

Electric double layer 9/16 col06			Surface charge
Charged surface attracts counterions.			(surface charge) = $-$ (charge of the Gouy–Chapman layer)
Gouy-Chapman	Helmholtz	Stern	$\sigma = -\int_{-\infty}^{\infty} (\rho_{+} - \rho_{-}) dx = -\int_{-\infty}^{\infty} cF \left\{ \exp\left[-\frac{\phi(x)e}{t_{+}\tau}\right] - \exp\left[\frac{\phi(x)e}{t_{+}\tau}\right] \right\} dx$
charged surface diffusion layer gradually	charged surface adsorbed counterions	charged surface adsorbed counterions screen	J_0 J_0 $[K_B, J]$ Using the linearized theory, $\exp(x) \approx 1 + x$, because $\phi(x)e/k_B T \ll 1$
screens the charge	screen the total charge neutral solution	a portion of the charge the diffusion layer gradually	$\sigma \approx \int_{-\infty}^{\infty} 2cF \frac{\phi(x)e}{dx} dx = 2\lambda cF\phi_0 \frac{e}{dx} = \frac{\varepsilon}{-\phi_0} $ (1)
		screens the rest neutral solution	$\int_{0} k_{B}T + k_{B$
			$C \sigma \varepsilon$
			$\overline{A} = \overline{\phi_0} = \overline{\lambda}$
			Usually the differential capacitance is measured, $d\sigma/d\phi$, because $\sigma \not \propto \phi$
			$\lambda = 1$ nm apart in a 0.1 M solution.
			a) What is the surface charge? b) What is the capacitance (per m ²)? ($c = 78$)
			c) What is the corporation (per in): $(p = 70.)$ (see) What is the potential of the surface?
lons		[traj/traj.sh]11/16	Debye-Hückel theory of electrolyte solutions
Plasma, electrolyte solutions:			Simplifications:
Substration of the solutions: Charge-charge interaction decays slowly ($u \propto 1/r$)			solvent = homogeneous dielectric continuum
non-ideal behavior			\bullet ions (several kinds of) = charged hard spheres of diameter σ ; other than electric
• there is no B_2			interactions neglected)
The second secon			an ion); ion-ion correlations neglected
			• it holds $ze\phi \ll k_BT$ - for "most ions" - for 1:1 c < 0.1 moldm ⁻³ needed
			- for $ z > 1$ even more dilute solutions needed
NEGAL		KALX (Ionic strength:
			$I_c = \frac{1}{2} \sum z_i^2 c_i$ often using molality: $I = \frac{1}{2} \sum z_i^2 \underline{m}_i$
			the sum is over all ions in the solution
helium T=	=300 K helium T=3	10 000 K	
13/16			
Dobyo Hückel theory	of electrolyte coluti	13/16	Strong electrolyte colution
Debye-Hückel theory Results (screened Coulomb c	of electrolyte solut ion or Yukawa potential):	screening	Strong electrolyte solution
Debye-Hückel theory Results (screened Coulomb c $t(r) = \frac{1}{r}$	y of electrolyte solut ion or Yukawa potential): ze t(z) = 1 ze	ions 13/16 col06	Strong electrolyte solution $14/16$ colo6 $Al_2(SO_4)_3 \rightarrow 2Al^{3+} + 3SO_4^{2-}$ In general:
Debye-Hückel theory Results (screened Coulomb coulo	r of electrolyte soluti or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$	ions $\frac{13/16}{col06}$ screening $exp(-r/\lambda)$ e):	Strong electrolyte solution14/16 col06 $Al_2(SO_4)_3 \rightarrow 2Al^{3+} + 3SO_4^{2-}$ In general: $C\nu_{e}A\nu_{e} \rightarrow \nu_{e}C^{z_{e}+} + \nu_{e}A^{z_{e}-}$
Debye-Hückel theory Results (screened Coulomb coulo	r of electrolyte soluti or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ dus of the ionic atmospher	$\frac{13/16}{col06}$ $\frac{screening}{exp(-r/\lambda)}$ e):	Strong electrolyte solution14/16 colloi $Al_2(SO_4)_3 \rightarrow 2Al^{3+} + 3SO_4^{2-}$ In general: $C_{\boldsymbol{\nu}_{\oplus}}A_{\boldsymbol{\nu}_{\Theta}} \rightarrow \boldsymbol{\nu}_{\oplus}C^{Z_{\oplus}+} + \boldsymbol{\nu}_{\Theta}A^{Z_{\Theta}-}$ Electroneutrality ($z_{\oplus} > 0, z_{\Theta} > 0$):
Debye-Hückel theory Results (screened Coulomb or $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$	or of electrolyte soluti or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ dius of the ionic atmospher ($\approx 1 \text{ nm}$ for 1:1, $c = 0.1$	$\frac{13/16}{col06}$ $\frac{screening}{exp(-r/\lambda)}$ e): mol dm ⁻³)	Strong electrolyte solution14/16 col06Al2(SO4)3 $\rightarrow 2 Al^{3+} + 3 SO_4^{2-}$ In general: $C_{\boldsymbol{\nu}_{\oplus}} A_{\boldsymbol{\nu}_{\Theta}} \rightarrow \boldsymbol{\nu}_{\oplus} C^{z_{\oplus}+} + \boldsymbol{\nu}_{\Theta} A^{z_{\Theta}-}$ Electroneutrality ($z_{\oplus} > 0, z_{\Theta} > 0$): $\boldsymbol{\nu}_{\oplus} z_{\oplus} = \boldsymbol{\nu}_{\Theta} z_{\Theta}$ $\rightarrow \boldsymbol{\nu}_{\Phi} a_{\Phi} = \boldsymbol{\nu}_{\Theta} a_{\Theta}$
