Electrochemistry

Subject of electrochemistry:

dissociation (solutions of electrolytes, melts of salts)
conductivity
phenomena at interfaces s/l (electrolysis, galvanic cells)

Conductors:

electrons (or holes) are moving:
metals, graphite, graphene, semiconductors
ions are moving (or jumping): solutions of electrolytes, molten salts, ionic liquids
both electrons and ions are moving: plasma

Solutions of electrolytes

strong electrolyte: (almost) completely ionizes (dissociates) no uncharged molecules in the solution $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{NaCl}, \mathrm{BaSO}_{4}, \ldots$ not necessarily to max. degree:

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{100 \%} \mathrm{H}^{+}+\mathrm{HSO}_{4} \xrightarrow{\text { partially }} 2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}
$$

weak electrolyte: contains neutral (not dissociated) molecules organic acids and bases, $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \ldots$
standard states: solvent (water): ${ }^{\bullet}$; in dilute $\odot a_{\text {water }}=1$

$$
\text { ions: }{ }^{[c]}\left(a_{i}=\gamma_{i} c_{i} / c^{\text {st }}\right)
$$

dissociation constant $=$ equilibrium constant of the dissociation reaction

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \\
& \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
&(\mathrm{COOH})_{2} \rightarrow \\
& \mathrm{HOOC}^{-} \mathrm{COO}^{-}+\mathrm{H}^{+}
\end{aligned}
$$

pH

$$
\log =\log _{10}, p=-\log
$$

$$
\mathrm{pH}=-\log a_{\mathrm{H}^{+}} \stackrel{\gamma_{\mathrm{H}^{+}}=1}{=}-\log \frac{C_{\mathrm{H}^{+}}}{c^{\mathrm{st}}}=-\log \frac{c_{\mathrm{H}^{+}}}{\mathrm{moldm}} \stackrel{?}{=}-\log \left[\mathrm{H}^{+}\right] \stackrel{?}{=}-\log \left\{\mathrm{H}^{+}\right\}
$$

Dissociation of water

Dissociation of water:

$$
\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

Ionic product (autoionization constant) of water K_{w} :

$$
K_{\mathrm{w}}=\frac{a_{\mathrm{H}^{+}} a_{\mathrm{OH}^{-}}}{a_{\mathrm{H}_{2} \mathrm{O}}} \approx \frac{\left.c_{\mathrm{H}^{+} c_{\mathrm{OH}^{-}}}^{\left(c^{5 \mathrm{t}}\right)^{2}} \equiv\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \doteq 1.00 \times 10^{-14}\left(25^{\circ} \mathrm{C}\right)\right) .}{}
$$

Equivalently (at $25^{\circ} \mathrm{C}$):

$$
\mathrm{pH}+\mathrm{pOH}=\mathrm{p} K_{\mathrm{w}}=14 \quad \text { more accurate } 13.997
$$

depends on temperature: $\mathrm{p} K_{\mathrm{w}}\left(100^{\circ} \mathrm{C}\right)=12.29$
heavy water: $\mathrm{p} K_{\mathrm{w}}\left(25^{\circ} \mathrm{C}\right)=14.87$ (isotopic effect: D is more strongly bound)

Acidity constant (ionization constant) K_{a} is common in tables $=$ equilibrium constant of deprotonisation, often given as $\mathrm{p} K_{\mathrm{a}}$
acids: dissociation constant of the acid

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \quad K_{\mathrm{a}}=K_{\mathrm{d}}
$$

bases: dissociation constant of the conjugated acid

$$
\begin{array}{rllll}
\mathrm{NH}_{4}^{+} & \rightarrow & \mathrm{NH}_{3}+\mathrm{H}^{+} & \left(K_{\mathrm{a}}\right) & \times(-1) \\
\mathrm{H}_{2} \mathrm{O} & \rightarrow & \mathrm{H}^{+}+\mathrm{OH}^{-} & \left(K_{\mathrm{w}}\right) & \times(+1) \\
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} & \rightarrow & \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} & K_{\mathrm{d}}=K_{\mathrm{w}} / K_{\mathrm{a}}
\end{array}
$$

