{H^+} = c_{HCO_3^-}$ (Not $c_{CO_2} \stackrel{?}{=} c_{CO_{2,0}} - c_{H^+}$ because CO₂ is given by equilibrium, not initial concentration.)

Equation:

the

$$\frac{[H^+][HCO_3^-]}{[CO_2]} = K_{a1}$$

$$-\log 1.36 \times 10^{-5}$$

$$[H^+] = \sqrt{K_{a1}[CO_2]}, \quad pH = \frac{1}{2}(pK_{a1} + p[CO_2]) = \frac{1}{2}(6.37 + 4.87) = 5.62$$
real pH is usually lower (HNO_3, H_2SO_4) (18th cent.: pH = 5.70)

pH of a weak base

Example. Calculate pH of aqueous solution of ethylamine of concentration $c_0 = 0.01 \text{ mol dm}^{-3}$ at 25 °C. The acidity constant of ethylammonium is $K_a = 1.6 \times 10^{-11}$.

$$C_2H_5NH_2 + H_2O \rightarrow C_2H_5NH_3^+ + OH^-$$

Dissociation constant of ethylamine: $K_d = \frac{K_w}{K_a} = \frac{1 \times 10^{-14}}{1.6 \times 10^{-11}} = 0.000625$

Assumptions: $[H^+] \ll [OH^-]$, $\gamma = 1$. And in the same way as for weak acids:

	compound	0	eq.		
Balancor	$C_2H_5NH_2$	C ₀	$c_0 - x$	Equil.: $\frac{[C_2H_5NH_3^+][OH^-]}{[C_2H_5NH_2]} =$	
Dalalice.	$C_2H_5NH_2$ $C_2H_5NH_3$ ⁺	0	x	$[C_2H_5NH_2]$	
	OH^{-}	0	x		

$$x = [OH^{-}] = \sqrt{\left(\frac{K_{d}}{2}\right)^{2} + K_{d}c_{0}} - \frac{K_{d}}{2} \overset{c_{0} \gg K_{d}}{\approx} \sqrt{K_{d}c_{0}}$$

or:

$$pH = \frac{1}{2}(pK_a + pK_w - pc_0)$$

pH=11.34, approx.: 11.40; $\alpha = 0.22$

10/28

col04

Simultaneous equilibria: very dilute solutions

Dissociation of water has to be taken into account.

$$HA \rightarrow H^{+} + A^{-} \qquad (K_a)$$

$$H_2O \rightarrow H^{+} + OH^{-} \qquad (K_w)$$

"Explicit" balance

compound	0	eq.
HA	CO	$c_0 - x$
A	0	x
H ⁺	0	<i>x</i> + <i>y</i>
OH^{-}	0	У

Equations

$$\frac{(x+y)x}{c_0 - x} = K_a$$
$$(x+y)y = K_w$$

2 equations, 2 unknowns: x, y

"Implicit" balance

compound	balance
A	$[A^{-}] + [HA] = c_0$
charge	$[H^+] - ([A^-] + [OH^-]) = 0$

Equations

 $\frac{[H^+][A^-]}{[HA]} = K_a$ [H^+][OH^-] = K_w

4 equations, 4 unknowns: [H⁺], [HA], [A⁻], [OH⁻]

Very dilute solutions

CH₃COOH, $pK_a = 4.76$

• "exact"

$$- [H^+] = \sqrt{\left(\frac{K_a}{2}\right)^2 + K_a c_0} - \frac{K_a}{2}$$

--- $[H^+] = \sqrt{K_a c_0}$ (approximate formula)

In a realistic region of concentrations the simplified formula is sufficient

Simultaneous equilibria: ion speciation

Aminoacids, ionization degree according to pH. E.g., HIS, LYS:

$$\begin{array}{ll} AH_3{}^{2+} \rightarrow AH_2{}^{+} + H^+ & (K_{a1}) \\ AH_2{}^{+} \rightarrow AH + H^+ & (K_{a2}) \\ AH \rightarrow A^- + H^+ & (K_{a3}) \end{array}$$

H⁺ easily detaches from AH_3^{2+} , hardly from AH $\Rightarrow K_{a1} > K_{a2} > K_{a3}$ or $pK_{a1} < pK_{a2} < pK_{a3}$.