Debye-Hückel theory Results (screened Coulomb c $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions:	or felectrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ dividual of the ionic atmospher ($\approx 1 \text{ nm} \text{ for } 1:1, c = 0.1$	ions $\frac{13/16}{col06}$ screening $exp(-r/\lambda)$ e): mol dm ⁻³)	Strong electrolyte solution14/16 colloiAl2(SO4)3 $\rightarrow 2 \text{Al}^{3+} + 3 \text{SO}_4^{2-}$ In general: $C \nu_{\oplus} A \nu_{\Theta} \rightarrow \nu_{\oplus} C^{Z_{\oplus}+} + \nu_{\Theta} A^{Z_{\Theta}-}$ Electroneutrality ($z_{\oplus} > 0, z_{\Theta} > 0$): $\nu_{\oplus} Z_{\oplus} = \nu_{\Theta} Z_{\Theta}$ $\Rightarrow \gamma_{\oplus}$ a γ_{Θ} cannot be determined by classical electrochemistry approaches
Debye-Hückel theory Results (screened Coulomb or $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions:	or f electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ dius of the ionic atmospheric ($\approx 1 \text{ nm for 1:1, } c = 0.1$ $\frac{\sqrt{I_c}}{1 + a\sqrt{I_c}} = \sigma_{\approx}^{=0} -Az_i^2 \sqrt{I_c}$	ions $\frac{13/16}{col06}$ screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law)	Strong electrolyte solution14/16 coll6Al2(SO4)3 $\rightarrow 2 Al^{3+} + 3 SO_4^{2-}$ In general: $C_{V_{\oplus}}A_{V_{\Theta}} \rightarrow V_{\oplus}C^{Z_{\oplus}+} + v_{\Theta}A^{Z_{\Theta}-}$ Electroneutrality ($z_{\oplus} > 0, z_{\Theta} > 0$): $v_{\oplus}Z_{\oplus} = v_{\Theta}Z_{\Theta}$ $\Rightarrow \gamma_{\oplus}$ a γ_{Θ} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt) $v_{\oplus}u_{\oplus} + v_{\Theta}u_{\Theta}$
Debye-Hückel theory Results (screened Coulomb or $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i=1}^2$ $e^3N_h^2\sqrt{2}$	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ dius of the ionic atmospher ($\approx 1 \text{ nm for 1:1}, c = 0.1$ $\frac{\sqrt{I_c}}{1 + a\sqrt{I_c}} = \sigma_{\approx}^{=0} -Az_i^2 \sqrt{I_c}$ po (iii)	ions $\frac{13/16}{col06}$ screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law)	Strong electrolyte solution14/16 colloiAl2(SO4)3 $\rightarrow 2 \text{Al}^{3+} + 3 \text{SO}_4^{2-}$ In general: $C \mathbf{v}_{\oplus} A \mathbf{v}_{\Theta} \rightarrow \mathbf{v}_{\oplus} C^{Z_{\oplus}+} + \mathbf{v}_{\Theta} A^{Z_{\Theta}-}$ Electroneutrality ($z_{\oplus} > 0, z_{\Theta} > 0$): $\mathbf{v}_{\oplus} Z_{\oplus} = \mathbf{v}_{\Theta} Z_{\Theta}$ $\Rightarrow \gamma_{\oplus}$ a γ_{Θ} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt) $\mu_{2\pm} = \frac{\mathbf{v}_{\oplus} \mu_{\oplus} + \mathbf{v}_{\Theta} \mu_{\Theta}}{\mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}}$
Debye-Hückel theory Results (screened Coulomb of $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_i^2 \frac{1}{12}$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi(\epsilon RT)^{3/2}}$	or f electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ dius of the ionic atmospheric ($\approx 1 \text{ nm for 1:1, } c = 0.1$ $\frac{\sqrt{I_c}}{1 + a\sqrt{I_c}} \approx -Az_i^2 \sqrt{I_c}$ point (i) (= 1.176 dm ^{3/2} mol ^{-1/2} f)	ions 13/16 col06 screening exp(-r/λ) e): mol dm ⁻³) int charges miting law) for water 25 °C)	Strong electrolyte solution14/16 coll6Al2(SO4)3 $\rightarrow 2 \text{Al}^{3+} + 3 \text{SO}_{4}^{2-}$ In general: $C_{\mathbf{V}_{\oplus}} A_{\mathbf{V}_{\Theta}} \rightarrow \mathbf{v}_{\oplus} C^{\mathbb{Z}_{\oplus}+} + \mathbf{v}_{\Theta} A^{\mathbb{Z}_{\Theta}-}$ Electroneutrality ($z_{\oplus} > 0, z_{\Theta} > 0$): $\mathbf{v}_{\oplus} z_{\oplus} = \mathbf{v}_{\Theta} z_{\Theta}$ $\Rightarrow \gamma_{\oplus}$ a γ_{Θ} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt) $\mu_{2\pm} = \frac{\mathbf{v}_{\oplus} \mu_{\oplus} + \mathbf{v}_{\Theta} \mu_{\Theta}}{\mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}}$ Mean activity ($\nu = \mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}$)