Example. Acidity constant of ammonium is $\mathrm{p} K_{\mathrm{a}}=9.25$ (at $25^{\circ} \mathrm{C}$). Calculate the dissociation constant of ammonium hydroxide (water solution of NH_{3}).

pH of strong acids and bases

Example. Calculate pH of aqueous HCl of concentration $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$.
100 \% dissociation to the 1st degree:

$$
c_{\mathrm{H}^{+}}=c_{\mathrm{HCl}} \Rightarrow \mathrm{pH}=-\log a_{\mathrm{H}^{+}} \approx-\log c_{\mathrm{H}^{+}}=2
$$

Example. Calculate pH of aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ of concentration $0.001 \mathrm{~mol} \mathrm{dm}{ }^{-3}$. It dissociates completely to the 1st degree, partially to the 2 nd degree, but since here $c \ll K_{2}=1.3 \times 10^{-2}$, we can assume also 100% dissociation.

$$
c_{\mathrm{H}^{+}}=2 c_{\mathrm{H}_{2} \mathrm{SO}_{4}} \Rightarrow \mathrm{pH}=-\log a_{\mathrm{H}^{+}} \approx-\log \left(2 c_{\mathrm{H}^{+}}\right)=2.7
$$

more accurate 2.75 (partial dissociation + Debye-Hückel)
Example. Calculate pH of aqueous NaOH of concentration $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ at $25^{\circ} \mathrm{C}$. $c_{\mathrm{OH}^{-}}=0.01 \mathrm{~mol} \mathrm{dm}^{-3}, c_{\mathrm{H}^{+}}=10^{-14} / 0.01=10^{-12} \mathrm{~mol} \mathrm{dm}^{-3}, \mathrm{pH}=12$

Example. Calculate pH of 0.001 M aqueous $\mathrm{Ca}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$.
$c_{\mathrm{OH}^{-}}=0.002 \mathrm{moldm}^{-3}, \mathrm{pOH}=2.7, \mathrm{pH}=14-2.7=11.3$

$$
\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-}
$$

Determine pH of a weak acid from known concentration.
(analytic) concentration: c_{0}
acidity constant: K_{a}
Assumptions:
$c_{\mathrm{OH}^{-}} \ll c_{\mathrm{H}^{+}}$
$\gamma_{i}=1$ (approximation of infinite dilution)

Correctly $\frac{x^{2}}{\left(c_{0}-x\right) c^{s t}}=K_{a}$. We will neglect $c^{\text {st }}$ (concentrations should be inserted in mol dm ${ }^{-3}$).

Equation: $\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{x^{2}}{c_{0}-x}=K_{a}$
Solution:

$$
c_{\mathrm{H}^{+}}=x=\sqrt{\left(\frac{K_{\mathrm{a}}}{2}\right)^{2}+K_{\mathrm{a}} c_{0}}-\frac{K_{\mathrm{a}}}{2} c_{0} \gg K_{\mathrm{a}} \sqrt{K_{\mathrm{a}} c_{0}}
$$

Summary of approximations:

- the acid is stronger than water ($K_{\mathrm{a}} \gg K_{\mathrm{w}}$)
- concentration c_{0} is high enough ($c_{0} \gg K_{\mathrm{a}}$), then most of the acid is not ionized
- c_{0} is not too high so that we can use the infinite dilution approximations ($\gamma_{i}=1$) Alternate form:

$$
\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{\mathrm{a}}+\mathrm{p} C_{\mathrm{A}}\right)
$$

Degree of dissociation:

$$
\alpha \approx \sqrt{\frac{K_{\mathrm{a}}}{c_{0}}}
$$

$$
\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-}
$$

How much of deprotonated form can we find in a solution of given $\mathbf{p H}$?

compound	0	eq.
HA	c_{0}	$c_{0}-x$
$\mathrm{~A}^{-}$	0	x

$\mathrm{H}^{+} \quad \mathrm{C}_{\mathrm{H}^{+}} \quad \mathrm{C}_{\mathrm{H}^{+}} \leftarrow$ maintained by buffer

$$
x=c_{\mathrm{A}^{-}}=\frac{c_{0} K_{\mathrm{a}}}{c_{\mathrm{H}^{+}}+K_{\mathrm{a}}}
$$

