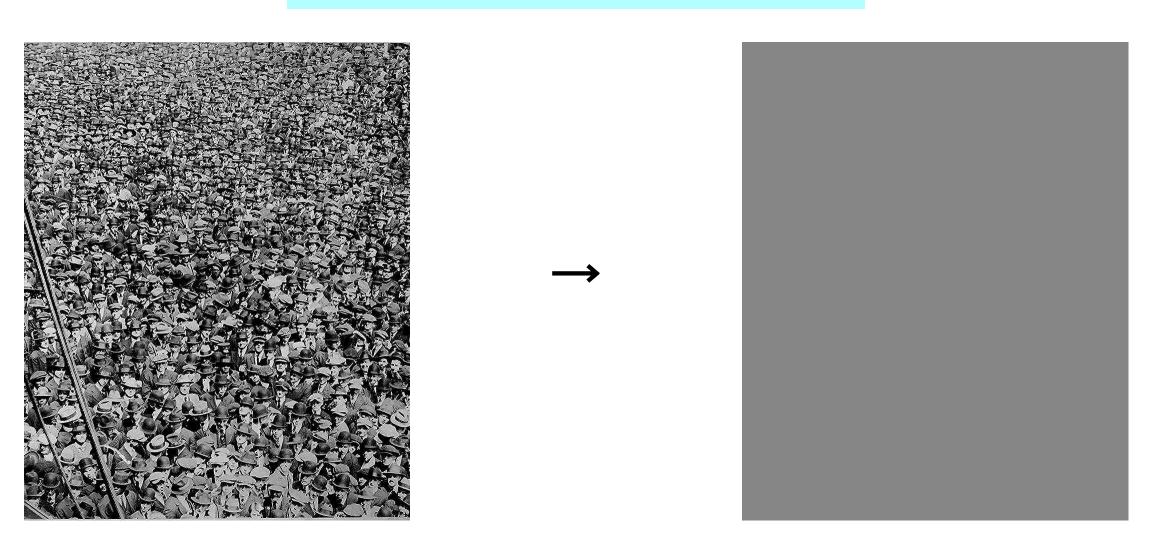
Statistical thermodynamics (mechanics)

Macroscopic quantities are a consequence of averaged behavior of many particles



Pressure of ideal gas from kinetic theory I

Molecule = mass point

N molecules of mass m_i in a cube of edge length L

Velocity of molecule $i = \vec{v}_i = (v_{i,X}, v_{i,Y}, v_{i,Z})$

After reflection from the wall: $v_{i,x} \rightarrow -v_{i,x}$

Next time it hits the wall after $\tau = 2L/v_{i,x}$

Force = change in momentum per unit time

Momentum $\vec{P} = m\vec{v}$

Change of momentum = $\Delta P_X = 2m_i v_{i,X}$

Averaged force by impacts of one molecule:

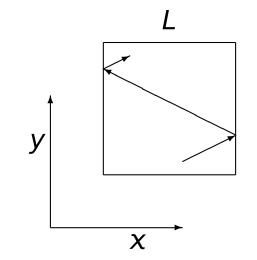
$$F_{i,x} = \frac{\Delta P_X}{\tau} = \frac{2m_i v_{i,x}}{2L/v_{i,x}} = \frac{m_i v_{i,x}^2}{L}$$

Pressure = force of all N molecules divided by the area

$$p = \frac{\sum_{i=1}^{N} F_{i,x}}{L^2} = \frac{\sum_{i=1}^{N} m_i v_{i,x}^2}{L^3}$$

Kinetic energy of one molecule:

$$\frac{1}{2}m_i|\vec{v}_i|^2 \equiv \frac{1}{2}m_iv_i^2 = \frac{1}{2}m_i(v_{i,x}^2 + v_{i,y}^2 + v_{i,z}^2)$$



col05

Pressure of ideal gas from kinetic theory II

Kinetic energy = internal energy (monoatomic gas)

$$E_{kin} = \frac{1}{2} \sum_{i=1}^{N} m_i v_i^2 = \frac{3}{2} \sum_{i=1}^{N} m_i v_{i,x}^2$$

 \Rightarrow

$$p = \frac{\sum_{i=1}^{N} m_i v_{i,x}^2}{L^3} = \frac{2E_{kin}}{3V}$$

Or

$$pV = \frac{2}{3}E_{kin} \stackrel{!}{=} nRT$$

Summary:

- Temperature is a measure of the kinetic energy (~ 0th Law)
- Pressure = averaged impacts of molecules
- We needed the classical mechanics

Once more:

$$n = \frac{N}{N_A}$$
, $k_B = \frac{R}{N_A}$ \Rightarrow $U \equiv E_{kin} = \frac{3n}{2}RT = \frac{3N}{2}k_BT$, $C_{V,m} = \frac{3}{2}R$

$$pV = nRT = Nk_BT$$

$$N = nN_A$$

$$k_{\rm B} = \frac{R}{N_{\rm A}} = 1.380649 \times 10^{-23} \,\text{J K}^{-1}$$

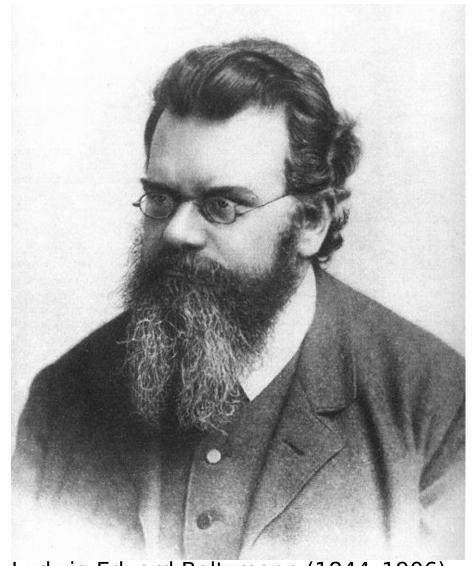
Note:

since May 20, 2019 it is defined:

 $k_{\rm B} = 1.380649 \times 10^{-23} \, \rm J \, K^{-1},$ $N_{\rm A} = 6.02214076 \times 10^{23} \, \rm mol^{-1},$

therefore, *exactly*:

 $R = 8.31446261815324 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$

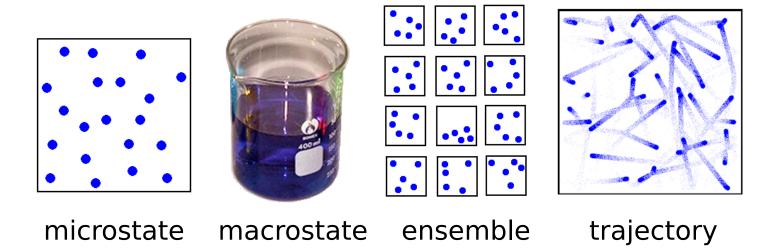


Ludwig Eduard Boltzmann (1844–1906)

credit: science world.wolfram.com/biography/Boltzmann.html

Microstate, macrostate, ensemble, trajectory

- microstate (state, configuration) = instantaneous quantum description: wave function, ψ classical description: positions and velocities of all particles (better momenta...) $\psi = (\vec{r}_1, \dots, \vec{r}_N, \vec{v}_1 \dots, \vec{v}_N)$
- macrostate = averaged microstates
- \bigcirc ensemble = set of all microstates with their respective probabilities $\pi(\psi)$,



col05

Microcanonical ensemble and the ergodic hypothesis

Microcanonical ensemble = set of microstates in an isolated system

Denoted: **NVE** (N = const, V = const, E = const)

- Ergodic hypothesis (quantum): $\pi(\psi_i) = \text{const} = \frac{1}{W}$ (W = number of all states)
- Ergodic hypothesis (classical):trajectories fill the (phase) space uniformly

In other words:

Time averaged (mean) value =

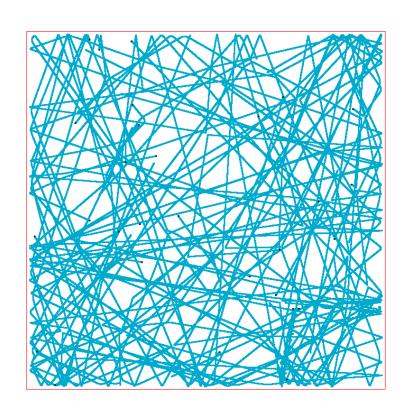
$$\langle X \rangle_t = \lim_{t \to \infty} \frac{1}{t} \int_0^t X(t) dt$$

= ensemble mean value =

$$\langle X \rangle = \frac{1}{W} \sum_{\psi} X(\psi)$$

for quantity $X = X(\psi)$, where $\psi = \psi(t)$

 \dots but T =const is more practical



Canonical ensemble

is the ensemble with a constant temperature.

