

Electric conductivity 9/18 col07	Electric conductivity 10/18 col07
Ohm Law (here: $U =$ voltage, $U = \phi_2 - \phi_1$):	substance κ/(S m ⁻¹)
$R = \frac{U}{I}$ $I = \frac{1}{R}U$ $1/R = \text{conductivity}, [1/R] = 1/\Omega = S = \text{Siemens}$	graphene 1×10^8
(Specific) conductivity (conductance) κ is 1/resistance of a unit cube	sea water 5
$\frac{1}{n} = \kappa \frac{A}{l}$ $A = \text{area}, l = \text{layer thickness}, [\kappa] = \text{S} \text{m}^{-1}$	Ge 2.2
RI	Si 1.6×10 ⁻³
Vector notation: $\vec{j} = \kappa \vec{\mathcal{E}} = -\kappa \vec{\nabla} \phi$	distilled water (contains CO_2) 7.5 × 10 ⁻⁵
$j = \text{el. current density}, j = I/A, \mathcal{E} = \text{el. field intensity}, \mathcal{E} = U/l$	deionized water 5.5×10^{-6} glass $1 \times 10^{-15} - 1 \times 10^{-11}$
	teflon $1 \times 10^{-25} - 1 \times 10^{-23}$
Molar conductivity	Mobility and molar conductivity 12/18 col07
Strong electrolytes: conductivity proportional to concentration.	Mobility of an ion = averaged velocity in a unit electric field:
Molar conductivity λ :	$u_i = \frac{v_i}{a}$ $\mathcal{E} = U/l = \text{el. intensity}, U = \text{voltage}$
$\lambda = \frac{\kappa}{c}$	\mathcal{E} Charges $z_i e$ of velocity v_i and concentration c_i cause the current density
Units: $[\kappa] = Sm^{-1}$, $[\lambda] = Sm^2 mol^{-1}$.	$\sum_{i=1}^{n} \frac{\kappa_i^n}{k_i^n}$
Watch units—best convert c to mol m ⁻³ !	$j_i = v_i c_i z_i F = u_i \mathcal{E} c_i z_i F \stackrel{!}{=} \lambda_i c_i \mathcal{E} \implies \lambda_i = u_i z_i F$ = molar conductivity of ion <i>i</i>
Example. Conductivity of a 0.1 M solution of HCl o is 4 Sm^{-1} . Calculate the molar	lons (in dilute solutions) migrate independently (Kohlrausch law), for electrolyte $c^{2a+} x^{2a-}$
conductivity.	$C_{V_{\oplus}} A_{V_{\oplus}}^{\circ}$: nere we define $Z_{A} > 0$
	Mathematically
	$\lambda = - \sum \mathbf{v}_i \lambda_i$
	$c = \frac{1}{i}$
[cd pic;mz grotthuss.gif] Nothing is ideal	Conductivity of weak electrolytes
Nothing is ideal [cd pic;mz grotthuss.gif] [3/18 col07 col07 Limiting molar conductivity = molar conductivity at infinite dilution	Conductivity of weak electrolytes 14/18 col07
Nothing is ideal[cd pic;mz grotthuss.gif]_{13/18} col07Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$	Conductivity of weak electrolytes 14/18 col07 We count ions only, not unionized acid 14/18 col07 In the limiting concentration: 14/18 col07
Nothing is ideal [cd pic;mz grotthuss.gif]_{13/18} col07 col07 Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$	Conductivity of weak electrolytes $14/18$ Color $color$ We count ions only, not unionized acid In the limiting concentration: $x = 1^{\infty} c_{x} = -1^{\infty} ac def$, exptl 0.04
Nothing is ideal[cd pic;mz grotthuss.gif]_{13/18} col07Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values:	Conductivity of weak electrolytes14/18 col07We count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty} c_{\text{ions}} = \lambda^{\infty} \alpha c \stackrel{\text{def}}{=} \lambda^{\text{exptl}} c$ 0.04HCIHCI
Nothing is ideal [cd pic;m2 grotthuss.gif]_{13/18} col07 col07 Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye–Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: cation $\lambda^{\infty}/(\text{Sm}^2 \text{ mol}^{-1})$ anion $\lambda^{\infty}/(\text{Sm}^2 \text{ mol}^{-1})$	Conductivity of weak electrolytes14/18 col07We count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty} c_{ions} = \lambda^{\infty} \alpha c \stackrel{\text{def}}{=} \lambda^{exptl} c$ 0.04 $\alpha = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ 0.03