Degree of dissociation:

$$
\alpha=\frac{1}{c_{\mathrm{H}^{+}} / K_{\mathrm{a}}+1}
$$

We have assumed the infinite dilution approximations

C
E
0
C
E
0

$$
\alpha=\frac{1}{2} \text { for } \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}
$$

Henry constant of dissolution of $\mathrm{CO}_{2}: K_{\mathrm{h}}=0.033 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}$
Acidity constant of $\mathrm{CO}_{2}: \mathrm{p} K_{\mathrm{a} 1}=6.37$. This is total for reactions

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

CO_{2} in the air (2019/2 Mauna Loa): $y=411$ ppm (18 ${ }^{\text {th }}$ century: $y=280 \mathrm{ppm}$)
$\mathrm{CO}_{3}{ }^{2-}$ can be neglected $\left(\mathrm{p} K_{\mathrm{a} 2}=10.32\right)$
OH^{-}can be neglected

$$
\begin{aligned}
c_{\mathrm{CO}_{2}}=K_{\mathrm{h}} y_{\mathrm{CO}_{2}} p & =0.033 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1} \times 0.000411 \times 1 \mathrm{bar} \\
& =1.36 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

Balance: $\mathrm{C}_{\mathrm{H}^{+}}=\mathrm{C}_{\mathrm{HCO}_{3}-}\left(\right.$ Not $\mathrm{CCO}_{2} \stackrel{?}{=} \mathrm{C}_{\mathrm{CO}_{2.0}}-c_{\mathrm{H}^{+}}$because CO_{2} is given by equilibrium, not initial concentration.)

Equation:

$$
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}\right]}=K_{\mathrm{a} 1}
$$

$$
l^{-\log 1.36 \times 10^{-5}}
$$

$$
\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a} 1}\left[\mathrm{CO}_{2}\right]}, \quad \mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p}\left[\mathrm{CO}_{2}\right]\right)=\frac{1}{2}(6.37+4.87)=5.62
$$

the real pH is usually lower $\left(\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}\right)$

pH of a weak base

Example. Calculate pH of aqueous solution of ethylamine of concentration $\mathrm{c}_{0}=$ $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ at $25^{\circ} \mathrm{C}$. The acidity constant of ethylammonium is $K_{\mathrm{a}}=1.6 \times 10^{-11}$.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}
$$

Dissociation constant of ethylamine: $K_{\mathrm{d}}=\frac{K_{\mathrm{w}}}{K_{\mathrm{a}}}=\frac{1 \times 10^{-14}}{1.6 \times 10^{-11}}=0.000625$
Assumptions: $\left[\mathrm{H}^{+}\right] \ll\left[\mathrm{OH}^{-}\right], \gamma=1$. And in the same way as for weak acids:

$$
\text { compound } 0 \quad \text { eq. }
$$

Balance: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \quad \mathrm{C}_{0} \quad \mathrm{C}_{0}-x$

$$
\text { Equil.: } \frac{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right]}=\frac{x^{2}}{c_{0}-x}=K_{\mathrm{d}}
$$

OH^{-}

$0 \quad x$

$$
x=\left[\mathrm{OH}^{-}\right]=\sqrt{\left(\frac{K_{\mathrm{d}}}{2}\right)^{2}+K_{\mathrm{d}} c_{0}}-\frac{K_{\mathrm{d}}}{2} \stackrel{c_{0} \gg K_{\mathrm{d}}}{\approx} \sqrt{K_{\mathrm{d}} C_{0}}
$$

or:

$$
\mathrm{pH}=\frac{1}{2}\left(\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{w}}-\mathrm{p} c_{0}\right)
$$

Dissociation of water has to be taken into account.

$$
\begin{align*}
\mathrm{HA} & \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-} \tag{a}\\
\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \tag{w}
\end{align*}
$$

"Explicit" balance

compound	0	eq.
HA	c_{0}	$c_{0}-x$
$\mathrm{~A}^{-}$	0	x
H^{+}	0	$x+y$
OH^{-}	0	y

Equations

$$
\begin{aligned}
& \frac{(x+y) x}{c_{0}-x}=K_{a} \\
& (x+y) y=K_{w}
\end{aligned}
$$

