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Statistical thermodynamics (mechanics) s | Pressure of ideal gas from kinetic theory | col05
Molecule = mass point L
MEETEEEerETe quant.ltles are a consgquence N molecules of mass m; in a cube of edge length L
of averaged behavior of many particles Velocity of molecule i = ;= (Vix, Viy, Vi )
After reflection from the wall: vjx = —Vvix y
Next time it hits the wall after T=2L/v; x
Force = change in momentum per unit time
Momentum P = mv X
Change of momentum = APx = 2m;v; x
Averaged force by impacts of one molecule:
o BPx_2mivi mivZ,
YT T 2l/vix L
Pressure = force of all N molecules divided by the area
N N 2
_ iz Fix _ Zima Miviy
R
Kinetic energy of one molecule:
1 1 1
Eml-l\‘/,-l2 = Em,-vi2 = Emi(vl?’x + vl.2’y + vfz)
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Pressure of ideal gas from kinetic theory Il s | Boltzmann constant col05
Kinetic energy = internal energy (monoatomic gas)
N N
Ein=2> mp2 =23 m? pV =nRT = NkgT
kin = > Vi = > Vix
i=1 i=1
= " , N =nNa
_ Zi=1 miviy _ EEkin
L3 3V R 23 -1
or kp=-— =1.380649x10743 K~
Na
2 !
pV = gEkin =nRT
Summary: Note:
v: since May 20, 2019 it is defined:
@ Temperature is a measure of the kinetic energy (~ Oth Law) kg = 1.380649x 10—231 K-1,
@ Pressure = averaged impacts of molecules Na =6.02214076x 1023 mol~1,
@ We needed the classical mechanics therefore, exactly: _— {
Once more: R =8.31446261815324 ) mol™~ K~ Ludwig Eduard Boltzmann (1844-1906)
N k R U E 3’_’RT 3Nk T C 3R credit: scienceworld. wolf ‘B html
n=—, =— = = o= — = — B = —
Na B Na kin 2 > B v.m >
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Microstate, macrostate, ensemble, trajectory s | Microcanonical ensemble and the ergodic hypothesis col05

@ microstate (state, configuration) = instantaneous
quantum description: wave function, ¢
classical description: positions and velocities of all particles (better momenta...)
Y=01 ..., V1..., VN)
@ macrostate = averaged microstates

@ ensemble = set of all microstates with their respective probabilities m(¢),

- —d
o oo ° < ]:\{\\ )
g\
. IEIME L =27\
microstate macrostate ensemble trajectory

Microcanonical ensemble = set of microstates in an isolated system
Denoted: NVE (N = const, V = const, E = const)

@ Ergodic hypothesis (quantum): m(y;) = const = V_lv
(W = number of all states)

@ Ergodic hypothesis (classical):
trajectories fill the (phase) space uniformly

In other words:
Time averaged (mean) value =

1 t
(X)t= lim = [ X(t)dt
t—oo t 0
= ensemble mean value =

1
(X) =2 XW)
[

for quantity X = X(¢), where ¢ = ¢(t)

...but T = const is more practical

Canonical ensemble

is the ensemble with a constant temperature.
Denoted: NVT (N = const, V = const, T = const)
Ergodic hypothesis: nt(¢) = n(E(Y))

E1+ Ez =E14+2 (small influence)

n(E) = probability of any state of energy E

n(E1) - m(E2) = m(E1+2) = m(E1 + E2)

= m1(E) = constE = exp(a;— BE)
@ Oth Law = S is the empirical temperature

@ a; is the normalization constant, so that de n(y) = 1, depends on the system

Determine B: monoatomic ideal gas, energy per atom = U = %kBT

Sy EWREW) [ 3mv2r(my2)dv

31
Uy) = =(U)=== -
(u1) GO (U1) = B

[ ndmv2)dv - 2B

kgT
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Boltzmann probability col05
...or the first half of the statistical thermodynamics.

Probability of finding a state of energy £ is proportional to /

a1

S((//):| ( Em)

7n(€) = const-exp| ——— [=const-exp| ——

© p[ kgl ® RT

Examples:

@ a barrier (activation energy) Ea is overcome by ~ exp (—5—%) molecules
= Arrhenius formula

Ea
k =Aexp (——)
RT

@ energy needed to transfer a molecule from liquid to vapor is AvapH, probability
of finding a molecule in the vapor is proportional to ~ exp (—A‘STPH) = Clausius—
Clapeyron equation (integrated)

AvapH)
RT

[ ()] =comstemo
= exp|— - =const-ex —
p = poexp R \TTT, P




- . L _ [simolant 2] g/1¢6
Barometric formula: particle in a gravitational field + 005

...once again.
Potential energy of a molecule in a homogeneous gravitational field:
U=mgh
Probability of finding a molecule at height h:

( U) ( mgh) ( Mgh)
Mmxexp|———|=exp|—— |=exp|——
kgT kT RT

Probability o density o pressure:

(%)
p=poexp|——p=

The same formula can be obtained from the mechanical equilibrium + ideal gas
EOS:

d dh Mp
p=—dhpg, p=—

(“=" Boltzmann probability.)