Debye-Hückel theory Results (screened Coulomb or $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_i^2 \frac{1}{1}$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi(\epsilon RT)^{3/2}}$ $\alpha = \sqrt{\frac{2F^2}{2F^2}} \alpha$	r of electrolyte soluti or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\epsilon} \frac{ze}{r} + $	ions $\frac{13/16}{col06}$ screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) r = 0.3 pm	Strong electrolyte solution14/16 coll6Al2(SO4)3 $\rightarrow 2 \text{Al}^{3+} + 3 \text{SO}_4^{2-}$ In general: $C \mathbf{v}_{\oplus} A \mathbf{v}_{\Theta} \rightarrow \mathbf{v}_{\oplus} C^{\mathbb{Z}_{\oplus}+} + \mathbf{v}_{\Theta} A^{\mathbb{Z}_{\Theta}-}$ Electroneutrality ($\mathbf{z}_{\oplus} > 0, \mathbf{z}_{\Theta} > 0$): $\mathbf{v}_{\oplus} \mathbf{z}_{\oplus} = \mathbf{v}_{\Theta} \mathbf{z}_{\Theta}$ $\Rightarrow \gamma_{\oplus}$ a γ_{Θ} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt) $\mu_{2\pm} = \frac{\mathbf{v}_{\oplus} \mu_{\oplus} + \mathbf{v}_{\Theta} \mu_{\Theta}}{\mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}}$ Mean activity ($\nu = \mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}$) $a_{2\pm} = \sqrt{a_{\oplus}^{\mathbf{v}_{\oplus}} a_{\Theta}^{\mathbf{v}_{\Theta}}}$ Ionic strength for a salt of molarity c (use electroneutrality):
Debye-Hückel theory Results (screened Coulomb or $\phi(r) = \frac{1}{4\pi\epsilon^2}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i-1}^2$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}}\sigma$	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ (dius of the ionic atmospheric ($\approx 1 \text{ nm for } 1:1, c = 0.1$ $\sqrt{I_c}$ $\alpha = 0 - Az_i^2 \sqrt{I_c}$ (iii) $(= 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ mol}^{-1/2}$	ions $\frac{13/16}{col06}$ screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) $\sigma = 0.3$ nm)	Strong electrolyte solution14/16 col06Al2(SO4)3 $\rightarrow 2Al^{3+} + 3SO_4^{2-}$ In general: $Cv_{\oplus}Av_{\oplus} \rightarrow v_{\oplus}C^{Z_{\oplus}+} + v_{\Theta}A^{Z_{\Theta}-}$ Electroneutrality ($z_{\oplus} > 0, z_{\Theta} > 0$): $v_{\oplus} z_{\oplus} = v_{\Theta} z_{\Theta}$ $\Rightarrow \gamma_{\oplus}$ a γ_{Θ} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt) $\mu_{2\pm} = \frac{v_{\oplus} \mu_{\oplus} + v_{\Theta} \mu_{\Theta}}{v_{\oplus} + v_{\Theta}}$ Mean activity ($v = v_{\oplus} + v_{\Theta}$) $a_{2\pm} = \sqrt[v]{a_{\oplus}^{V_{\oplus}} a_{\Theta}^{V_{\Theta}}}$ Ionic strength for a salt of molarity c (use electroneutrality): $I_{a} = \frac{1}{2} z_{a} z_{a} (v_{A} + v_{B}) C$
Debye-Hückel theory Results (screened Coulomb of $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_i^2 \frac{1}{1}$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}}\sigma$	r of electrolyte soluti or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\epsilon} \frac{ze}{r}$ $(\approx 1 \text{ nm for 1:1, } c = 0.1)$ $\frac{\sqrt{I_c}}{1 + a\sqrt{I_c}} \stackrel{\sigma=0}{\approx} -Az_l^2 \sqrt{I_c} \text{potential}$ $(= 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2} mo$	ions $13/16 \\ colo6$ screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) $\sigma = 0.3$ nm) ent etc. are problematic	Strong electrolyte solution 14/16 Al2(SO4)3 \rightarrow 2Al ³⁺ $+$ 3SO ₄ ²⁻ In general: $C \mathbf{v}_{\oplus} A \mathbf{v}_{\oplus} \rightarrow \mathbf{v}_{\oplus} C^{Z_{\oplus} +} + \mathbf{v}_{\Theta} A^{Z_{\Theta} -}$ Electroneutrality ($z_{\oplus} > 0, z_{\Theta} > 0$): $\mathbf{v}_{\oplus} Z_{\oplus} = \mathbf{v}_{\Theta} Z_{\Theta}$ $\Rightarrow \gamma_{\oplus}$ a γ_{Θ} cannot be determined by classical electrochemistry approaches Mean chemical potential (1 = solvent, 2 = salt) $\mu_{2\pm} = \frac{\mathbf{v}_{\oplus} \mu_{\oplus} + \mathbf{v}_{\Theta} \mu_{\Theta}}{\mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}}$ Mean activity ($\mathbf{v} = \mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}$) $a_{2\pm} = \sqrt[\mathbf{v}] \sqrt{a_{\oplus}^{\mathbf{v}_{\Theta}} a_{\Theta}^{\mathbf{v}_{\Theta}}}$ Ionic strength for a salt of molarity c (use electroneutrality): $I_c = \frac{1}{2} z_{\Theta} z_{\Theta} (\mathbf{v}_{\Theta} + \mathbf{v}_{\Theta})c$
Debye-Hückel theory Results (screened Coulomb of $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i-1}^2$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}}\sigma$ Output Applicability to $\sim I_c = 0.1$	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ (dius of the ionic atmospheric ($\approx 1 \text{ nm for 1:1, } c = 0.1$ $\sqrt{I_c}$ $\alpha \approx 0 - Az_l^2 \sqrt{I_c}$ (iii) $(= 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ mol}^{-1/2}$ $(\doteq 1 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ proof}^{-1/2}$ mol dm ⁻³ (univalent); bivale	ions $13/16 \\ col06$ screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) $\sigma = 0.3$ nm) ent