"Implicit" balance

compound	balance
A	$\left[\mathrm{~A}^{-}\right]+[\mathrm{HA}]=c_{0}$
charge	$\left[\mathrm{H}^{+}\right]-\left(\left[\mathrm{A}^{-}\right]+\left[\mathrm{OH}^{-}\right]\right)=0$

Equations

$$
\begin{aligned}
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} & =K_{\mathrm{a}} \\
{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] } & =K_{\mathrm{w}}
\end{aligned}
$$

- 4 equations, 4 unknowns:
[$\left.\mathrm{H}^{+}\right],[\mathrm{HA}],\left[\mathrm{A}^{-}\right],\left[\mathrm{OH}^{-}\right]$

2 equations, 2 unknowns: x, y

Very dilute solutions

$\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{p} K_{\mathrm{a}}=4.76$

——"exact"

$$
-\left[\mathrm{H}^{+}\right]=\sqrt{\left(\frac{K_{\mathrm{a}}}{2}\right)^{2}+K_{\mathrm{a}} c_{0}}-\frac{K_{\mathrm{a}}}{2}
$$

$-\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{Ka}_{\mathrm{a}} C_{0}}$
(approximate formula)

In a realistic region of concentrations the simplified formula is sufficient

Simultaneous equilibria: ion speciation

Aminoacids, ionization degree according to pH. E.g., HIS, LYS:

$$
\begin{array}{rlr}
\mathrm{AH}_{3}^{2+} & \rightarrow \mathrm{AH}_{2}^{+}+\mathrm{H}^{+} & \left(K_{\mathrm{a} 1}\right) \\
\mathrm{AH}_{2}{ }^{+} \rightarrow \mathrm{AH}+\mathrm{H}^{+} & \left(K_{\mathrm{a} 2}\right) \\
\mathrm{AH} & \rightarrow \mathrm{~A}^{-}+\mathrm{H}^{+} & \left(K_{\mathrm{a} 3}\right)
\end{array}
$$

H^{+}easily detaches from $\mathrm{AH}_{3}{ }^{2+}$, hardly from AH
$\Rightarrow K_{\mathrm{a} 1}>K_{\mathrm{a} 2}>K_{\mathrm{a} 3}$ or $\mathrm{p} K_{\mathrm{a} 1}<\mathrm{p} K_{\mathrm{a} 2}<\mathrm{p} K_{\mathrm{a} 3}$.

Balance:

$$
\left[\mathrm{A}^{-}\right]+[\mathrm{AH}]+\left[\mathrm{AH}_{2}^{+}\right]+\left[\mathrm{AH}_{3}^{2+}\right]=\mathrm{c}_{0}
$$

Equation:

$$
\begin{aligned}
\frac{\left[\mathrm{AH}_{2}{ }^{+}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{AH}_{3}^{2+}\right]} & =K_{\mathrm{a} 1} \\
\frac{[\mathrm{AH}]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{AH}_{2}^{+}\right]} & =K_{\mathrm{a} 2} \\
\frac{\left[\mathrm{~A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{AH}]} & =K_{\mathrm{a} 3}
\end{aligned}
$$

$\mathrm{NH}_{2}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}\left(\mathrm{NH}_{2}\right)-\mathrm{COOH}, \mathrm{p} \mathrm{Ka}_{\mathrm{a}}=2.15, \mathrm{p} K_{\mathrm{a} 2}=9.16, \mathrm{p} \mathrm{a}_{\mathrm{a} 3}=10.67$

From real life

Titanium dental implants are treated (e.g.) in a phosphoric acid solution. Calculate the needed concentration (in pure water) for $\mathrm{pH}=3.42$. Data: $\mathrm{p} K_{a 1}=2.18, \mathrm{p} K_{a 2}=7.198$, $\mathrm{p} K_{a 3}=12.319$.