Nothing is ideal[cd pic;mz grotthuss.gif]_{13/18} col07Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye–Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $(ation \ \lambda^{\infty}/(Sm^2 mol^{-1}))$ $H^+ \ 0.035$ $Na^+ \ 0.0050$ $(ation \ \lambda^{\infty}/(Sm^2 mol^{-1}))$	Conductivity of weak electrolytes14/18 colo7We count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty} c_{ions} = \lambda^{\infty} \alpha c \stackrel{\text{def}}{=} \lambda^{exptl} c$ 0.04 $\alpha = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ 0.04 Ostwald's dilution law: 0.04
Nothing is ideal[cd pic;m2 grotthuss.gif]_{13/18} col07Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \operatorname{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \operatorname{const}\sqrt{I_c}$ Typical values: $\boxed{\begin{array}{c} \operatorname{cation} \ \lambda^{\infty}/(\operatorname{Sm}^2 \operatorname{mol}^{-1}) \\ \operatorname{H}^+ \ 0.035 \\ \operatorname{Na}^+ \ 0.0050 \\ \operatorname{Cl}^- \ 0.012 \\ \end{array}} \xrightarrow{\begin{array}{c} \operatorname{Cl} - \ 0.016 \\ \operatorname{SO}_4^{2-} \ 0.016 \\ \end{array}}}$	Conductivity of weak electrolytes14/18 colo7We count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty} c_{ions} = \lambda^{\infty} \alpha c \stackrel{def.}{=} \lambda^{exptl} c$ $\alpha = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{c} \frac{\alpha^2}{c} = \frac{c}{c} \frac{(\lambda^{exptl})^2}{c}$
Nothing is ideal[cd pic;m2 grotthuss.gif]_{13/18} col07Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye–Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $\boxed{\begin{array}{c} \operatorname{cation} \ \lambda^{\infty}/(\operatorname{Sm}^2 \operatorname{mol}^{-1}) \\ \operatorname{H}^+ & 0.035 \\ \operatorname{Ca}^{2+} & 0.012 \\ \end{array}} \xrightarrow[] \operatorname{Cal}^{2+} & 0.016 \\ \hline \end{array}$ \bigcirc Mobility and molar conductivity decreases with the ion size (Cl is slow), solvation (small i^+ + 4 HaO is slow)	Conductivity of weak electrolytes14/18 colo7We count ions only, not unionized acid In the limiting concentration:0.04 $\kappa = \lambda^{\infty} c_{ions} = \lambda^{\infty} \alpha c \stackrel{\text{def}}{=} \lambda^{exptl} c$ 0.04 $\alpha = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ 0.04Ostwald's dilution law:0.04 $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty} (\lambda^{\infty} - \lambda^{exptl})}$ 0.04
Nothing is ideal[cd pic;m2 grotthuss.gif]_{13/18} col07Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $\boxed{\begin{array}{c} \operatorname{cation} \ \lambda^{\infty}/(\operatorname{Sm}^2 \operatorname{mol}^{-1}) \\ \operatorname{H}^+ \ 0.035 \\ \operatorname{Ca}^2 + \ 0.012 \end{array}} \xrightarrow[\operatorname{SO}_4^2 - \ 0.016 \end{array}} OH^- \ 0.020 \\ \operatorname{Ca}^2 + \ 0.012 \\ \hline \operatorname{SO}_4^2 - \ 0.016 \\ \hline \end{array} }$ \bigcirc Mobility and molar conductivity decreases with the ion size (Cl ⁻ is slow), solvation (small Li ⁺ + 4 H_2O is slow) \bigcirc H ⁺ , OH ⁻ are fast	Conductivity of weak electrolytes14/18 colo7We count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty} c_{ions} = \lambda^{\infty} \alpha c \stackrel{\text{def}}{=} \lambda^{exptl} c$ $\alpha = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty} (\lambda^{\infty} - \lambda^{exptl})}$ 0.04 <td< th=""></td<>
