
Statistical thermodynamics (mechanics)
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Macroscopic quantities are a consequence
of averaged behavior of many particles

→

Pressure of ideal gas from kinetic theory I
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Molecule = mass point
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N molecules of mass m in a cube of edge length L
Velocity of molecule  = ~ = (,, ,y, ,z)
After reflection from the wall: ,→ −,
Next time it hits the wall after τ = 2L/,
Force = change in momentum per unit time
Momentum ~P =m ~
Change of momentum = ΔP = 2m,
Averaged force by impacts of one molecule:

F, =
ΔP

τ
=
2m,
2L/,

=
m

2
,

L

Pressure = force of all N molecules divided by the area

p =

∑N
=1 F,

L2
=

∑N
=1m

2
,

L3

Kinetic energy of one molecule:
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Pressure of ideal gas from kinetic theory II
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Kinetic energy = internal energy (monoatomic gas)

Ekin =
1

2

N∑

=1
m

2
 =

3

2

N∑

=1
m

2
,

⇒

p =

∑N
=1m

2
,

L3
=
2

3

Ekin

V
Or

pV =
2

3
Ekin

!
= nRT

Summary:

Temperature is a measure of the kinetic energy (∼ 0th Law)

Pressure = averaged impacts of molecules

We needed the classical mechanics

Once more:

n =
N

NA
, kB =

R

NA
⇒ U ≡ Ekin =

3n

2
RT =

3N

2
kBT, CV,m =

3

2
R

Boltzmann constant
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pV = nRT = NkBT

N = nNA

kB =
R

NA
= 1.380649×10−23 J K−1

Note:
since May 20, 2019 it is defined:
kB = 1.380649×10−23 J K−1,
NA = 6.02214076×1023mol−1,
therefore, exactly:
R = 8.31446261815324 J mol−1 K−1 Ludwig Eduard Boltzmann (1844–1906)

credit: scienceworld.wolfram.com/biography/Boltzmann.html

Microstate, macrostate, ensemble, trajectory
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microstate (state, configuration) = instantaneous
quantum description: wave function, ψ
classical description: positions and velocities of all particles (better momenta...)

ψ = (~r1, . . . , ~rN, ~1 . . . , ~N)

macrostate = averaged microstates

ensemble = set of all microstates with their respective probabilities πππ(ψ),

microstate macrostate ensemble trajectory

Microcanonical ensemble and the ergodic hypothesis
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Microcanonical ensemble = set of microstates in an isolated system
Denoted: NVE (N = const, V = const, E = const)

Ergodic hypothesis (quantum): πππ(ψ) = const = 1
W

(W = number of all states)

Ergodic hypothesis (classical):
trajectories fill the (phase) space uniformly

In other words:
Time averaged (mean) value =

〈X〉t = lim
t→∞

1

t

∫ t

0
X(t)dt

= ensemble mean value =

〈X〉 = 1

W

∑

ψ
X(ψ)

for quantity X = X(ψ), where ψ = ψ(t)

. . . but T = const is more practical

Canonical ensemble
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is the ensemble with a constant temperature.
Denoted: NVT (N = const, V = const, T = const)
Ergodic hypothesis: πππ(ψ) = πππ(E(ψ))
E1 + E2 = E1+2 (small influence)
πππ(E) = probability of any state of energy E

πππ(E1) · πππ(E2) = πππ(E1+2) = πππ(E1 + E2)
⇒ πππ(E) = constE = exp(α − βE)

0th Law ⇒ β is the empirical temperature

α is the normalization constant, so that
∑
ψ πππ(ψ) = 1, depends on the system

Determine β: monoatomic ideal gas, energy per atom = U1 =
3
2kBT

〈U1〉 =
∑
ψ E(ψ)πππ(E(ψ))∑

ψ πππ(E(ψ))
=

∫ 1
2m ~

2πππ(12m ~
2)d ~

∫
πππ(12m ~

2)d ~
= · · · = 〈U1〉 =

3

2

1

β
⇒ β =

1

kBT

Boltzmann probability
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. . . or the first half of the statistical thermodynamics.

Probability of finding a state of energy E is proportional to

πππ(E) = const · exp
�
−E(ψ)
kBT

�
= const · exp

�
−Em

RT

�

Examples:

a barrier (activation energy) Ea is overcome by ∼ exp
�
− Ea
RT

�
molecules

⇒ Arrhenius formula

k = Aexp
�
− Ea

RT

�

energy needed to transfer a molecule from liquid to vapor is ΔvapH, probability

of finding a molecule in the vapor is proportional to ∼ exp
�
−ΔvapH

RT

�
⇒ Clausius–

Clapeyron equation (integrated)

p = p0 exp
�
−ΔvapH

R

�
1

T
− 1

T0

��
= const · exp

�
−ΔvapH

RT

�



Barometric formula: particle in a gravitational field
[simolant -I2]
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. . . once again.

Potential energy of a molecule in a homogeneous gravitational field:

U =mgh

Probability of finding a molecule at height h:

πππ ∝ exp
�
− U

kBT

�
= exp

�
−mgh

kBT

�
= exp

�
−Mgh
RT

�

Probability ∝ density ∝ pressure:

p = p0 exp
�
−Mgh
RT

�

The same formula can be obtained from the mechanical equilibrium + ideal gas
EOS:

dp = −dhρg, ρ =
Mp

RT
(“⇒” Boltzmann probability.)