Salt of weak acid + strong base

E.g., $M=\mathrm{Na}, \mathrm{A}=\mathrm{CH}_{3} \mathrm{COO}$.

$$
\begin{array}{rlll}
\mathrm{MA} & \rightarrow & \mathrm{M}^{+}+\mathrm{A}^{-} & (100 \%) \\
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} & \rightarrow & \mathrm{AH}^{2}+\mathrm{OH}^{-} & x \text { (hydrolysis) }
\end{array}
$$

compound	0	eq.	conditions
M^{+}	c_{0}	c_{0}	

A^{-}	c_{0}	$c_{0}-\chi$
OH^{-}	0	χ

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \approx \frac{\frac{K_{\mathrm{w}}}{x}\left(c_{0}-x\right)}{x}
$$

HA	0	x	
H^{+}	0	K_{w} / x	for $\left[\mathrm{OH}^{-}\right] \gg\left[\mathrm{H}^{+}\right]$

Solution:

$$
x=\sqrt{\frac{c_{0} K_{\mathrm{w}}}{K_{\mathrm{a}}}+\left(\frac{K_{\mathrm{w}}}{2 K_{\mathrm{a}}}\right)^{2}}-\frac{K_{\mathrm{w}}}{2 K_{\mathrm{a}}} \approx \sqrt{\frac{c_{0} K_{\mathrm{w}}}{K_{\mathrm{a}}}} \Rightarrow \mathrm{pH} \approx \frac{1}{2}\left(\mathrm{p} K_{\mathrm{w}}+\mathrm{p} K_{\mathrm{a}}-\mathrm{p} c_{0}\right)
$$

where the last approximation holds for $c_{0} \gg \frac{K_{\mathrm{w}}}{K_{\mathrm{a}}} \& x \gg \sqrt{K_{\mathrm{w}}}$, i.e., $c_{0} \gg K_{\mathrm{a}}$

Little soluble salts of strong electrolytes

Solubility product $=$ equilibrium constant of dissociation.
activities of salts (s) are $a_{\text {salt }}=1$
$\gamma_{i}=1$ assumed for ions

$$
\begin{array}{rlrl}
\mathrm{BaSO}_{4} & \rightarrow \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} & K_{\mathrm{s}}=\frac{a_{\mathrm{Ba}^{2+}} a_{\mathrm{SO}_{4}{ }^{2-}}}{a_{\mathrm{BaSO}_{4}}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right] \\
\mathrm{Mg}(\mathrm{OH})_{2} & \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-} & K_{\mathrm{s}}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} \\
\mathrm{As}_{2} \mathrm{~S}_{3} & \rightarrow 2 \mathrm{As}^{3+}+3 \mathrm{~S}^{2-} & K_{\mathrm{s}}=\left[\mathrm{As}^{3+}\right]^{2}\left[\mathrm{~S}^{2-}\right]^{3} \\
\text { but: } \mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{HS}^{-}+\mathrm{OH}^{-} \ldots & \mathrm{As}^{3+}+\mathrm{OH}^{-} & \rightarrow \mathrm{AsOH}^{2+} \ldots
\end{array}
$$

Example. How much $\mathrm{Mg}(\mathrm{OH})_{2}$ (in mg) dissolves in 1 L of pure water?
Data: $K_{\mathrm{S}}=2.6 \times 10^{-11}, \mathrm{M}\left(\mathrm{Mg}(\mathrm{OH})_{2}\right)=58.3 \mathrm{~g} \mathrm{~mol}^{-1}$
Balance: $\left[\mathrm{OH}^{-}\right]=2\left[\mathrm{Mg}^{2+}\right]=2 \mathrm{c}$
Equation: $K_{\mathrm{s}}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=c(2 c)^{2}=4 c^{3}$
Solution: $c=\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]=\left(K_{\mathrm{s}} / 4\right)^{1 / 3}=0.0001866 \mathrm{~mol} \mathrm{dm}^{-3}$,

$$
c_{\mathrm{w}}=c M_{\mathrm{Mg}(\mathrm{OH})_{2}}=11 \mathrm{mg} \mathrm{dm}^{-3}
$$

Often problems with hydrolysis, complexation, ...