Nothing is ideal [cd pic;m2 grotthuss.gif]_{13/18} col07 Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye–Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $\boxed{\text{cation } \lambda^{\infty}/(\text{S m}^2 \text{ mol}^{-1})}$ $anion \lambda^{\infty}/(\text{S m}^2 \text{ mol}^{-1})$ H ⁺ 0.035 OH ⁻ 0.020 Na ⁺ 0.0050 Cl ⁻ 0.0076 Ca ²⁺ 0.012 SO ₄ ²⁻ 0.016 Mobility and molar conductivity decreases with the ion size (Cl ⁻ is slow), solvation (small Li ⁺ + 4H ₂ O is slow) movie credit: Matt K. Petersen, Wikipedia H ⁺ O ⁺ H ⁺ O ⁺ H ⁺	Conductivity of weak electrolytes We count ions only, not unionized acid In the limiting concentration: $\kappa = \lambda^{\infty} c_{\text{ions}} = \lambda^{\infty} \alpha c \stackrel{\text{def.}}{=} \lambda^{\text{exptl}} c$ $\alpha = \frac{\lambda^{\text{exptl}}}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\text{exptl}})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\text{exptl}})}$ $MaOH$ $MaOH$ $MaOH$ $MaOH$ $MaOH$ $MaOH$
Contract Content Content Contract Contract Contract Contract Contra	Conductivity of weak electrolytes We count ions only, not unionized acid In the limiting concentration: $\kappa = \lambda^{\infty} c_{\text{ions}} = \lambda^{\infty} \alpha c \stackrel{\text{def.}}{=} \lambda^{\text{exptl}} c$ $\alpha = \frac{\lambda^{\text{exptl}}}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\text{exptl}})^2}{\lambda^{\infty} (\lambda^{\infty} - \lambda^{\text{exptl}})}$ $MaOH$ M
(cd pic;m2 grotthuss.gif] Nothing is ideal (cd pic;m2 grotthuss.gif] Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $\frac{\text{cation } \lambda^{\infty}/(\text{S m}^2 \text{ mol}^{-1})}{\text{H}^+ 0.035}$ $0\text{H}^- 0.020$ $\text{Cl}^- 0.0076$ $\text{Ca}^{2+} 0.012$ $\text{SO}_4^{2-} 0.016$ Mobility and molar conductivity decreases with the ion size (Cl ⁻ is slow), solvation (small Li ⁺ + 4H ₂ O is slow) H - O + H + OH^- are fast $\frac{100}{\text{H}}$	Conductivity of weak electrolytes We count ions only, not unionized acid In the limiting concentration: $\kappa = \lambda^{\infty} c_{\text{ions}} = \lambda^{\infty} \alpha c \stackrel{\text{def}}{=} \lambda^{\text{exptl}} c$ $\alpha = \frac{\lambda^{\text{exptl}}}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\text{exptl}})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\text{exptl}})}$ $MaOH$ $\frac{0.04}{0.03}$ $\frac{0.04}{0.03}$ $\frac{0.04}{0.03}$ $\frac{0.04}{0.03}$ $\frac{0.04}{0.03}$ $\frac{0.04}{0.00}$ $\frac{0.04}{0.0$
(cd pic;m2 grotthuss.gif] Nothing is ideal (cd pic;m2 grotthuss.gif] Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $\frac{(\operatorname{ction} \ \lambda^{\infty}/(\operatorname{Sm}^2 \operatorname{mol}^{-1}))}{\operatorname{Na}^+ \ 0.0050}$ $\operatorname{Cl}^- \ 0.0076$ $\operatorname{Ca}^{2+} \ 0.012$ $\operatorname{SO4}^{2-} \ 0.016$ Mobility and molar conductivity decreases with the ion size (Cl ⁻ is slow), solvation (small Ll ⁺ + 4 H ₂ O is slow) H - Of - are fast $\operatorname{movie credit: Matt K. Petersen, Wikipedia}$ H - Of - H - H H - Of - H H - Of - H	Conductivity of weak electrolytes14/18 colo7We count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty} c_{ions} = \lambda^{\infty} \alpha c \stackrel{def}{=} \lambda^{exptl} c$ $\alpha = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $(\lambda^{exptl})^2$ 0.04 </th