etc. are problematic 15/16 col06	Strong electrolyte solution14/16 colo6Al2(SO4)3 $\rightarrow 2 Al^{3+} + 3 SO_4^{2-}$ In general: $C \mathbf{v}_{\oplus} A \mathbf{v}_{\oplus} \rightarrow \mathbf{v}_{\oplus} C^{Z_{\oplus}+} + \mathbf{v}_{\Theta} A^{Z_{\Theta}-}$ Electroneutrality $(z_{\oplus} > 0, z_{\Theta} > 0)$: $\mathbf{v}_{\oplus} Z_{\oplus} = \mathbf{v}_{\Theta} Z_{\Theta}$ $\Rightarrow \gamma_{\oplus}$ a γ_{Θ} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt) $\mu_{2\pm} = \frac{\mathbf{v}_{\Theta} \mu_{\oplus} + \mathbf{v}_{\Theta} \mu_{\Theta}}{\mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}}$ Mean activity ($\mathbf{v} = \mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}$) $a_{2\pm} = \frac{\mathbf{v}_{\sqrt{a_{\oplus}^{\mathbf{v}_{\Theta}} a_{\Theta}^{\mathbf{v}_{\Theta}}}}{\mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}}$ Ionic strength for a salt of molarity c (use electroneutrality): $I_c = \frac{1}{2} Z_{\Theta} Z_{\oplus} (\mathbf{v}_{\Theta} + \mathbf{v}_{\oplus}) c$ Activity coefficients of ionsCalculate:
Debye-Hückel theory Results (screened Coulomb of $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i-1}^2$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}}\sigma$ • Applicability to $\sim I_c = 0.1$ Strong electrolyte so Mean activity coefficient	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\epsilon} \frac{ze}{r}$ (dius of the ionic atmospheric atmospheric ($\approx 1 \text{ nm for } 1:1, c = 0.1$ $\sqrt{I_c}$ $\sigma \approx 0 - Az_l^2 \sqrt{I_c}$ point $(= 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ for } 1)$ $(= 1 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ proof} 1)$ $(= 1 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ proof} 1)$ $(= 1 \text{ dm}^{-3} \text{ (univalent); bivalent)}$	ions ions ions screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) $\sigma = 0.3$ nm) ent etc. are problematic 15/16 col06	Strong electrolyte solution $14/16 \\ coloAl2(SO4)3 \rightarrow 2 Al^{3+} + 3 SO_4^{2-}In general:C \mathbf{v}_{\oplus} A \mathbf{v}_{\Theta} \rightarrow \mathbf{v}_{\oplus} C^{2_{\oplus}+} + \mathbf{v}_{\Theta} A^{2_{\Theta}-}Electroneutrality (z_{\oplus} > 0, z_{\Theta} > 0):\mathbf{v}_{\oplus} Z_{\oplus} = \mathbf{v}_{\Theta} Z_{\Theta}\Rightarrow \gamma_{\oplus} a \gamma_{\Theta} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt)\mu_{2\pm} = \frac{\mathbf{v}_{\oplus} \mu_{\oplus} + \mathbf{v}_{\Theta} \mu_{\Theta}}{\mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}}Mean activity (\mathbf{v} = \mathbf{v}_{\oplus} + \mathbf{v}_{\Theta})a_{2\pm} = \sqrt{a_{\oplus}^{\mathbf{v}_{\oplus}} a_{\Theta}^{\mathbf{v}_{\Theta}}}Ionic strength for a salt of molarity c (use electroneutrality):I_c = \frac{1}{2} z_{\Theta} z_{\Theta} (\mathbf{v}_{\Theta} + \mathbf{v}_{\Theta})cActivity coefficients of ions(actuate:)\mathbf{w} mean activity coefficient of ions in \mathbf{w} CaCl2, c = 0.01 \text{mol dm}^{-3}$
Debye-Hückel theory Results (screened Coulomb or $\phi(r) = \frac{1}{4\pi\epsilon^2}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i-1}^2$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}}\sigma$ Applicability to ~ I_c = 0.11 Strong electrolyte so Mean activity coefficient $\gamma_{2\pm} = \sqrt[V]{\gamma}$	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ (dius of the ionic atmospheric ($\approx 1 \text{ nm for } 1:1, c = 0.1$ $\sqrt{I_c}$ $\alpha \approx 0 - Az_l^2 \sqrt{I_c}$ (iii) $(= 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ proc})$ $(= 1 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ proc})$	ions 13/16 col06 screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) $\sigma = 0.3$ nm) ent etc. are problematic 15/16 col06 experiment Debye-Hückel Debye-Hückel Debye-Hückel	Strong electrolyte solution $14/16 \\ colosAl_2(SO_4)_3 \rightarrow 2Al^{3+} + 3SO_4^{2-}$ In general: $C v_{\oplus} A v_{\oplus} \rightarrow v_{\oplus} C^{Z_{\oplus} +} + v_{\oplus} A^{Z_{\oplus} -}$ Electroneutrality $(z_{\oplus} > 0, z_{\Theta} > 0)$: $v_{\oplus} Z_{\oplus} = v_{\Theta} z_{\Theta}$ $\Rightarrow \gamma_{\oplus}$ a γ_{Θ} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt) $\mu_{2\pm} = \frac{v_{\oplus} \mu_{\oplus} + v_{\Theta} \mu_{\Theta}}{v_{\oplus} + v_{\Theta}}$ Mean activity $(v = v_{\oplus} + v_{\Theta})$ $a_{2\pm} = \sqrt[V]{a_{\oplus}^{V_{\oplus}} a_{\Theta}^{V_{\Theta}}}$ Ionic strength for a salt of molarity c (use electroneutrality): $I_c = \frac{1}{2} Z_{\Theta} z_{\Theta} (v_{\Theta} + v_{\oplus}) c$ Activity coefficients of ionsCalculate: \oplus mean activity coefficient of ions in \circ CaCl ₂ , $c = 0.01 \mod dm^{-3}$ $IL^{\circ}0$ $mean activity coefficient in \circ CH3COOH, c = 0.1 \mod dm^{-3}, dissociation degree$