Calcium oxalate: $K_{5}\left(\mathrm{CaC}_{2} \mathrm{O}_{4}\right)=3.9 \times 10^{-9}$.
a) how much dissolves in pure water?
b) how much dissolves in blood?

$$
\begin{aligned}
&\left(\left[\mathrm{Ca}^{2+}\right]=2.4\right. \mathrm{mmoldm} \\
& \\
& \mathrm{CaC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \\
& K_{\mathrm{s}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]
\end{aligned}
$$

Solution:
a) $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=\left[\mathrm{Ca}^{2+}\right]=\sqrt{K_{\mathrm{s}}}$

$$
\doteq 62 \mu \mathrm{~mol} \mathrm{dm}^{-3}
$$

oxalis
hydrolysis of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ unimportant ($62.49 \mathrm{vs} .62 .45 \mu \mathrm{~mol} \mathrm{dm}^{-3}$)
b) $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=K_{\mathrm{s}} /\left[\mathrm{Ca}^{2+}\right] \doteq 1.6 \mu \mathrm{~mol} \mathrm{dm}^{-3}$

Solubility decreases in a presence of one of the ions $\left(\mathrm{CaCl}_{2}, \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$
But: upon adding $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ the solubility slightly increases because $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ is protonated at lower pH
Other ions (e.g., NaCl) slightly increase solubility (more later ...)

Karsts, seawater, ...

$$
\begin{array}{rlll}
\mathrm{CaCO}_{3}(\mathrm{~s}) & \rightarrow \mathrm{Ca}^{2+}+\mathrm{CO}_{3}^{2-} & \mathrm{p} K_{\mathrm{s}}=8.35 \text { (calcite) } \\
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} & \rightarrow\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}- & \mathrm{p} K_{\mathrm{a} 1}=6.37 \text { or } 6.35 \\
\mathrm{HCO}_{3}- & \rightarrow \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} & \mathrm{p} K_{\mathrm{a} 2}=10.25 \text { or } 10.33 \\
\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} & \mathrm{p} K_{\mathrm{w}}=14
\end{array}
$$

Henry constant of CO_{2} in water : $K_{\mathrm{h}}=0.033 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}$
Partial pressure of CO_{2} is known (atmosphere)

Balance

CO_{2} given by $\mathrm{P}_{\mathrm{CO}_{2}}$
\Rightarrow no balance of $\mathrm{H}_{x} \mathrm{CO}_{3}$
$\mathrm{CaCO}_{3}(\mathrm{~s})$ is in surplus \Rightarrow no balance of Ca

- charge balance:

$$
2\left[\mathrm{Ca}^{2+}\right]+\left[\mathrm{H}^{+}\right]-2\left[\mathrm{CO}_{3}^{2-}\right]-\left[\mathrm{HCO}_{3}^{-}\right]-\left[\mathrm{OH}^{-}\right]=0
$$

Case study: system $\mathrm{CaCO}_{3}(\mathrm{~s}, \mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}, \mathrm{aq})$

Equation:

$$
\begin{align*}
{\left[\mathrm{CO}_{2}\right] } & =y_{\mathrm{CO}_{2}} p K_{\mathrm{h}} \text { (given) } \\
{\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}^{2-}\right] } & =K_{\mathrm{s}} \tag{1}\\
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}\right]} & =K_{\mathrm{al}} \tag{2}\\
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]} & =K_{\mathrm{a} 2} \tag{3}\\
{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] } & =K_{\mathrm{w}} \tag{4}
\end{align*}
$$

+ charge balance:

$$
\begin{equation*}
2\left[\mathrm{Ca}^{2+}\right]+\left[\mathrm{H}^{+}\right]-2\left[\mathrm{CO}_{3}^{2-}\right]-\left[\mathrm{HCO}_{3}^{-}\right]-\left[\mathrm{OH}^{-}\right]=0 \tag{5}
\end{equation*}
$$

$\Rightarrow 5$ equations, 5 unknowns:
$\left[\mathrm{Ca}^{2+}\right],\left[\mathrm{CO}_{3}^{2-}\right],\left[\mathrm{H}^{+}\right],\left[\mathrm{HCO}_{3}^{2-}\right],\left[\mathrm{OH}^{-}\right]$.