Nothing is ideal[cd pic;m2 grotthuss.gif]_{13/18} col07Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ λ_i^{∞} Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $\boxed{(ation \ \lambda^{\infty}/(S m^2 mol^{-1}))}$ $at = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $\boxed{(ation \ \lambda^{\infty}/(S m^2 mol^{-1}))}$ $at = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $\boxed{(ation \ \lambda^{\infty}/(S m^2 mol^{-1}))}$ $Bt = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $\boxed{(ation \ \lambda^{\infty}/(S m^2 mol^{-1}))}$ $Bt = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ $Bt = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ $Bt = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ $Bt = \lambda(c) = \lambda^{\infty}/(S m^2 mol^{-1})$ $Bt = $	Conductivity of weak electrolytes14/18 colo7We count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty}c_{ions} = \lambda^{\infty}\alpha c \stackrel{\text{def}}{=} \lambda \exp t c$ $\alpha = \frac{\lambda}{2} \exp t \frac{1}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\exp t l})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t l})}$ $\left(\lambda^{\exp t l}\right)^2$
Nothing is ideal[cd pic;m2 grotthuss.gif]_{13/18} col07Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \operatorname{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \operatorname{const}\sqrt{I_c}$ Typical values: $\boxed{\operatorname{cation} \ \lambda^{\infty}/(\operatorname{Sm}^2 \operatorname{mol}^{-1}) \ H^+ \ 0.035 \ Cl^- \ 0.0076 \ Ca^{2+} \ 0.012 \ SO_4^{2-} \ 0.016 \ Cl^- \ 0.0076 \ Ca^{2+} \ 0.012 \ SO_4^{2-} \ 0.016 \ Cl^- \ 1 \ H^+ \ H^+ \ Dl^- \ Slow)$ Nothing is slow), solvation (small Li ⁺ + 4 H ₂ O is slow)H+, OH^- are fast H \ H^+, OH^- are fast H \ H^- \	Conductivity of weak electrolytes14/18 colo7We count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty} c_{ions} = \lambda^{\infty} \alpha c \stackrel{def.}{=} \lambda^{exptl} c$ $\alpha = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ Image: Colspan="2">Image: Colspan="2" Image: C
Nothing is ideal[cd pic;m2 grotthuss.gif]_{13/18} col07Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ λ_i^{∞} Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \operatorname{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \operatorname{const}\sqrt{I_c}$ Typical values: $\boxed{\operatorname{cation} \ \lambda^{\infty}/(\operatorname{Sm}^2 \operatorname{mol}^{-1}) \ H^+ \ 0.035 \ Cl^- \ 0.0076 \ Ca^{2+} \ 0.012 \ SO_4^{2-} \ 0.016 \ Cl^- \ 0.0076 \ Ca^{2+} \ 0.012 \ SO_4^{2-} \ 0.016 \ Cl^- \ is slow), solvation (small Li^+ + 4 H_2O is slow)\blacksquare H+, OH- are fastH H\operatorname{movie credit: Matt K. Petersen, Wikipedia \ H^+, OH^- \operatorname{are fast} \ movie credit: Matt K. Petersen, Wikipedia \ H^+, OH^- \operatorname{are fast} \ movie credit: Matt K. Petersen, Wikipedia \ H^+, OH^- \operatorname{are fast} \ movie credit: Matt K. Petersen, Wikipedia \ H^+, OH^- \operatorname{are fast} \ movie credit: Matt K. Petersen, Wikipedia \ Color \ Linstein (Nernst-Einstein) equation:D_i = \frac{k_BT}{f_i} = \frac{k_BT}{\mathcal{F}_i/\mathcal{V}_i} = \frac{k_BT}{z_i (e\mathcal{U}(u_i\mathcal{E})} = \frac{k_BT}{z_i (e/u_i} = \frac{RTu_i}{z_i F} \ u_i = \frac{z_i^2 F^2}{R_T} D_iu_i = \frac{z_i^2 F^2}{k_BT} D_i$	Conductivity of weak electrolytes14/18 colo7We count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty} c_{ions} = \lambda^{\infty} ac \stackrel{\text{def}}{=} \lambda \exp t c$ $a = \frac{\lambda \exp t t}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{c^{\text{st}}} \frac{a^2}{1-a} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\exp t t})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $NaOH$ $V = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\exp t t})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $\kappa = \frac{c}{c^{\text{st}}} \frac{a^2}{1-a} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\exp t t})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $V = \frac{V}{c^{\text{st}}} \frac{a^{NO_3}}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $\frac{V}{c^{\text{st}}} \frac{a^{NO_3}}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $\frac{V}{c^{\text{st}}} \frac{a^{NO_3}}{1-a} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\exp t t})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $\frac{V}{c^{\text{st}}} \frac{a^{NO_3}}{1-a} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\exp t t})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $\frac{V}{c^{\text{st}}} \frac{a^{NO_3}}{1-a} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\exp t t})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $\frac{V}{c^{\text{st}}} \frac{a^{NO_3}}{1-a} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\exp t t})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $\frac{V}{c^{\text{st}}} \frac{a^{NO_3}}{1-a} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\exp t t})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $\frac{V}{c^{\text{st}}} \frac{a^{NO_3}}{1-a} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\exp t t})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $\frac{V}{c^{\text{st}}} \frac{a^{NO_3}}{1-a} = \frac{c}{c^{\text{st}}} \frac{(\lambda^{\exp t t})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\exp t t})}$ $\frac{V}{c^{\text{st}}} \frac{a^{NO_3}}{1-a} = \frac{c}{c^{\text{st}}} \frac{1}{c^{\text{st}}} \frac{a^{NO_3}}{1-a} = \frac{c}{c^{\text{st}}} \frac{1}{c^{\text{st}}} \frac{a^{NO_3}}{1-a} = \frac{c}{c^{\text{st}}} \frac{1}{c^{\text{st}}} \frac{a^{NO_3}}{1-a} = \frac{c}{c^{\text{st}}} \frac{1}{c^{\text{st}}} \frac$
Nothing is ideal[cd pic;m2 grotthuss.gif] (c007Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \operatorname{const} \sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \operatorname{const} \sqrt{I_c}$ Typical values: $\boxed{\operatorname{cation} \ \lambda^{\infty}/(\operatorname{Sm}^2 \operatorname{mol}^{-1}) \ \operatorname{anion} \ $	Conductivity of weak electrolytes14/18 colorWe count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty}c_{ions} = \lambda^{\infty}ac \stackrel{\text{def}}{=} \lambda^{exptl}c$ $a = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ 0.04 Ostwald's dilution law: $\kappa = c \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^{2}}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})^2}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})^2}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{\infty} - \lambda^{exptl})^2}$ $V = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\sqrt{\alpha}(\lambda^{exptl}$
Nothing is ideal[cd pic;m2 grotthuss.gif] 13/18 col07Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \operatorname{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \operatorname{const}\sqrt{I_c}$ Typical values: $\boxed{\operatorname{cation} \ \lambda^{\infty}/(\operatorname{Sm}^2 \operatorname{mol}^{-1}) \ \operatorname{H}^+ \ 0.035 \ \operatorname{Cl}^- \ 0.020 \ \operatorname{Cl}^- \ 0.0076 \ \operatorname{So}_{2^2}^- \ 0.016}$ \bigcirc Mobility and molar conductivity decreases with the ion size (Cl ⁻ is slow), solvation (small Li ⁺ + 4H ₂ O is slow) \bigcirc H ⁺ , OH ⁻ are fast H $\longrightarrow H$ $\square \bigoplus_{i=1}^{\infty} H \bigoplus_{i=1}^{\infty} H \bigoplus_{i=1}^{\infty} H \bigoplus_{i=1}^{\infty} H \bigoplus_{i=1}^{\infty} H \bigoplus_{i=1}^{15/18} Conductivity and the diffusion coefficient15/18 condD_i = \frac{k_B T}{f_i} = \frac{k_B T}{F_i/v_i} = \frac{k_B T}{z_i e \mathcal{E}/(u_i \mathcal{E})} = \frac{k_B T}{z_i e \mathcal{E}/(u_i} = \frac{RT u_i}{z_i F}\underset{i=15/18}{\operatorname{microscopically:}}u_i = Z_i F D_iu_i = \lambda_i = u_i z_i F = \frac{z_i^2 F^2}{RT} D_i\underset{i=15/18}{I_i = -D_i \overline{v}c_i = -c_i \frac{D_i}{D_i T}}$	Conductivity of weak electrolytes14/18 colorWe count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty} c_{ions} = \lambda^{\infty} ac \frac{def}{2} \lambda^{exptl} c$ $a = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ 0.04 Ostwald's dilution law: $\kappa = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^2}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^{st}}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^{st}}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^{st}}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^{st}}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^{st}}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^{st}}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^{st}}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^{st}}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 $V = \frac{c}{c^{st}} \frac{a^{st}}{1-a} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $V = \frac{c}{c^{st}} \frac{a^{st}}{1-a}$ $V = \frac{c}{c} \frac{c}{1} \frac{1}{1-a} = \frac{c}{c^{st}} \frac{1}{1-a} = \frac{c}{c^{st}} \frac{1}{1-a} = \frac$
Nothing is ideal[cd pic,mz grotthuss.gif]_{13/18} col07Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ λ_i^{∞} Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $\boxed{(ation \ \lambda^{\infty}/(Sm^2 mol^{-1})) \ anion \ \lambda^{\infty}/(Sm^2 mol^{-1})} \ H^+ \ 0.035 \ OH^- \ 0.020 \ Cl^- \ 0.0076 \ Ca^2 + \ 0.012 \ SO4^{2-} \ 0.016 \ OH^- \ 0.020 \ Cl^- \ 0.0076 \ Ca^2 + \ 0.012 \ SO4^{2-} \ 0.016 \ OH^- \ 0.020 \ Cl^- \ 15/18 \ Conductivity and molar conductivity decreases with the ion size (Cl^- is slow), solvation (small Li^+ + 4 H_2O is slow)\blacksquare H \rightarrow H \rightarrow$	Conductivity of weak electrolytes14/18 colorWe count ions only, not unionized acid In the limiting concentration: $\kappa = \lambda^{\infty} c_{ions} = \lambda^{\infty} \alpha c \stackrel{def.}{=} \lambda^{exptl} c$ $\alpha = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $\kappa = \frac{c}{c^{st}} \frac{\alpha^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ Transference numbersTransference number (transport number) of an ion is the fraction of the total current that is carried by that ion during migration (electrolysis). $t_{\Theta} = \frac{I_{\Theta}}{I} = \frac{I_{\Theta}}{I_{\Theta} + I_{\Theta}}$ $\kappa = \frac{v}{v_{\Theta}c_{\Theta}}$ $\kappa = \frac{v}{v_{\Theta}c_{\Theta}} = \frac{v_{\Theta}}{v_{\Theta}} = \frac{v_{\Theta}}{v_{\Theta} + v_{\Theta}} = \frac{z}{c_{\Theta}D_{\Theta}} = \frac{v_{\Theta}\lambda_{\Theta}}{v_{\Theta}\lambda_{\Theta} + v_{\Theta}\lambda_{\Theta}}$ $t_{\Theta} = \frac{v_{\Theta}c_{\Theta}z_{\Theta}}{v_{\Theta}c_{\Theta}z_{\Theta}} = \frac{v_{\Theta}}{v_{\Theta}} = \frac{u_{\Theta}}{u_{$