Debye-Hückel theory Results (screened Coulomb of $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i-1}^2$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}}\sigma$ Applicability to $\sim I_c = 0.1$ Strong electrolyte so Mean activity coefficient $\gamma_{2\pm} = \sqrt[V]{\gamma}$ $\ln \gamma_{2\pm} = -z_{0}^2$	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r} + $	ions 13/16 col06 screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) $\sigma = 0.3 \text{ nm}$) ent etc. are problematic 15/16 col06 experiment Debye-Hückel limiting Debye-Hückel	Strong electrolyte solution $14/16 \\ coloAl2(SO4)_3 \rightarrow 2 \text{Al}^{3+} + 3 \text{SO}_4^{2-}In general:C \mathbf{v}_{\oplus} A \mathbf{v}_{\Theta} \rightarrow \mathbf{v}_{\oplus} C^{2_{\oplus} +} + \mathbf{v}_{\Theta} A^{2_{\Theta} -}Electroneutrality (z_{\oplus} > 0, z_{\Theta} > 0):\mathbf{v}_{\oplus} Z_{\oplus} = \mathbf{v}_{\Theta} Z_{\Theta}\Rightarrow \gamma_{\oplus} a \gamma_{\Theta} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt)\mu_{2\pm} = \frac{\mathbf{v}_{\oplus} \mu_{\oplus} + \mathbf{v}_{\Theta} \mu_{\Theta}}{\mathbf{v}_{\oplus} + \mathbf{v}_{\Theta}}Mean activity (\mathbf{v} = \mathbf{v}_{\oplus} + \mathbf{v}_{\Theta})a_{2\pm} = \sqrt{a_{\oplus}^{\mathbf{v}_{\oplus}} a_{\Theta}^{\mathbf{v}_{\Theta}}}Ionic strength for a salt of molarity c (use electroneutrality):I_c = \frac{1}{2} z_{\Theta} z_{\oplus} (\mathbf{v}_{\Theta} + \mathbf{v}_{\Theta})cActivity coefficients of ions in \circ CaCl2, c = 0.01 \text{ mol dm}^{-3}\bullet mean activity coefficient in \circ CH3COOH, c = 0.1 \text{ mol dm}^{-3}, dissociation degree= \alpha = 0.013$
Debye-Hückel theory Results (screened Coulomb of $\phi(r) = \frac{1}{4\pi\epsilon^2}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i-1}^2$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}}\sigma$ Applicability to ~ $I_c = 0.10$ Strong electrolyte so Mean activity coefficient $\gamma_{2\pm} = \sqrt[V]{\gamma}$ $\ln \gamma_{2\pm} = \sqrt[V]{\gamma}$ $\ln \gamma_{2\pm} = -z_{e^2}$ $A = 1.176 \text{dm}^{3/2} \text{mol}^{-1/2}$, $a = 1.176 \text{dm}^{3/2} \text{mol}^{-1/2}$	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ $(dius of the ionic atmospheric (\approx 1 \text{ nm for } 1:1, c = 0.1 \frac{\sqrt{I_c}}{1 + a\sqrt{I_c}} \stackrel{\sigma \equiv 0}{\approx} -Az_i^2 \sqrt{I_c} \text{potential} i (= 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ protential} i (= 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ protential} i (= 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ protential} i (= 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ protential} i \frac{\sqrt{I_c}}{2} \sqrt{I_c} = 0.5$	ions 13/16 colo6 screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) $\sigma = 0.3$ nm) ent etc. are problematic 15/16 colo6 experiment Debye-Hückel limiting Debye-Hückel	Strong electrolyte solution $14/16 \\ coloAl2(SO4)3 \rightarrow 2AI^{3+} + 3SO_4^{2-}In general:C v_{\oplus} A v_{\oplus} \rightarrow v_{\oplus} C^{z_{\oplus} +} v_{\oplus} A^{z_{\oplus} -}Electroneutrality (z_{\oplus} > 0, z_{\oplus} > 0):v_{\oplus} z_{\oplus} = v_{\oplus} z_{\oplus}\Rightarrow \gamma_{\oplus} a \gamma_{\oplus} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt)\mu_{2\pm} = \frac{v_{\oplus} \mu_{\oplus} + v_{\oplus} \mu_{\oplus}}{v_{\oplus} + v_{\oplus}}Mean activity (v = v_{\oplus} + v_{\oplus})a_{2\pm} = \sqrt{a_{\oplus}^{W_{\oplus}} a_{\Theta}^{V_{\oplus}}}Ionic strength for a salt of molarity c (use electroneutrality):I_c = \frac{1}{2} z_{\Theta} z_{\oplus} (v_{\Theta} + v_{\oplus}) cActivity coefficients of ions in \odot CaCl2, c = 0.01 \text{ mol dm}^{-3}\mu_{20} mean activity coefficient in \circ CH3COOH, c = 0.1 \text{ mol dm}^{-3}, ionized 100% to the 1st degree, 60% to the 2nd degree$