Solubility of limestone in rainwater (recalculated to Ca^{2+})
$19.7 \mathrm{mg} \mathrm{dm}^{-3} 2015$ (400 ppm CO 2), $\mathrm{pH}=8.23$
$17.6 \mathrm{mg} \mathrm{dm}^{-3}$ before industrial revolution ($280 \mathrm{ppm} \mathrm{CO}_{2}$), $\mathrm{pH}=8.33$

- For comparison:
$4.8 \mathrm{mg} \mathrm{dm}^{-3}$ in pure water ($\mathrm{no} \mathrm{CO}_{2}, \mathrm{pH}=9.9$)
$2.7 \mathrm{mg} \mathrm{dm}^{-3}$ hydrolysis neglected ($c^{\mathrm{st}} \sqrt{\mathrm{K}_{\mathrm{s}}}, \mathrm{pH}=7$)
- Contents of Ca^{2+} and pH (more ions present. . .):

Blood: $100 \mathrm{mg} \mathrm{dm}^{-3}, \mathrm{pH}=7.35-7.45$
Sea: $400 \mathrm{mg} \mathrm{dm}^{-3}, \mathrm{pH}=7.5-8.4$

Case study: system $\mathrm{CaCO}_{3}(\mathrm{~s}, \mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}, \mathrm{aq})$

Buffers

Buffer $=$ solution able to keep pH (almost) constant if acid or base is added.
Typical example: solution of a weak acid $\mathrm{HA}\left([\mathrm{HA}]=c_{\mathrm{acid}}\right)+$ its salt MA (of strong base, $\left.[\mathrm{MA}]=\left[\mathrm{M}^{+}\right]=c_{\text {base }}\right)$, e.g., $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
acid base

compound	0	eq.
M^{+}	$C_{\text {base }}$	$c_{\text {base }}$
A^{-}	$c_{\text {base }}$	$c_{\text {base }}+x$
H^{+}	0	x
HA	$c_{\text {acid }}$	$c_{\text {acid }}-x$

acid	base
$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
H^{+}	Na^{+}
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{x\left(c_{\text {base }}+x\right)}{c_{\text {acid }}-x}$	

Approximate solution:

$$
x=K_{\mathrm{a}} \frac{c_{\text {acid }}-x}{c_{\text {base }}+x} \approx K_{\mathrm{a}} \frac{c_{\text {acid }}}{c_{\text {base }}}
$$

$\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \frac{C_{\text {acid }}}{C_{\text {base }}}$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{C_{\text {base }}}{C_{\text {acid }}}$

$$
\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \frac{C_{\text {acid }}}{C_{\text {base }}} \quad \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{C_{\text {base }}}{C_{\text {acid }}}
$$

Assumptions and generalization:

$\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}^{+}\right] \ll c_{\text {acid }}, c_{\text {base }} ; c_{\text {acid }} \stackrel{\text { roughly }}{\approx} c_{\text {base }}, c_{\text {acid }}, c_{\text {base }} \gg K_{\mathrm{a}} ; \gamma_{i}=1$
Holds true also for a mixture of a weak base $\mathrm{B}\left(\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-}\right)$and its salt BHX (of strong acid), $c_{\text {acid }}=[B H X]=\left[X^{-}\right], c_{\text {base }}=[B]$
Maximum buffer capacity for $c_{\text {acid }}=c_{\text {base }}$ (see below)

Buffer capacity

Let us add a small amount dc of a strong base $\mathrm{MOH} \Rightarrow \mathrm{dc}$ of HA is neutralized to MA (="base").

Add strong acid $=$ remove strong base

$$
\begin{aligned}
C_{\text {acid }} & \rightarrow c_{\text {acid }}-\mathrm{dc} \\
C_{\text {base }} & \rightarrow C_{\text {base }}+\mathrm{dc}
\end{aligned}
$$

Buffer capacity $=\beta=\frac{\mathrm{d} c}{\mathrm{~d}(\mathrm{pH})}=-\ln 10\left[\mathrm{H}^{+}\right] \frac{\mathrm{d} c}{\mathrm{~d}\left[\mathrm{H}^{+}\right]}$
the amount of a strong base needed to increase pH by 1

