
Electrostatics light: vacuum (ϵ = ϵ0)
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Force to charge q caused by charge Q: ~F =
1

4πϵ0

qQ

r2
~r

r

Field intensity: ~E =
~F

q
=

1

4πϵ0

Q

r2
~r

r

El. potential: ϕ =
1

4πϵ0

Q

r
, it holds ~∇ϕ ≡ ∂

∂~r
ϕ ≡ gradϕ ≡

�
∂

∂
,
∂

∂y
,
∂

∂z

�
ϕ = − ~E

Electric flux through an r-sphere:
∫

sphere
~E · d~s = Q

ϵ0

The number of field lines is conserved
(
∫

does not depend on r nor surface direction)

⇒ for charge inside surface S it holds:
Q

ϵ0
=
∮

S
~E · d~s

Field intensity close to a capacitor: E =
Q

2ϵ0A

Field intensity between plates: E =
Q

ϵ0A
(A = plate area, S = 2A)

Electrostatics light: dielectrics
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Dielectric = “positive charge (density +ρ) + negative charge (−ρ)”

In a field in capacitor Q⊕ ||−Q charges displaced by d

The screening charge left is −Qs, right +Qs, Qs = dAρ
Effective charge reduced by 1/ϵr (= definition of ϵr):

Q − Qs = Q/ϵr (screening charge = −Qs, Qs > 0)

The field intensity (∝ force) is reduced in the same ratio:

E =
Q

Aϵrϵ0
=

Q

Aϵ
(def. ϵ = ϵrϵ0)

Volume density of the dipole moment (= polarisation) in V is
(Vρd)/V = ρd = P. Total:

Qs = dAρ = AP = Q − Q

ϵr
, i.e. Q =

Q

ϵr
+ Qs =

Q

ϵr
+ AP

divide by A, ⇒ define el. displacement: D ≡ Q

A
=

Q

Aϵr
+ P = ϵ0E + P

Capacitance: C =
Q

ϕ
=

AD
ϕ
=

AεE
ϕ
=

Aε
distance of plates

Poisson equation
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“Number of displacement lines” (flux) is conserved:

Q =
∮

S
~D · d~s, ~D = ε ~E

Let S = cube d × dy × dz:

dQ = dVρ =
∮

S
~D · d~s = dydz[D( + d) − D()]

+ ddz[Dy(y + dy) − Dy(y)]
+ ddy[Dz(z + dz) − Dz(z)]

= ddydz
�
∂D

∂
+
∂Dy

∂y
+
∂Dz

∂z

�
= −dVε

 
∂2ϕ

∂2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2

!

where ρ = dq/dV = charge density and the permittivity is constant.

Laplace operator:

 
∂2

∂2
+

∂2

∂y2
+

∂2

∂z2

!
≡ ∇2 ≡ Δ here we will not use

symbol Δ not to confuse
with Δϕ = ϕ right − ϕ left

Poisson equation: ∇2ϕ = −ρ
ε

or in 1D
d2ϕ

d2
= −ρ

ε

Electric double layer
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Different affinities of ions to an interface s or g / ionic solution ⇒ surface charge:

ionisation (dissociation/protonization) of groups
(-COOH → 	, -NH2 → ⊕)

preferential disolution or adsorption of ions (AgCl in � NaCl → 	)
Paneth–Fajans[–Hahn] rule:
Ions are adsorbed at a surface if they make an insoluble crystal with the co-ion

preferential adsorption of a surfactant (soap on water is negative)

isomorfic substitution (Al3+/Si4+ at clay)

crystal cleaving

Question: what happens in the solution?

Electric double layer: Not this way!
[show/doublelayer.sh] 5/16
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Let’s have � NaCl between electrodes (plates). El. field intensity = E.
Ions do not interact with the plates.
Concentration of Na+ a Cl− between the plates?