Debye-Hückel theory Results (screened Coulomb of $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i-1}^2$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}} \sigma$ Applicability to $\sim I_c = 0.10$ Strong electrolyte so Mean activity coefficient $\gamma_{2\pm} = \sqrt[V]{\gamma}$ $\ln \gamma_{2\pm} = \sqrt[V]{\gamma}$ $\ln \gamma_{2\pm} = \sqrt[V]{\gamma}$ $A = 1.176 \text{dm}^{3/2} \text{mol}^{-1/2},$ $a = 1 \text{dm}^{3/2} \text{mol}^{-1/2}$	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ $\frac{1}{\sqrt{I_c}} = \frac{1}{\sqrt{I_c}} \frac{ze}{r}$ $(\approx 1 \text{ nm for 1:1, } c = 0.1)$ $\frac{\sqrt{I_c}}{1 + a\sqrt{I_c}} = \frac{\sigma = 0}{\approx} -Az_l^2 \sqrt{I_c} \text{po}$ $(= 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ for } c)$ $(= 1 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ proof}$ $\frac{1}{2} \text{ mol} \text{ dm}^{-3} \text{ (univalent); bivalue}$ $\frac{\sqrt{I_c}}{2eA} \frac{\sqrt{I_c}}{1 + a\sqrt{I_c}} = 0$	tions tions tools screening exp($-r/\lambda$) e): mol dm ⁻³) tint charges miting law) for water 25 °C) $\sigma = 0.3$ nm) ent etc. are problematic tools	Strong electrolyte solution14/16 coll6Al2(SO4)3 $\rightarrow 2AI^{3+} + 3SO_4^{2-}$ In general: $Cv_{\Phi}Av_{\Phi} \rightarrow v_{\Phi}C^{2e^+} + v_{\Theta}A^{2e^-}$ Electroneutrality ($z_{\Phi} > 0, z_{\Phi} > 0$): $v_{\Phi}z_{\Phi} = v_{\Theta}z_{\Theta}$ $\Rightarrow \gamma_{\Phi}$ a γ_{Φ} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt) $\mu_{2\pm} = \frac{v_{\Phi}\mu_{\Phi} + v_{\Theta}\mu_{\Theta}}{v_{\Phi} + v_{\Theta}}$ Mean activity ($v = v_{\Phi} + v_{\Theta}$) $a_{2\pm} = \sqrt[3]{a_{\Phi}^{V_{\Phi}}a_{\Theta}^{V_{\Theta}}}$ Ionic strength for a salt of molarity c (use electroneutrality): $I_c = \frac{1}{2}z_{\Theta}z_{\Phi}(v_{\Theta} + v_{\Phi})c$ Activity coefficients of ionsCalculate: Φ mean activity coefficient of ions in \oplus CaCl2, $c = 0.01 \text{ mol dm}^{-3}$ IL^{10} Φ mean activity coefficient of Φ by h_2SO_4 , $c = 0.01 \text{ mol dm}^{-3}$, ionized 100% to the 1st degree, 60% to the 2nd degreeSolubility of an insoluble salt (e.g., BaSO_4):
Debye-Hückel theory Results (screened Coulomb of $\phi(r) = \frac{1}{4\pi\epsilon^2}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i-1}^2$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}}\sigma$ Applicability to $\sim I_c = 0.11$ Strong electrolyte so Mean activity coefficient $\gamma_{2\pm} = \sqrt[V]{\gamma}$ $\ln \gamma_{2\pm}$ $Debye-Hückel - Ze^2$ $A = 1.176 \text{dm}^{3/2} \text{mol}^{-1/2}$, $a = 1 \text{dm}^{3/2} \text{mol}^{-1/2}$	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ $\frac{ze}{r}$ $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ $\frac{ze}{r}$ $\frac{ze}{r}$ $\frac{1}{4\pi\varepsilon} \frac{ze}{r}$ $\frac{ze}{r}$ $\frac{ze}{r}$ $\frac{ze}{r}$ $\frac{\sqrt{I_c}}{r}$ $\frac{\sigma = 0}{\approx} -Az_i^2 \sqrt{I_c}$ $\frac{r}{(1+a\sqrt{I_c})}$ $\frac{\sigma = 0}{\approx} -Az_i^2 \sqrt{I_c}$ $\frac{r}{(1+a\sqrt{I_c})}$ $\frac{r}{e} \gamma_{e}^{o}$ $\frac{\sqrt{I_c}}{1+a\sqrt{I_c}}$ $\frac{ze}{r} -0.5$ $\frac{1}{r}$	ions 13/16 col06 screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) $\sigma = 0.3$ nm) ent etc. are problematic 15/16 col06 experiment Debye-Hückel limiting Debye-Hückel imiting Debye-Hückel	Strong electrolyte solution $14/16 \\ coloAl2(SO4)3 \rightarrow 2Al^{3+} + 3SO_4^{2-}In general:Cv_{\oplus}Av_{\oplus} \rightarrow v_{\oplus}C^{2_{\oplus}+} + v_{\Theta}A^{2_{\Theta}-}Electroneutrality (z_{\oplus} > 0, z_{\Theta} > 0):v_{\oplus}z_{\oplus} = v_{\Theta}z_{\Theta}\Rightarrow \gamma_{\oplus} a \gamma_{\Theta} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt)\mu_{2\pm} = \frac{v_{\oplus}\mu_{\oplus} + v_{\Theta}\mu_{\Theta}}{v_{\oplus} + v_{\Theta}}Mean activity (v = v_{\oplus} + v_{\Theta})a_{2\pm} = \sqrt{a_{\oplus}^{V_{\oplus}}a_{\Theta}^{V_{\Theta}}}Ionic strength for a salt of molarity c (use electroneutrality):I_c = \frac{1}{2}z_{\Theta}z_{\oplus}(v_{\Theta} + v_{\oplus})cActivity coefficients of ions n \odot CaCl_2, c = 0.01 \mod dm^{-3}mean activity coefficient in \circ CH_3COOH, c = 0.1 \mod dm^{-3}, dissociation degree= \alpha = 0.013096'0• cativity coefficient of protons in \circ H_2SO_4, c = 0.01 \mod dm^{-3}, ionized 100% tothe 1st degree, 60% to the 2nd degree628'0Solubility of an insoluble salt (e.g., BaSO_4):• drops in a \diamond containing one of the ions (e.g., Ba(NO_3)_2 or Na_2SO_4)$