Denoted: **NVT** (N = const, V = const, T = const)

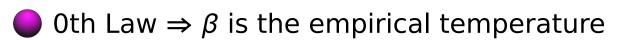
Ergodic hypothesis: $\pi(\psi) = \pi(\mathcal{E}(\psi))$

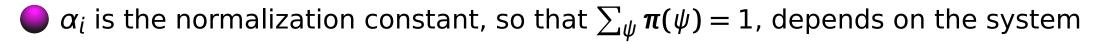
$$E_1 + E_2 = E_{1+2}$$
 (small influence)

 $\pi(E)$ = probability of any state of energy E

$$\pi(E_1) \cdot \pi(E_2) = \pi(E_{1+2}) = \pi(E_1 + E_2)$$

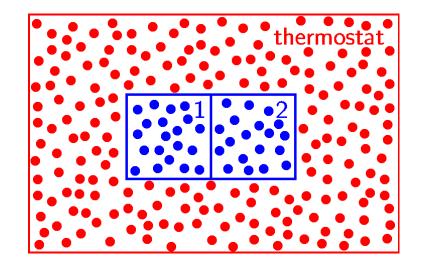
$$\Rightarrow \pi(E) = \text{const}^E = \exp(\alpha_i - \beta E)$$





Determine β : monoatomic ideal gas, energy per atom = $U_1 = \frac{3}{2}k_BT$

$$\langle U_1 \rangle = \frac{\sum_{\psi} \mathcal{E}(\psi) \pi(\mathcal{E}(\psi))}{\sum_{\psi} \pi(\mathcal{E}(\psi))} = \frac{\int \frac{1}{2} m \vec{v}^2 \pi(\frac{1}{2} m \vec{v}^2) d\vec{v}}{\int \pi(\frac{1}{2} m \vec{v}^2) d\vec{v}} = \dots = \langle U_1 \rangle = \frac{3}{2} \frac{1}{\beta} \Rightarrow \beta = \frac{1}{k_B T}$$



Boltzmann probability

... or the first half of the statistical thermodynamics.

Probability of finding a state of energy $\mathcal E$ is proportional to

$$\pi(\mathcal{E}) = \operatorname{const} \cdot \exp\left[-\frac{\mathcal{E}(\psi)}{k_{\mathrm{B}}T}\right] = \operatorname{const} \cdot \exp\left(-\frac{E_{\mathrm{m}}}{RT}\right)$$

Examples:

 a barrier (activation energy) E_a is overcome by $\sim \exp\left(-\frac{E_a}{RT}\right)$ molecules ⇒ Arrhenius formula

$$k = A \exp\left(-\frac{E_{\mathsf{a}}}{RT}\right)$$

energy needed to transfer a molecule from liquid to vapor is $\Delta_{\text{vap}}H$, probability of finding a molecule in the vapor is proportional to $\sim \exp\left(-\frac{\Delta_{\text{vap}}H}{RT}\right) \Rightarrow$ Clausius–Clapeyron equation (integrated)

$$p = p_0 \exp\left[-\frac{\Delta_{\text{vap}}H}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right] = \text{const} \cdot \exp\left(-\frac{\Delta_{\text{vap}}H}{RT}\right)$$

once again.

Potential energy of a molecule in a homogeneous gravitational field:

$$U = mgh$$

Probability of finding a molecule at height h:

$$\pi \propto \exp\left(-\frac{U}{k_{\rm B}T}\right) = \exp\left(-\frac{mgh}{k_{\rm B}T}\right) = \exp\left(-\frac{Mgh}{RT}\right)$$

Probability \propto density \propto pressure:

$$p = p_0 \exp\left(-\frac{Mgh}{RT}\right)$$

The same formula can be obtained from the mechanical equilibrium + ideal gas EOS:

$$dp = -dh\rho g, \quad \rho = \frac{M\rho}{RT}$$

("⇒" Boltzmann probability.)