Boltzmann probability
[cd ../simul/nmf/; blend -g butane]10/16
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Example. Energy of the gauche conformation of butane is by ΔE = 0.9 kcal/mol
higher than anti. Calculate the population of molecules which are in the gauche
state at temperature 272.6 K (boiling point).

Solution: 1 calth = 4.184 J

πππ(gche) : πππ(nt) = exp[−ΔE/RT] = 0.190
Don’t forget that there are two gauche states!

2πππ(gche) + πππ(nt) = 1

⇒
πππ =

2exp[−ΔE/RT]
2exp[−ΔE/RT] + 1 =

2 × 0.190
2 × 0.190 + 1 = 0.275

Note: we assumed that both minima are well separated and their shapes are iden-
tical.

Thermodynamics
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Internal energy

U =
∑

ψ
E(ψ)πππ(ψ)

Small change of U:

dU =
∑

ψ
πππ(ψ) · dE(ψ) +

∑

ψ
dπππ(ψ) · E(ψ)

dE(ψ): energy level has changed
dπππ(ψ): probability of state has changed ψ

1st Law of Thermodynamics: dU = −pdV + TdS
−pdV
“Piston” moved. Enegy changes by dE(ψ) = mechanical work = −Fd = −F/A ·
d(A) = −p(ψ)dV
p(ψ) = “pressure of state ψ”, (mean) pressure = p =

∑
ψ πππ(ψ)p(ψ).

TdS
Change of πππ(ψ) at constant [V] = change of probabilities of states of different
energies = heat

Boltzmann equation for entropy
[jkv pic/BoltzmannTomb.jpg]12/16
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. . . the second half of the statistical thermodynamics

πππ(E) = exp(α − βE)
β=1/kBT⇒ E(ψ) = kBT[α − lnπππ(ψ)],

∑

ψ
dπππ(ψ) = 0

∑

ψ
dπππ(ψ)E(ψ) =

∑

ψ
dπππ(ψ)kBT[α − lnπππ(ψ)] = −kBT

∑

ψ
dπππ(ψ) · lnπππ(ψ)

= −kBT d


∑

ψ
πππ(ψ) lnπππ(ψ)




On comparison with TdS:

S = −kB
∑

ψ
πππ(ψ) lnπππ(ψ)

Microcanonical ensemble: πππ(ψ) =
§
1/W for E = E(ψ)
0 for E 6= E(ψ)

Boltzmann equation: S = kB lnW

Property: S1+2 = S1 + S2 = kB ln(W1W2) = kB ln(W1+2)

credit: schneider.ncifcrf.gov/images/
boltzmann/boltzmann-tomb-8.html

Transitions be-
tween states⇒
dS/dt ≥ 0

(H-theorem)

Ideal solution
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Energies of neighbors: •–• = •–• = •–•
All configurations have the same energy

Mix N1 molecules of 1 + N2 molecules of 2:

W =
�
N

N1

�
=

N!

N1!N2!

S = kB lnW ≈ −kB

�
N1 ln

N1
N
+ N2 ln

N2
N

�

Sm = −R (1 ln1 + 2 ln2)

We used the Stirling formula, lnN! ≈ N lnN − N:

lnN! =
N∑

=1
ln  ≈

∫ N

1
lnd

by parts
= [ ln − ]N1 = N lnN − N + 1 ≈ N lnN − N

More accurate: lnN!
asympt.
= N lnN − N + ln

p
2πN +

1

12N
− 1

360N3
+ − · · ·

Residual entropy of crystals at T → 0
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Crystal: 1 microstate ⇒ S = k ln 1 = 0 (3rd Law)

3rd Law violation: CO, N2O, H2O.
Not in the true equilibrium, but “frozen”
because of high barriers

Example 1: Entropy of a crystal of CO at 0 K

Sm = kB ln 2NA = R ln 2

Example 2: Entropy of ice at 0 K

Sm = kB ln 1.507NA = 3.41 J K−1mol−1

Pauling derivation:

6 =
�4
2
�

orientations of a water molecule

then an H-bond is wrong with prob.=1
2

2NA bonds in a mole

⇒ Sm = kB ln
�
6NA

22NA

�
= 3.37 J K−1mol−1

Information entropy of DNA
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Assuming random and equal distribution of base pairs.

Per one base pair: kB ln 4, per mole: R ln 4.

Corresponding Gibbs energy (at 37 ◦C):

ΔG = −RT ln 4 = −3.6kJ mol−1

To be compared to: ATP → ADP
– standard: ΔrG

e
m = −31kJ mol−1

– in usual conditions in a cell: ΔrGm = −57kJ mol−1

credit: www.pbs.org/wgbh/nova/sciencenow/3214/01-coll-04.html

Finishing the story + 16/16
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α = ?
S = −kB

∑

ψ
πππ(ψ)[α − βE(ψ)] = −

�
kBα −

U

T

�

Helmholtz energy:

α =
U − TS
kBT

=
F

kBT
⇒ F = −kBT ln


∑

ψ
e−βE(ψ)




[ . . .] = canonical partition function = statistical sum (Q or Z)

Interpretation: number of “available” states
(low-energy easily, high-energy difficult)

All equilibrium quantites can be calculated from F (dF = −pdV − SdT):

p = − ∂F
∂V

S = − ∂F
∂T

U = F + TS
H = U + pV
G = F + pV