Naïve solution:

elst. potential = ϕ() = E
cation pot. energy = eϕ()
probability:

exp[−eϕ()/kBT] = exp(−eE/kBT)

anion pot. energy = −eϕ()
probability:

exp[−eϕ()/kBT] = exp(eE/kBT)
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Example. 0.1 M � NaCl, plate distance = 50 nm, voltage = 50 mV ↑
Neutral (zero potential) in the middle 1 eV = 96 485 J/mol

: correct
: the naïve solution is in disagreement with the electroneutrality of the bulk

Diffuse layer: Gouy-Chapman
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el. potential in the bulk is ϕ(∞) = 0

el. potential at the electrode is ϕ0
(now we do not care about its origin)

ions = charged points, electrode = hard wall

no interaction/adsorption of ions at the electrode

ion concentrations replaced by an averaged
charge density (no ion-ion correlation)

solvent is a dielectric continuum (permittivity = ϵ = ϵrϵ0)

simplification: 1:1 salt (NaCl) at concentration c

Poisson equation:
d2ϕ

d2
= −ρ

ϵ
Charge density: ρ =

∑



zρ = ρ+ − ρ−, where

ρ+ = cFexp
�
−ϕ()e

kBT

�
ρ− = cFexp

�
ϕ()e

kBT

�

Poisson–Boltzmann equation for the potential:
d2ϕ

d2
=
cF

ϵ

�
eϕe/kBT − e−ϕe/kBT

�

Diffuse layer: Gouy-Chapman
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The Poisson–Boltzmann equation:

d2ϕ

d2
=
cF

ϵ

�
eϕe/kBT − e−ϕe/kBT

�
, ϕ(0) = ϕ0, ϕ(∞) = 0

Linearisation = approximate solution for weak potentials
(ϕe/kBT � 1, tj. ϕ� 26 mV for 298 K):

exp() ≈ 1 +  ⇒ d2ϕ

d2
=
2cF

ϵ

ϕe

kBT
⇒ ϕ = ϕ0e−/λ

λ =

√√√ ϵkBT

2cFe
=

√√√ ϵRT

2cF2
= Debye screening length mixture: λ =

√√√ ϵRT

2cF2

Example. NaCl in water, c = 0.1mol dm−3, 25 ◦C ⇒ λ = 0.96 nm
(ϵ = ϵrϵ0, ϵr = 78.4, ϵ0 = 8.854×10−12 F m−1)

For comparison:

averaged O–O separation in water = 0.28 nm ⇒ 120 H2O in a λ-sphere

Bjerrum length : λB =
e2

4πεkBT

water≈ 0.7nm
(energy of a pair of
univalent ions = kBT)

Diffuse layer: Gouy-Chapman
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The potential as a function of the distance from a charged surface
decays exponentially as a consequence of screening (by counterions)

Called diffuse layer, because can be explained by an equilibrium between diffusion
and attraction to a charged surface



Electric double layer
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Charged surface attracts counterions.

Gouy-Chapman
charged surface

diffusion layer gradually
screens the charge

neutral solution

Helmholtz
charged surface

adsorbed counterions
screen the total charge

neutral solution

Stern
charged surface

adsorbed counterions screen
a portion of the charge

the diffusion layer gradually
screens the rest
neutral solution

Surface charge
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(surface charge) = − (charge of the Gouy–Chapman layer)

σ = −
∫ ∞

0
(ρ+ − ρ−)d = −

∫ ∞

0
cF
�
exp

�
−ϕ()e

kBT

�
− exp

�
ϕ()e

kBT

��
d

Using the linearized theory, exp() ≈ 1 + , because ϕ()e/kBT � 1

σ ≈
∫ ∞

0
2cF

ϕ()e

kBT
d = 2λcFϕ0

e

kBT
=
ϵ

λ
ϕ0 (1)

Capacitance of the Gouy–Chapman double layer (as a capacitor):

C

A
=

σ

ϕ0
=
ϵ

λ

Usually the differential capacitance is measured, dσ/dϕ, because σ /∝ ϕ

Example. A molecule of soap covers about  = 0.2nm2. Counterions on average
λ = 1 nm apart in a 0.1 M solution.

a) What is the surface charge?
b) What is the capacitance (per m2)? (ϵr = 78.)
c) What is the potential of the surface? a)−0.8Cm−2,b)0.7Fm−2,c)−1.1V(reallyless)