Debye-Hückel theory Results (screened Coulomb of $ \varphi(r) = \frac{1}{4\pi\epsilon} $ Debye (screening) length (ra $ \lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}} $ Activity coefficients of ions: $ \ln \gamma_i = -Az_{i-1}^2 $ $ A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}} $ $ a = \sqrt{\frac{2F^2}{\epsilon RT}}\sigma $ Applicability to $\sim I_c = 0.10$ Strong electrolyte so Mean activity coefficient $ \gamma_{2\pm} = \sqrt[V]{\gamma} $ $ \ln \gamma_{2\pm} = \sqrt[V]{\gamma} $ $ \ln \gamma_{2\pm} = \sqrt[V]{\gamma} $ $ A = 1.176 \text{dm}^{3/2} \text{mol}^{-1/2}, $ $ a = 1 \text{dm}^{3/2} \text{mol}^{-1/2} $	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ dius of the ionic atmospheric ($\approx 1 \text{ nm for 1:1, } c = 0.1$ $\frac{\sqrt{I_c}}{1 + a\sqrt{I_c}} = \frac{\sigma = 0}{\approx} -Az_l^2 \sqrt{I_c}$ point ($\approx 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2} \text{ for } c$ (i) ($= 1.176 \text{ dm}^{3/2} \text{ mol}^{-1/2}$ for c mol dm ⁻³ (univalent); bivale $\frac{\sqrt{I_c}}{2e}A \frac{\sqrt{I_c}}{1 + a\sqrt{I_c}}$ $\frac{z^{4}}{E} - 0.5 \begin{bmatrix} 0 \\ -1 \end{bmatrix}$	tions 13/16 colo6 screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) $\sigma = 0.3$ nm) ent etc. are problematic 15/16 colo6 $\sigma = 0.3$ nm) ent etc. are problematic	Strong electrolyte solution $14/16 \\ coloAl2(SO4)3 \rightarrow 2Al^{3+} + 3SO_4^{2-}In general:C v_{\oplus} A v_{\oplus} \rightarrow v_{\oplus} C^{z_{\oplus}+} + v_{\Theta} A^{z_{\Theta}-}Electroneutrality (z_{\oplus} > 0, z_{\Theta} > 0):v_{\oplus} z_{\oplus} = v_{\Theta} z_{\Theta}\Rightarrow \gamma_{\oplus} a \gamma_{\Theta} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt)\mu_{2\pm} = \frac{v_{\oplus} \mu_{\oplus} + v_{\Theta} \mu_{\Theta}}{v_{\oplus} + v_{\Theta}}Mean activity (v = v_{\oplus} + v_{\Theta})a_{2\pm} = \sqrt[V]{a_{\oplus}^{V_{\oplus}} a_{\Theta}^{V_{\Theta}}}Ionic strength for a salt of molarity c (use electroneutrality):I_c = \frac{1}{2} z_{\Theta} z_{\Theta} (v_{\Theta} + v_{\oplus})cActivity coefficients of ions \circ CaCl_2, c = 0.01 \mod dm^{-3}Calculate:\oplus mean activity coefficient of ions in \circ CaCl_2, c = 0.01 \mod dm^{-3}, dissociation degree= \alpha = 0.013O96'0= activity coefficient of protons in \circ H_2SO_4, c = 0.01 \mod dm^{-3}, ionized 100% tothe 1st degree, 60% to the 2nd degreeSolubility of an insoluble salt (e.g., BaSO_4):(tor Ba^{2+} and SO_4^{2+} - decrease$
Debye-Hückel theory Results (screened Coulomb of $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i-1}^2$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}}\sigma$ Applicability to ~ $I_c = 0.10$ Strong electrolyte so Mean activity coefficient $\gamma_{2\pm} = \sqrt[V]{\gamma}$ $\ln \gamma_{2\pm} = \sqrt[V]{\gamma}$ $\ln \gamma_{2\pm} = -z_6$ $A = 1.176 \text{dm}^{3/2} \text{mol}^{-1/2},$ $a = 1 \text{dm}^{3/2} \text{mol}^{-1/2}$	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ $\frac{ze}{r}$ $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r}$ $\frac{ze}{r}$ $\frac{ze}{r}$ $\frac{ze}{r}$ $\frac{ze}{r}$ $\frac{ze}{r}$ $\frac{ze}{r}$ $\frac{ze}{r}$ $\frac{\sqrt{I_c}}{r}$ $\frac{ze}{r}$	tions 13/16 colo6 screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) $\sigma = 0.3$ nm) ent etc. are problematic 15/16 colo6 $\sigma = 0.3$ nm) ent etc. are problematic	Strong electrolyte solution14/16 col06Al2(SO4)3 $\rightarrow 2Al^{3+} + 3SO_4^{2-}$ In general: $Cv_{e}Av_{e} \rightarrow v_{\theta}C^{2e+} + v_{e}A^{2e-}$ Electroneutrality ($z_{e} > 0, z_{e} > 0$): $v_{\theta}z_{\theta} = v_{\theta}z_{\theta}$ $\Rightarrow \gamma_{\theta}$ a γ_{θ} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt) $\mu_{2\pm} = \frac{v_{e}\mu_{\theta} + v_{e}\mu_{\theta}}{v_{\theta} + v_{\theta}}$ Mean activity ($v = v_{\theta} + v_{\theta}$) $a_{2\pm} = \sqrt{a_{\theta}^{2} a_{\theta}^{2} a_{\theta}^{2}}$ Ionic strength for a salt of molarity c (use electroneutrality): $I_c = \frac{1}{2} z_{\theta} z_{\theta} (v_{\theta} + v_{\theta})c$ Activity coefficients of ions in \circ CaCl ₂ , $c = 0.01 \text{ mol dm}^{-3}$ $L'0$ mean activity coefficient of ions in \circ CaCl ₂ , $c = 0.01 \text{ mol dm}^{-3}$, dissociation degree $= \alpha = 0.013$ 096'0extivity coefficient of protons in \circ H ₂ SO ₄ , $c = 0.01 \text{ mol dm}^{-3}$, ionized 100% to the 1st degree, 60% to the 2nd degreeSolubility of an insoluble salt (e.g., BaSO ₄):e drops in a \circ containing one of the ions (e.g., Ba(NO ₃) ₂ or Na ₂ SO ₄)e increases in presence of other (noninteracting) ions, because the activity coefficient te solubility product of barium sulfate is 1.0×10^{-10} . Calculate the solubility of the solubility product of barium sulfate is 1.0×10^{-10} . Calculate the solubility of the solubility product of barium sulfate is 1.0×10^{-10} . Calculate the solubility product of barium sulfate is 1.0×10^{-10} . Calculate the solubility product of barium sulfate is 1.0×10^{-10} . Calculate the solubility product of barium sulfate is 1.0×10^{-10} . Calculate the solubility product of barium sulfate is 1.0×10^{-10} . Calcu