Balance:

$$[A^{-}] + [AH] + [AH_2^{+}] + [AH_3^{2+}] = c_0$$

Equation:

$$\frac{AH_{2}^{+}[H^{+}]}{[AH_{3}^{2}^{+}]} = K_{a1}$$
$$\frac{[AH][H^{+}]}{[AH_{2}^{+}]} = K_{a2}$$
$$\frac{[A^{-}][H^{+}]}{[AH]} = K_{a3}$$

Lysine

NH₂-(CH₂)₄-CH(NH₂)-COOH, $pK_{a1} = 2.15$, $pK_{a2} = 9.16$, $pK_{a3} = 10.67$

рΗ

From real life

Titanium dental implants are treated (e.g.) in a phosphoric acid solution. Calculate the needed concentration (in pure water) for pH = 3.42. Data: $pK_{a1} = 2.18$, $pK_{a2} = 7.198$, $pK_{a3} = 12.319$.

0.40 mmol/L (H₃PO₄+H₂PO₄⁻) 0.38 mmol/L (H₃PO₄ neglected)

credit: Wikipedia

Salt of weak acid + strong base

 $+ \frac{16/28}{col04}$

E.g., M=Na, $A=CH_3COO$.

$$MA \rightarrow M^{+} + A^{-} \quad (100\%)$$
$$A^{-} + H_2O \rightarrow AH + OH^{-} \quad x \text{ (hydrolysis)}$$

compound	0	eq.	conditions	
M+	C ₀	C ₀		
A	С0	$c_0 - x$		$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \approx \frac{\frac{K_{w}}{x}(c_{0} - x)}{x}$
OH^{-}	0	x		$\kappa_a = \frac{1}{[HA]} \approx \frac{1}{x}$
HA	0	x		
H ⁺	0	K _w /x	for $[OH^-] \gg [H^+]$	

Solution:

$$x = \sqrt{\frac{c_0 K_w}{K_a} + \left(\frac{K_w}{2K_a}\right)^2} - \frac{K_w}{2K_a} \approx \sqrt{\frac{c_0 K_w}{K_a}} \implies pH \approx \frac{1}{2}(pK_w + pK_a - pc_0)$$

where the last approximation holds for $c_0 \gg \frac{K_w}{K_a} \& x \gg \sqrt{K_w}$, *i.e.*, $c_0 \gg K_a$

Little soluble salts of strong electrolytes

Solubility product = equilibrium constant of dissociation.

activities of salts (s) are $a_{salt} = 1$

 $\mathbf{O} \gamma_i = 1$ assumed for ions

$$BaSO_4 \rightarrow Ba^{2+} + SO_4^{2-} \qquad K_s = \frac{a_{Ba^{2+}}a_{SO_4^{2-}}}{a_{BaSO_4}} = [Ba^{2+}][SO_4^{2-}]$$

$$Mg(OH)_2 \rightarrow Mg^{2+} + 2OH^- \qquad K_s = [Mg^{2+}][OH^-]^2$$

$$As_2S_3 \rightarrow 2As^{3+} + 3S^{2-} \qquad K_s = [As^{3+}]^2[S^{2-}]^3$$

$$but: S^{2-} + H_2O \rightarrow HS^- + OH^- \dots \qquad As^{3+} + OH^- \rightarrow AsOH^{2+} \dots$$

Example. How much Mg(OH)₂ (in mg) dissolves in 1 L of pure water? Data: $K_s = 2.6 \times 10^{-11}$, $M(Mg(OH)_2) = 58.3 \text{ g mol}^{-1}$

Balance:
$$[OH^{-}] = 2[Mg^{2+}] = 2c$$

Equation: $K_s = [Mg^{2+}][OH^{-}]^2 = c(2c)^2 = 4c^3$
Solution: $c = [Mg(OH)_2] = (K_s/4)^{1/3} = 0.0001866 \text{ mol dm}^{-3}, c_w = cM_{Mg(OH)_2} = 11 \text{ mg dm}^{-3}$

Often problems with hydrolysis, complexation, ...