Ions
[traj/traj.sh]11/16
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Plasma, electrolyte solutions:

charge–charge interaction decays slowly ( ∝ 1/ r)

non-ideal behavior

there is no B2

helium T=300 K helium T=10 000 K

Debye–Hückel theory of electrolyte solutions
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Simplifications:

solvent = homogeneous dielectric continuum

ions (several kinds of) = charged hard spheres of diameter σ; other than electric
interactions neglected)

distribution of ions described in terms of charged density (or probability of finding
an ion); ion–ion correlations neglected

it holds zeϕ� kBT – for “most ions”
– for 1:1 c < 0.1mol dm−3 needed
– for |z| > 1 even more dilute solutions needed

Ionic strength:

c =
1

2

∑



z2 c often using molality:  =
1

2

∑



z2 m

the sum is over all ions in the solution

Debye–Hückel theory of electrolyte solutions
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Results (screened Coulomb or Yukawa potential):
↙

screening

ϕ(r) =
1

4πϵ

ze

r
→ ϕ(r) =

1

4πϵ

ze

r
exp(−r/λ)

Debye (screening) length (radius of the ionic atmosphere):

λ =

√√√ ϵRT

2cF2
(≈ 1nm for 1:1, c = 0.1mol dm−3)

Activity coefficients of ions:

lnγ = −Az2
p
c

1 + 
p
c

σ=0≈ −Az2
Æ
c

point charges
(limiting law)

A =
e3N2A

p
2

8π(ϵRT)3/2
(= 1.176dm3/2mol−1/2 for water 25 ◦C)

 =

√√√2F2

ϵRT
σ (

.
= 1dm3/2mol−1/2 pro σ = 0.3nm)

Applicability to ∼ c = 0.1mol dm−3 (univalent); bivalent etc. are problematic

Strong electrolyte solution
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Al2(SO4)3 → 2Al3+ + 3SO2−4
In general:

Cννν⊕Aννν	 → ννν⊕Cz⊕+ + ννν	Az	−

Electroneutrality (z⊕ > 0, z	 > 0):

ννν⊕z⊕ = ννν	z	
⇒ γ⊕ a γ	 cannot be determined by classical electrochemistry approaches

Mean chemical potential (1 = solvent, 2 = salt)

μ2± =
ννν⊕μ⊕ + ννν	μ	

ννν⊕ + ννν	
Mean activity (ν = ννν⊕ + ννν	)

2± =
ννν
r
ννν⊕⊕ ννν		

Ionic strength for a salt of molarity c (use electroneutrality):

c =
1

2
z	z⊕(ννν	 + ννν⊕)c

Strong electrolyte solution
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Mean activity coefficient

γ2± =
ννν
r
γννν⊕⊕ γννν		

lnγ2±
Debye–Hückel

= −z	z⊕A
p
c

1 + 
p
c

A = 1.176dm3/2mol−1/2,
 = 1dm3/2mol−1/2

0 1 2

(I/mol kg−1)1/2

−1

−0.5

0

ln
 γ

+ --

Debye−Huckel
limiting
Debye−Huckel
experiment

Test for � NaCl

Activity coefficients of ions
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Calculate:

mean activity coefficient of ions in � CaCl2, c = 0.01mol dm−3 0.71

mean activity coefficient in � CH3COOH, c = 0.1mol dm−3, dissociation degree
= α = 0.013 0.960

activity coefficient of protons in � H2SO4, c = 0.01mol dm−3, ionized 100% to
the 1st degree, 60% to the 2nd degree 0.859

Solubility of an insoluble salt (e.g., BaSO4):

drops in a � containing one of the ions (e.g., Ba(NO3)2 or Na2SO4)

increases in presence of other (noninteracting) ions, because the activity coeffi-
cient of Ba2+ and SO42− decrease

Example. The solubility product of barium sulfate is 1.0×10−10. Calculate the sol-
ubility BaSO4 a) in pure water, and b) in 0.01 M � of NaCl.

10μmoldm−3,15μmoldm−3

may change due to pH change in case of hydrolysis (calcium oxalate in oxalic
acid, calcium carbonate and carbon dioxide)