[cd ../simul/nmf7; blend -g butanel; g/16

Boltzmann probability col05

Example. Energy of the gauche conformation of butane is by AE = 0.9 kcal/mol
higher than anti. Calculate the population of molecules which are in the gauche
state at temperature 272.6 K (boiling point).
Solution: 1 calyy = 4.184)
n(gauche) : m(anti) = exp[—AE/RT] =0.190

Don’t forget that there are two gauche states!

2n(gauche) + m(anti) =1
2 exp[—AE/RT] 2 x 0.190

m= = =0.275
2exp[—AE/RT]+1 2x0.190+1

Note: we assumed that both minima are well separated and their shapes are iden-
tical.
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Thermodynamics col05

Internal energy

U= ewimy)
v

Small change of U:
du=>"n(y)-deW) + > dnu(y)-EW)
[ [

dé(yY): energy level has changed
dm(¢): probability of state has changed ¢

1st Law of Thermodynamics: dU=-—pdV + TdS

@ —pdv
“Piston” moved. Enegy changes by d£(¢) = mechanical work = —Fdx =—F/A-
d(Ax) =—p(¢)dV
p(y) = “pressure of state ¢, (mean) pressure = p = 3., T(Y)p(Y).

@ 7ds

[jkv pic/BoltzmannTomb.jpgly /16

Boltzmann equation for entropy col05

...the second half of the statistical thermodynamics

B=1/keT

n(E)=exp(aj—PE) = > W) =keTloy—Inm(y)l, > dm(y)=0
v

Sdn()EW) = dm(y)keTLai— Inm(y)] = —keT > dm(y) - Inm(y)
[ [ [
=—kgTd [Z n(¢)In n(w)}
[

On comparison with TdS:

S=—ks Y n(y) Inn(y)
v

/W forE=E(Y)
0 for E # E(Y)

/

e

Microcanonical ensemble: n(¢) = {
Transitions be-

tween states =

Change of () at constant [V] = change of probabilities of states of different Boltzmann equation: S =kgInW .
energies = heat ds/dt>0
Property: S14+2 =51 + S = kg In(W1W3) = kg In(W1+2) ﬂ (H-theorem)
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Ideal solution ol05 Residual entropy of crystals at 7 — 0 0l05

Energies of neighbors: e-e = e-e = e-e
All configurations have the same energy

Mix N1 molecules of 1 + N2 molecules of 2:

(N) N!
W= =
N1 N1!'No!

S=kglnW k (N | M N2 Nz)
=kgInW~— n—+NyIn—
B B N 2 N

Sm=—R(x1Inx1+ x2Inx3)

We used the Stirling formula, INnN! ~ NInN— N:
N N by parts
InN!=ZIn1zJ Inxdx = [xlnx—x]’lv=NInN—N+lzNInN—N
=1 1

asympt. 1 1

More accurate: InN! NInN—N+Inv2nN + — + =
12N 360N3

Crystal: 1 microstate = S=kIn1 =0 (3rd Law)

3rd Law violation: CO, N20O, H3O0.
Not in the true equilibrium, but “frozen”
because of high barriers

Example 1: Entropy of a crystal of CO at 0K
Sm=kgIn2NA=RIn2

Example 2: Entropy of ice at 0 K
Sm=kgIn1.507VA =3.41) K~ mol~1

Pauling derivation:

@6= (‘21) orientations of a water molecule
@ then an H-bond is wrong with prob.=%
@ 2Na bonds in a mole

N,
@ > Sm=ks |n(262—,&) =3.37)K-L mol-!

06
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Information entropy of DNA
Assuming random and equal distribution of base pairs.
Per one base pair: kgIn4, per mole: RIn4.
Corresponding Gibbs energy (at 37 °C):

AG =—RTIn4 =—-3.6kjmol~ 1
To be compared to: ATP — ADP
- standard: ArGY, =—31k mol—1
- in usual conditions in a cell: A{Gm =—57 k] mol—1

credit: www.pbs.org /wgbh/nova//sciencenow/ 3214/01-coll-04. html
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Finishing the story + coi05

a=7

V)
S=—kg Y . m(Y)a—BEW)] = —(kBCX— ;)
[
Helmholtz energy:

U—Ts F
a= =
kgT kgT

= F=—kglln Ze_ﬁg("’)
v

[...] = canonical partition function = statistical sum (Q or Z)

Interpretation: number of “available” states
(low-energy easily, high-energy difficult)

All equilibrium quantites can be calculated from F (dF = —pdV — SdT):

oF
p =0 U = F+TS
oF H = U+pV
5 = —— G = F+pV

oT