Boltzmann probability

Example. Energy of the *gauche* conformation of butane is by $\Delta E = 0.9$ kcal/mol higher than *anti*. Calculate the population of molecules which are in the *gauche* state at temperature 272.6 K (boiling point).

Solution:

 $1 \text{ cal}_{th} = 4.184 \text{ J}$

col05

$$\pi(gauche): \pi(anti) = \exp[-\Delta E/RT] = 0.190$$

Don't forget that there are two gauche states!

$$2\pi(gauche) + \pi(anti) = 1$$

$$\Rightarrow$$

$$\pi = \frac{2 \exp[-\Delta E/RT]}{2 \exp[-\Delta E/RT] + 1} = \frac{2 \times 0.190}{2 \times 0.190 + 1} = 0.275$$

Note: we assumed that both minima are well separated and their shapes are identical.

Thermodynamics

Internal energy

$$U = \sum_{\psi} \mathcal{E}(\psi) \pi(\psi)$$

Small change of *U*:

$$dU = \sum_{\psi} \pi(\psi) \cdot d\mathcal{E}(\psi) + \sum_{\psi} d\pi(\psi) \cdot \mathcal{E}(\psi)$$

 $d\mathcal{E}(\psi)$: energy level has changed

 $d\pi(\psi)$: probability of state has changed ψ

1st Law of Thermodynamics: dU = -p dV + T dS

 $-p \, dV$ "Piston" moved. Enegy changes by $d\mathcal{E}(\psi)$ = mechanical work = $-F dx = -F/A \cdot d(Ax) = -p(\psi) \, dV$

 $p(\psi)$ = "pressure of state ψ ", (mean) pressure = $p = \sum_{\psi} \pi(\psi) p(\psi)$.

igcup TdS Change of $\pi(\psi)$ at constant [V]= change of probabilities of states of different energies = heat

col05

... the second half of the statistical thermodynamics

$$\pi(E) = \exp(\alpha_i - \beta E) \stackrel{\beta = 1/k_B T}{\Rightarrow} \mathcal{E}(\psi) = k_B T[\alpha_i - \ln \pi(\psi)], \qquad \sum_{\psi} d\pi(\psi) = 0$$

$$\sum_{\psi} d\pi(\psi) \mathcal{E}(\psi) = \sum_{\psi} d\pi(\psi) k_{B} T[\alpha_{i} - \ln \pi(\psi)] = -k_{B} T \sum_{\psi} d\pi(\psi) \cdot \ln \pi(\psi)$$

$$= -k_{\mathrm{B}}T\,\mathrm{d}\left[\sum_{\psi} \pi(\psi)\ln\pi(\psi)\right]$$

On comparison with *T*d*S*:

$$S = -k_{\rm B} \sum_{\psi} \pi(\psi) \ln \pi(\psi)$$

Microcanonical ensemble: $\pi(\psi) = \begin{cases} 1/W & \text{for } E = \mathcal{E}(\psi) \\ 0 & \text{for } E \neq \mathcal{E}(\psi) \end{cases}$

Boltzmann equation: $S = k_B \ln W$

Property: $S_{1+2} = S_1 + S_2 = k_B \ln(W_1 W_2) = k_B \ln(W_{1+2})$

credit: schneider.ncifcrf.gov/images/ boltzmann/boltzmann-tomb-8.html

Transitions between states \Rightarrow dS/dt \geq 0 (H-theorem)

Ideal solution

Energies of neighbors: ●–● = ●–● = •–●

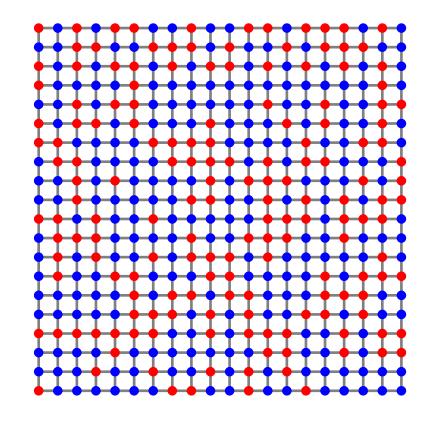
All configurations have the same energy

Mix N_1 molecules of $1 + N_2$ molecules of 2:

$$W = \binom{N}{N_1} = \frac{N!}{N_1! N_2!}$$

$$S = k_{\rm B} \ln W \approx -k_{\rm B} \left(N_1 \ln \frac{N_1}{N} + N_2 \ln \frac{N_2}{N} \right)$$

$$S_{\rm m} = -R(x_1 \ln x_1 + x_2 \ln x_2)$$



We used the Stirling formula, $\ln N! \approx N \ln N - N$:

$$\ln N! = \sum_{i=1}^{N} \ln i \approx \int_{1}^{N} \ln x \, dx \stackrel{\text{by parts}}{=} [x \ln x - x]_{1}^{N} = N \ln N - N + 1 \approx N \ln N - N$$