The same assumptions as Henderson-Hasselbalch:

$$
\begin{gather*}
{\left[\mathrm{H}^{+}\right](c)=K_{\mathrm{a}} \frac{c_{\text {acid }}}{c_{\text {base }}}} \\
{\left[\mathrm{H}^{+}\right](c+\mathrm{d} c)=K_{\mathrm{a}} \frac{c_{\text {acid }}-\mathrm{d} c}{c_{\text {base }}+\mathrm{d} c}=K_{\mathrm{a}} \frac{c_{\text {acid }}}{c_{\text {base }}}\left[1-\mathrm{d} c\left(\frac{1}{c_{\text {acid }}}+\frac{1}{c_{\text {base }}}\right)\right]} \\
\frac{\mathrm{d}\left[\mathrm{H}^{+}\right]}{\mathrm{d} c}=-K_{\mathrm{a}} \frac{c_{\text {acid }}}{c_{\text {base }}}\left(\frac{1}{c_{\text {acid }}}+\frac{1}{c_{\text {base }}}\right)=-\frac{c_{\text {acid }}+c_{\text {base }}}{c_{\text {acid }} c_{\text {base }}}\left[\mathrm{H}^{+}\right] \\
\beta=\ln 10 \frac{c_{\text {acid }} C_{\text {base }}}{c_{\text {acid }}+c_{\text {base }}}
\end{gather*} \quad \ln 100
$$

$$
\beta=\ln 10 \frac{C_{\text {acid }} C_{\text {base }}}{C_{\text {acid }}+C_{\text {base }}}
$$

Given $A\left(c_{A, \text { total }}=c_{\text {acid }}+c_{\text {base }}\right), \beta$ reaches maximum at $c_{\text {acid }}=c_{\text {base }}$
Maximum buffer capacity is reached for an equimolar mixture
Example: acetate buffer, $c_{\text {acid }}=c_{\text {base }}=0.1 \mathrm{~mol} \mathrm{dm}^{-3}, \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}=4.76$

Bicarbonate (hydrogen carbonate) buffer

Main part of the blood buffer system
Henry constant of CO_{2} in water at body temperature:

$$
K_{\mathrm{h}}=0.025 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{bar}^{-1}
$$

Acidity constant of CO_{2} at body temperature: $\mathrm{p} K_{\mathrm{a} 1}=6.1$ for

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

Contents of hydrogen carbonates (mostly NaHCO_{3}): $\left[\mathrm{HCO}_{3}^{-}\right]=24 \mathrm{mmoldm}{ }^{-3}=c_{\text {base }}$
$\mathrm{pH}=7.35$ to 7.45

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=K_{\mathrm{a} 1} \frac{c_{\text {acid }}}{c_{\text {base }}}} \\
c_{\text {acid }}=\frac{\left[\mathrm{H}^{+}\right] c_{\text {base }}}{K_{\mathrm{al}}}, \quad p_{\mathrm{CO}_{2}}=\frac{c_{\text {acid }}}{K_{\mathrm{h}}}=\frac{\left[\mathrm{H}^{+}\right] c_{\text {base }}}{K_{\mathrm{a} 1} K_{\mathrm{h}}}
\end{gathered}
$$

$$
\Rightarrow p_{\mathrm{CO}_{2}}=5.4 \text { to } 4.3 \mathrm{kPa}(\sim 5 \mathrm{vol} . \% \text { in alveolar air })
$$

Outside range \Rightarrow respiratory acidosis/alkalosis

Phosphate buffer $\mathrm{Na}_{x} \mathrm{H}_{3-\chi} \mathrm{PO}_{4}$

$\mathrm{H}_{3} \mathrm{PO}_{4}:$
$\mathrm{p} K_{\mathrm{a} 1}=2.148$
$\mathrm{p} K_{\mathrm{a} 2}=7.198$
$\mathrm{p} K_{\mathrm{a} 3}=12.319$

isotonic, $\mathrm{pH}=7.4$: $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$ (base), $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (acid)
(Phosphate buffered saline)
NB: The deviation caused by nonideality is not negligible in concentrated solutions. The experimental pH is by about 0.5 less than calculated. E.g., the maximum capacity is for $\mathrm{pH}=6.8$, not 7.2 .