Little soluble salts: more ions

Calcium oxalate: $K_s(CaC_2O_4) = 3.9 \times 10^{-9}$. a) how much dissolves in pure water? b) how much dissolves in blood? $([Ca^{2+}] = 2.4 \text{ mmol dm}^{-3})$

$$CaC_2O_4 \rightarrow Ca^{2+} + C_2O_4^{2-}$$

 $K_s = [Ca^{2+}][C_2O_4^{2-}]$

Solution:

a)
$$[C_2O_4^{2-}] = [Ca^{2+}] = \sqrt{K_s}$$

= 62 μ mol dm⁻³

hydrolysis of C₂O₄²⁻ unimportant (62.49 vs. 62.45 μ mol dm⁻³)

b) $[C_2O_4^{2-}] = K_s/[Ca^{2+}] \doteq 1.6 \,\mu \,\text{mol}\,\text{dm}^{-3}$

Solubility decreases in a presence of one of the ions ($CaCl_2$, $Na_2C_2O_4$)

But: upon adding $H_2C_2O_4$ the solubility slightly increases because $C_2O_4^{2-}$ is protonated at lower pH

Other ions (e.g., NaCl) slightly increase solubility (more later ...)

Case study: system CaCO₃(s,aq) + CO₂(g,aq)

Karsts, seawater, ...

$$\begin{array}{rcl} {\rm CaCO_3(s)} & \to & {\rm Ca}^{2+} + {\rm CO_3}^{2-} & pK_{\rm s} = 8.35 \mbox{ (calcite)} \\ {\rm CO_2 + H_2O} & \to & [{\rm H_2CO_3}] \to {\rm H^+} + {\rm HCO_3^-} & pK_{\rm a1} = 6.37 \mbox{ or } 6.35 \\ {\rm HCO_3^-} & \to & {\rm H^+} + {\rm CO_3}^{2-} & pK_{\rm a2} = 10.25 \mbox{ or } 10.33 \\ {\rm H_2O} & \to & {\rm H^+} + {\rm OH^-} & pK_{\rm w} = 14 \end{array}$$

Henry constant of CO₂ in water : $K_h = 0.033 \text{ mol dm}^{-3} \text{ bar}^{-1}$

Partial pressure of p_{CO_2} is known (atmosphere) Balance

CaCO₃(s) is in surplus \Rightarrow no balance of Ca

charge balance:

 $2[Ca^{2+}] + [H^+] - 2[CO_3^{2-}] - [HCO_3^{-}] - [OH^{-}] = 0$

credit: www.explorecrete.com

[cd ../maple; xmaple vapenec+co2.mws] Case study: system CaCO₃(s,aq) + CO₂(g,aq) +

Equation:

$$[CO_2] = y_{CO_2} p K_h \text{ (given)}$$

$$[Ca^{2+}][CO_3^{2-}] = K_s \tag{1}$$

20/28

col04

$$\frac{[H^+][HCO_3^-]}{[CO_2]} = K_{a1}$$
(2)

$$\frac{[H^+][CO_3^{2-}]}{[HCO_3^{-}]} = K_{a2}$$
(3)

$$[H^{+}][OH^{-}] = K_{W}$$
(4)

+ charge balance:

$$2[Ca^{2+}] + [H^{+}] - 2[CO_{3}^{2-}] - [HCO_{3}^{-}] - [OH^{-}] = 0$$
(5)

⇒ 5 equations, 5 unknowns: [Ca²⁺], [CO₃^{2−}], [H⁺], [HCO₃^{2−}], [OH[−]].

Case study: system CaCO₃(s,aq) + CO₂(g,aq)

```
Solubility of limestone in rainwater
(recalculated to Ca<sup>2+</sup>)
19.7 mg dm<sup>-3</sup> 2015 (400 ppm CO<sub>2</sub>), pH=8.23
17.6 mg dm<sup>-3</sup> before industrial revolution (280 ppm CO<sub>2</sub>), pH=8.33
```

For comparison: 4.8 mg dm⁻³ in pure water (no CO₂, pH=9.9) 2.7 mg dm⁻³ hydrolysis neglected (cst √K_s, pH=7)

Contents of Ca^{2+} and pH (more ions present...): Blood: 100 mg dm⁻³, pH = 7.35–7.45 Sea: 400 mg dm⁻³, pH = 7.5–8.4

Case study: system CaCO₃(s,aq) + CO₂(g,aq)

22/28

Buffers

Buffer = solution able to keep pH (almost) constant if acid or base is added.