Nothing is ideal $\begin{bmatrix} (d \ pic;mz \ grotthuss,gif]_{13/18} \\ colo7 \end{bmatrix}$ Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \text{const}\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \text{const}\sqrt{I_c}$ Typical values: $\begin{bmatrix} cation \ \lambda^{\infty}/(Sm^2 \text{mol}^{-1}) & anion \ \lambda^{\infty}/(Sm^2 \text{mol}^{-1}) \\ H^+ & 0.035 & OH^- & 0.020 \\ CI^- & 0.0076 \\ Ca^{2+} & 0.012 & SO_4^{2-} & 0.016 \end{bmatrix}$ Mobility and molar conductivity decreases with the ion size (CI ⁻ is slow), solvation (small Li ⁺ + 4H ₂ O is slow) $H^+, OH^- \text{ are fast}$ $H \longrightarrow O^+ H^+ \\ H \longrightarrow H^- H^+ \\ H \longrightarrow H^- H^- H^- H^- \\ H \longrightarrow H^+ \\ Conductivity and the diffusion coefficient \\ D_i = \frac{k_BT}{f_i} = \frac{k_BT}{F_i/v_i} = \frac{k_BT}{z_ie^{E/L_i}} = \frac{k_BT}{z_ie^{E/L_i}} = \frac{RTu_i}{z_iF} \\ z_iFD_i = RTu_i \Rightarrow \lambda_i = u_i z_i F = \frac{z_i^2 F^2}{R_T}D_i$ $d \ diffusion: caused by a gradient of concentration/chemical potential J_i = -c_i \frac{z_iFD_i}{R_T} \overline{v} \mu_i = -c_i u_i \overline{v} \mu_i$	14/18 colorConductivity of weak electrolytes14/18 colorWe count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty} c_{ions} = \lambda^{\infty} \alpha c \stackrel{def.}{def.} \lambda^{exptl} c$ $\alpha = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{cst} \frac{a^2}{1-\alpha} = \frac{c}{cst} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $\frac{10}{2} \frac{1}{cst} \frac{a^2}{1-\alpha} = \frac{c}{cst} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ $\frac{10}{2} \frac{1}{cst} \frac{a^2}{1-\alpha} = \frac{c}{cst} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ Transference numbersTransference number (transport number) of an ion is the fraction of the total current that is carried by that ion during migration (electrolysis). $t_0 = \frac{10}{1} = \frac{10}{l_0 + l_0}$ $v = velocity$ $v = stechiom.coeff.$ Ions move at different speeds under the same field. For $K_{V_0}^{2p} A_{V_0}^{2p}$ (electroneutrality: $z_0 c_0 = z_0 c_0;$ here $z_0 > 0$) $t_0 = \frac{v_0 c_0 z_0}{v_0 c_0 z_0 + v_0 c_0 z_0} = \frac{v_0}{v_0 + v_0 + v_0} = \frac{u_0}{u_0}$ $v_1 = u_1 c_0$
Nothing is ideal[cd pic;m2 grotthuss.gif]13/18 colo7Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_l^{\infty} = \lim_{c \to 0} \lambda_l$ $\lambda_l^{\infty} = \lim_{c \to 0} \lambda_l$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - \operatorname{const} \sqrt{c}$ nebo $\lambda = \lambda^{\infty} - \operatorname{const} \sqrt{L}_c$ Typical values: $\boxed{\operatorname{cation} \ \lambda^{\infty}/(S \mathrm{m}^2 \mathrm{mol}^{-1})}$ $H^+ 0.0050$ $Ca^2 + 0.012$ OHT 0.020 $Ca^2 + 0.012$ $OHT 0.020$ $SO4^2 - 0.016$ Mobility and molar conductivity decreases with the ion size (CIT is slow), solvation (small Lit + 4 H_2O is slow)H+, OHT are fastmovie credit: Matt K. Petersen, WikipediaH $\rightarrow f_1$ $H \rightarrow f_1$ Di $= \frac{k_BT}{f_1} = \frac{k_BT}{F_1/v_i} = \frac{k_BT}{z_i e^{E/}(u_i \mathcal{E})} = \frac{k_BT}{z_i e^{E/}(u_i \mathcal{E})} = \frac{RT u_i}{z_i \mathcal{E}}$ $u_i = \frac{Z_i \mathcal{E}}{Z_i D_i}$ Conductivity and the diffusion coefficient $D_i = \frac{k_BT}{f_1} = \frac{k_BT}{F_1/v_i} = \frac{k_BT}{z_i e^{E/}(u_i \mathcal{E})} = \frac{k_BT}{z_i e^{E/} u_i} = \frac{RT u_i}{z_i F}$ $u_i = \frac{Z_i \mathcal{E}}{Z_i D_i}$ e diffusion: caused by a gradient of concentration/chemical potential $J_i = -D_i \overline{v} c_i = -C_i \frac{D_i}{RT} \overline{v} \mu_i$ $J_i = -C_i \frac{Z_i \mathcal{E} D_i}{RT}$ e migration: caused by el. field $J_i = -C_i \lambda_i \overline{v} \phi = -C_i \lambda_i \overline{v} \phi = -C_i u_i z_i \mathcal{F} \phi$	Conductivity of weak electrolytes14/18 colorWe count ions only, not unionized acid In the limiting concentration: $\kappa = \lambda^{\infty}c_{ions} = \lambda^{\infty}\alpha c^{def} \cdot \lambda^{exptl} c$ $\alpha = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ 0.04 Ostwald's dilution law: $\kappa = \frac{c}{c^{st}} \frac{a^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 We count ions only, not unionized acid $\alpha = \frac{\lambda^{exptl}}{\lambda^{\infty}}$ 0.04 Ostwald's dilution law: $\kappa = \frac{c}{c^{st}} \frac{a^2}{1-\alpha} = \frac{c}{c^{st}} \frac{(\lambda^{exptl})^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{exptl})}$ 0.04 We count ions of the total count of the t
Nothing is ideal[cd pic.mz grotthus.glf]_{13/18} colorLimiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - const\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - const\sqrt{I_c}$ Typical values: $\boxed{cation \ \lambda^{\infty}/(Sm^2 mol^{-1}) \ Na^+ \ 0.035 \ OH^- \ 0.020 \ Cl^- \ 0.0076 \ Ca^{2+} \ 0.012 \ SO4^{2-} \ 0.016 \ Cl^- \ 0.0076 \ Ca^{2+} \ 0.012 \ SO4^{2-} \ 0.016 \ Cl^- \ 0.0076 \ Ca^{2+} \ 0.012 \ SO4^{2-} \ 0.016 \ Cl^- \ D.0076 \ Ca^{2+} \ 0.012 \ So4^{2-} \ 0.016 \ Cl^- \ D.0076 \ Ca^{2+} \ 0.012 \ So4^{2-} \ 0.016 \ Cl^- \ D.0076 \ Cl^- \ H \ D.0076 \ Cl^- \ H \ D.0076 \ Cl^- \ D.007$	14/18 colorConductivity of weak electrolytes14/18 colorWe count ions only, not unionized acidIn the limiting concentration: $\kappa = \lambda^{\infty} \alpha c^{\text{def}} \lambda^{\text{exptl}} c$ $\alpha = \frac{\lambda^{\text{exptl}}}{\lambda^{\infty}}$ Ostwald's dilution law: $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\text{exptl}})^2}$ $NaOH$ $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\text{exptl}})^2}$ $NaOH$ $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\text{exptl}})^2}$ $NaOH$ $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\text{exptl}})^2}$ $nao(d)$ $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\text{exptl}})^2}$ $nao(d)$ $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\text{exptl}})^2}$ $nao(d)$ (d) $\kappa = \frac{c}{c^{\text{st}}} \frac{\alpha^2}{\lambda^{\infty}(\lambda^{\infty} - \lambda^{\text{exptl}})}$ $nao(d)$ (d)
Nothing is ideal[cd pic:m2 grotthus.glf]_{13/18} colo7Limiting molar conductivity = molar conductivity at infinite dilution $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ $\lambda_i^{\infty} = \lim_{c \to 0} \lambda_i$ Departure from the limiting linear behavior (cf. Debye-Hückel theory): $\lambda = \lambda(c) = \lambda^{\infty} - const\sqrt{c}$ nebo $\lambda = \lambda^{\infty} - const\sqrt{L_c}$ Typical values: $\boxed{cation \ \lambda^{\infty}/(Sm^2 mol^{-1})]}$ $anion \ \lambda^{\infty}/(Sm^2 mol^{-1})$ $anion \ \lambda^{\infty}/(Sm^2 mol^{-1})$ H^+ 0.035 $OH^ 0.020$ Na^+ 0.0050 $CI^ 0.0076$ Ca^{2+} 0.012 SO_4^{2-} 0.016 Na^+ 0.0050 $CI^ 0.0076$ Ca^{2+} 0.012 SO_4^{2-} 0.016 \bullet Mobility and molar conductivity decreases with the ion size (CI ⁻ is slow), solvation (small Li ⁺ + 4H_2O is slow) H^+ H^+ $H^ H^ H^ H^ H^+$ $H^ H^ H^+$ H^+ $H^ H^ H^+$ $H^ H^ H^-$ <t< th=""><th>Conductivity of weak electrolytes14/18 colorWe count ions only, not unionized acid In the limiting concentration:Image: Second Sec</th></t<>	Conductivity of weak electrolytes14/18 colorWe count ions only, not unionized acid In the limiting concentration:Image: Second Sec