More accurate:
$$\ln N! \stackrel{\text{asympt.}}{=} N \ln N - N + \ln \sqrt{2\pi N} + \frac{1}{12N} - \frac{1}{360N^3} + - \cdots$$

Residual entropy of crystals at $T \rightarrow 0$

Crystal: 1 microstate $\Rightarrow S = k \ln 1 = 0$ (3rd Law)

3rd Law violation: CO, N_2O , H_2O . Not in the true equilibrium, but "frozen" because of high barriers

Example 1: Entropy of a crystal of CO at 0 K

$$S_{\rm m} = k_{\rm B} \ln 2^{N_{\rm A}} = R \ln 2$$

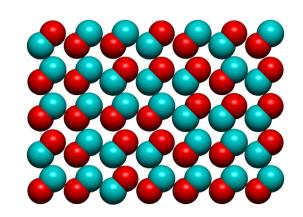
Example 2: Entropy of ice at 0 K

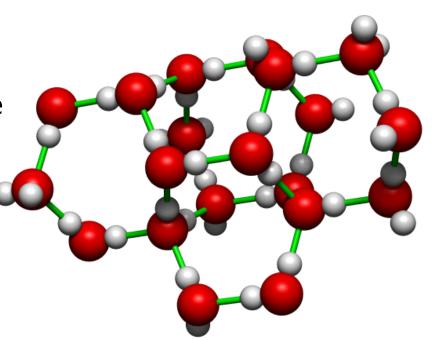
$$S_{\rm m} = k_{\rm B} \ln 1.507^{N_{\rm A}} = 3.41 \, \rm J \, K^{-1} \, mol^{-1}$$

Pauling derivation:

- then an H-bond is wrong with prob.= $\frac{1}{2}$
- \bigcirc 2 N_A bonds in a mole

$$\Rightarrow S_{\rm m} = k_{\rm B} \ln \left(\frac{6^{N_{\rm A}}}{2^{2N_{\rm A}}} \right) = 3.37 \,\rm J \, K^{-1} \, mol^{-1}$$





Information entropy of DNA

Assuming random and equal distribution of base pairs.

Per one base pair: $k_B \ln 4$, per mole: $R \ln 4$.

Corresponding Gibbs energy (at 37 °C):

$$\Delta G = -RT \ln 4 = -3.6 \text{ kJ mol}^{-1}$$

To be compared to: ATP \rightarrow ADP

– standard: $\Delta_r G_m^{\circ} = -31 \text{ kJ mol}^{-1}$

– in usual conditions in a cell: $\Delta_r G_m = -57 \text{ kJ mol}^{-1}$

Finishing the story

$$+\frac{16/16}{col05}$$

$$\alpha = ?$$

$$S = -k_{\rm B} \sum_{\psi} \pi(\psi) [\alpha - \beta \mathcal{E}(\psi)] = -\left(k_{\rm B}\alpha - \frac{U}{T}\right)$$

Helmholtz energy:

$$\alpha = \frac{U - TS}{k_{\rm B}T} = \frac{F}{k_{\rm B}T} \Rightarrow F = -k_{\rm B}T \ln \left[\sum_{\psi} e^{-\beta \mathcal{E}(\psi)} \right]$$

[...] = canonical partition function = statistical sum (
$$Q$$
 or Z)

Interpretation: number of "available" states (low-energy easily, high-energy difficult)

All equilibrium quantites can be calculated from F (dF = -pdV - SdT):

$$p = -\frac{\partial F}{\partial V}$$

$$U = F + TS$$

$$H = U + pV$$

$$S = -\frac{\partial F}{\partial T}$$

$$G = F + pV$$