Typical example: solution of a weak acid HA ([HA] = c_{acid}) + its salt MA (of strong base, [MA] = [M⁺] = c_{base}), *e.g.*, CH₃COOH + CH₃COONa acid base

compound	0	eq.
M+	C _{base}	C _{base}
A	C _{base}	$C_{\text{base}} + x$
H+	0	X
HA	C _{acid}	C _{acid} — X

acid	base
CH₃COOH	CH₃COO [−]
<u>H</u> +	Na ^{+ 1}

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{x(c_{base} + x)}{c_{acid} - x}$$

Approximate solution:

$$x = K_{a} \frac{c_{acid} - x}{c_{base} + x} \approx K_{a} \frac{c_{acid}}{c_{base}} \qquad [H^{+}] = K_{a} \frac{c_{acid}}{c_{base}} \qquad pH = pK_{a} + \log_{10} \frac{c_{base}}{c_{acid}}$$

Henderson–Hasselbalch equation

24/28 col04

$$[H^+] = K_a \frac{C_{acid}}{C_{base}} \qquad pH = pK_a + \log_{10} \frac{C_{base}}{C_{acid}}$$

Assumptions and generalization:

- $\bigcirc [OH^{-}], [H^{+}] \ll C_{acid}, C_{base}; C_{acid} \approx C_{base}, C_{acid}, C_{base} \gg K_a; \gamma_i = 1$
- → BH⁺ + OH⁻) and its salt BHX (of strong acid), $c_{acid} = [BHX] = [X^{-}]$, $c_{base} = [B]$
- Maximum buffer capacity for $c_{acid} = c_{base}$ (see below)

Buffer capacity

Let us add a small amount dc of a strong base MOH \Rightarrow dc of HA is neutralized to MA (="base"). Add strong acid = remove strong base

$$C_{acid} \rightarrow C_{acid} - dc$$

 $C_{base} \rightarrow C_{base} + dc$

the amount of a strong base needed to increase pH by 1

The same assumptions as Henderson–Hasselbalch:

Buffer capacity = $\beta = \frac{dc}{d(pH)} = -\ln 10[H^+] \frac{dc}{d[H^+]}$

$$[H^+](c) = K_a \frac{C_{acid}}{C_{base}}$$

6

Maximum capacity

Given A ($c_{A,total} = c_{acid} + c_{base}$), β reaches maximum at $c_{acid} = c_{base}$

Maximum buffer capacity is reached for an equimolar mixture

graphs: exact solution with $\gamma = 1$

Bicarbonate (hydrogen carbonate) buffer

Main part of the blood buffer system

Henry constant of CO₂ in water at body temperature: $K_h = 0.025 \text{ mol dm}^{-3} \text{ bar}^{-1}$

• Acidity constant of CO₂ at body temperature: $pK_{a1} = 6.1$ for

$$CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$$

Contents of hydrogen carbonates (mostly NaHCO₃): $[HCO_3^-] = 24 \text{ mmol dm}^{-3} = c_{\text{base}}$

pH = 7.35 to 7.45

$$[H^+] = K_{a1} \frac{C_{acid}}{C_{base}}$$
$$C_{acid} = \frac{[H^+]C_{base}}{K_{a1}}, \quad p_{CO_2} = \frac{C_{acid}}{K_h} = \frac{[H^+]C_{base}}{K_{a1}K_h}$$

 $\Rightarrow p_{CO_2} = 5.4$ to 4.3 kPa (~ 5 vol.% in alveolar air)

Outside range \Rightarrow respiratory acidosis/alkalosis

Phosphate buffer $Na_XH_{3-X}PO_4$

H₃PO₄: $pK_{a1} = 2.148$ $pK_{a2} = 7.198$ $pK_{a3} = 12.319$

28/28

*col*04

isotonic, pH=7.4: NaCl, KCl, Na₂HPO₄ (base), KH₂PO₄ (acid) (*Phosphate buffered saline*)

NB: The deviation caused by nonideality is not negligible in concentrated solutions. The experimental pH is by about 0.5 less than calculated. E.g., the maximum capacity is for pH = 6.8, not 7.2.