Debye-Hückel theory Results (screened Coulomb of $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i-1}^2$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}} \sigma$ A pplicability to $\sim I_c = 0.10$ Strong electrolyte so Mean activity coefficient $\gamma_{2\pm} = \sqrt[V]{\gamma}$ $\ln \gamma_{2\pm}$ $Debye-Hückel - Ze^2$ $A = 1.176 \text{dm}^{3/2} \text{mol}^{-1/2}$, $a = 1 \text{dm}^{3/2} \text{mol}^{-1/2}$	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r} + $	tions t	Strong electrolyte solution14/16 colo6Al2(SO4)3 $\rightarrow 2Al^{3+} + 3SO_4^{2-}$ In general: $C_{V_{\oplus}}A_{V_{\oplus}} \rightarrow v_{\oplus}C^{2_{\oplus}+} + v_{\Theta}A^{2_{\oplus}-}$ Electroneutrality ($z_{\oplus} > 0, z_{\Theta} > 0$): $v_{\oplus}z_{\oplus} = v_{\Theta}z_{\Theta}$ $\Rightarrow \gamma_{\oplus}$ a γ_{Θ} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt) $\mu_{2\pm} = \frac{v_{\Theta}\mu_{\Theta} + v_{\Theta}\mu_{\Theta}}{v_{\Theta} + v_{\Theta}}$ Mean activity ($v = v_{\oplus} + v_{\Theta}$) $a_{2\pm} = \sqrt{a_{\Theta}^{V_{\Theta}}a_{\Theta}^{V_{\Theta}}}$ Ionic strength for a salt of molarity c (use electroneutrality): $I_c = \frac{1}{2}z_{\Theta}z_{\Theta}(v_{\Theta} + v_{\oplus})c$ Activity coefficients of ionsCalculate: \oplus mean activity coefficient of ions in \odot CaCl ₂ , $c = 0.01 \text{ mol dm}^{-3}$ (D_{13}) $(D_{$
Debye-Hückel theory Results (screened Coulomb of $\phi(r) = \frac{1}{4\pi\epsilon}$ Debye (screening) length (ra $\lambda = \sqrt{\frac{\epsilon RT}{2I_c F^2}}$ Activity coefficients of ions: $\ln \gamma_i = -Az_{i-1}^2$ $A = \frac{e^3 N_A^2 \sqrt{2}}{8\pi (\epsilon RT)^{3/2}}$ $a = \sqrt{\frac{2F^2}{\epsilon RT}}\sigma$ Applicability to $\sim I_c = 0.11$ Strong electrolyte so Mean activity coefficient $\gamma_{2\pm} = \sqrt[V]{\gamma}$ $\ln \gamma_{2\pm} = -z_{0}$ $A = 1.176 \text{dm}^{3/2} \text{mol}^{-1/2}$, $a = 1 \text{dm}^{3/2} \text{mol}^{-1/2}$	r of electrolyte solution or Yukawa potential): $\frac{ze}{r} \rightarrow \phi(r) = \frac{1}{4\pi\varepsilon} \frac{ze}{r} + $	tions 13/16 colo6 screening exp($-r/\lambda$) e): mol dm ⁻³) int charges miting law) for water 25 °C) $\sigma = 0.3$ nm) ent etc. are problematic 15/16 colo6 $\sigma = 0.3$ nm) ent etc. are problematic	Strong electrolyte solution14/16 col06Al2(SO4)3 $\rightarrow 2Al^{3+} + 350_4^{2-}$ In general: $C v_{\Theta} A v_{\Theta} \rightarrow v_{\Theta} C^{2 \Theta^+} + v_{\Theta} A^{2 \Theta^-}$ Electroneutrality $(z_{\Phi} > 0, z_{\Theta} > 0)$: $v_{\Theta} Z_{\Phi} = v_{\Theta} Z_{\Theta}$ $\Rightarrow \gamma_{\Phi}$ a γ_{Θ} cannot be determined by classical electrochemistry approachesMean chemical potential (1 = solvent, 2 = salt) $\mu_{2\pm} = \frac{v_{\Theta} \mu_{\Phi} + v_{\Theta} \mu_{\Theta}}{v_{\Phi} + v_{\Theta}}$ Mean activity ($v = v_{\Phi} + v_{\Theta}$) $a_{2\pm} = \sqrt{a_{\Phi}^{W_{\Phi}} + v_{\Theta}}$ Ionic strength for a salt of molarity c (use electroneutrality): $I_c = \frac{1}{2} z_{\Theta} z_{\Theta} (v_{\Theta} + v_{\Theta}) c$ Activity coefficients of ionsCalculate: Θ mean activity coefficient of ions in \odot CaCl ₂ , $c = 0.01 \mod dm^{-3}$ $096'0$ \bullet activity coefficient of protons in $\odot H_2SO_4$, $c = 0.01 \mod dm^{-3}$, ionized 100% to the 1st degree, 60% to the 2nd degree of drops in a \odot containing one of the ions (e.g., Ba(NO_3)_2 or Na_2SO_4) \bullet increases in presence of other (noninteracting) ions, because the activity coefficient of ba2^+ and SO_4^{2^-} decreaseExample. The solubility product of barium sulfate is 1.0×10^{-10} . Calculate the solubility BaSO_4 a) in pure water, and b) in 0.01 M \odot of NaCl. $e^{-} up [ourl S1' e_{e} up [ourl]01$ \bullet may change due to pH change in case of hydrolysis (calcium oxalate in oxalic