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Transport (kinetic) phenomena:
diffusion, electric conductivity, viscosity, heat conduction . . .

Flux of mass, charge, momentum, heat, . . . . . .
~J = amount (of quantity) transported per unit area (perpendicular
to the vector of flux) within time unit
Units: energy/heat flux: J m−2 s−1 = W m−2,

current density: A m−2

Cause = (generalized, thermodynamic) force
~F = − gradient of a potential
(chemical potential/concentration, electric potential, tempera-
ture)

Small forces—linearity

~J = const · ~F
In gases we use the kinetic theory: molecules (simplest: hard spheres) fly through
space and sometimes collide

Diffusion—macroscopic view
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First Fick Law: Flux ~J of compound  (units: mol m−2 s−1)
For mass
concentration
in kg m−3,
the flux is in
kg m−2 s−1

~J = −D~∇c
is proportional to the concentration gradient
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D = diffusion coefficient (diffusivity) of molecules , unit: m2 s−1

Example. A U-shaped pipe of lenght  = 20 cm and cross section
A = 0.3 cm2. One end is in Coca-Cola (11 wt.% of sugar), other
end in pure water. How much sugar is transported by diffusion in
one day? Dsucrose(25 ◦C) = 5.2×10−6 cm2 s−1. 0.74mg

110gsucrosein1L:c=110gdm−3=110kgm−3
gradc=c/=550kgm−4
D=5.2×10−6cm2s−1=5.2×10−10m2s−1
J=Dgradc=2.56×10−7kgm−2s−1
m=JAt=2.56×10−7kgm−2s−1×0.3×10−4m2×24×602s=7.4×10−7kg

Diffusion—microscopic view
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Flux is given by the mean velocity of molecules ~:

~J = ~c
Thermodynamic force = −grad
of the chemical potential:

Difference of chemical poten-
tials = reversible work needed
to move a particle (mole) from
one state to another~F = − ~∇

�
μ
NA

�
= −kBT

c
~∇c

where formula μ = μ
e
 + RT ln(c/c

st) for infinity dillution was used.

Friction force acting against molecule moving by velocity ~ through a medium is:

~F fr
 = −ƒ ~

where ƒ is the friction coeficient. Both forces are in equilibrium:

~F fr
 + F = 0 i.e. − ~F fr

 = ƒ ~ = ƒ
~J
c
= F = −

kBT

c
~∇c

On comparing with ~J = −D~∇c we get the Einstein equation: D =
kBT

ƒ
(also Einstein–Smoluchowski equation)

Einstein–Stokes equation
[blend -g che/sucrose] 4/18
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Colloid particles or large spherical molecules of radius R in a solvent of viscosity η
it holds (Stokes formula)

↙
ƒ

~F = 6πηR ~
⇒ Einstein–Stokes equation:

Arrhenius law for vis-
cosity (decreases with
increasing T), diffusiv-
ity (increases with in-
creasing TD =

kBT

ƒ
⇒ D =

kBT

6πηR

Opposite reasoning—hydrodynamic (Stokes) radius defined as:

R =
kBT

6πηD
≈ effective molecule size (incl. solvation shell)

Example. Estimate the size of the sucrose molecule. Wa-
ter viscosity is 0.891×10−3 m−1 kg s−1 at 25 ◦C.

R=0.47nm

Second Fick Law
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Non-stationary phenomenon (c changes with time).
The amount of substance increases within
time dτ in volume dV = ddydz:

This type of equation is called
“equation of heat conduction”.
It is a parrabolic partial differ-
ential equation

∑
,y,z

[ J() − J( + d)] dydz

=
∑
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[ J() − {J() +
∂J

∂
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= −
∑
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∂J
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ddydz = − ~∇ · ~JdV = − ~∇ · (−D~∇c)dV

= D~∇2cdV = D

 
∂2

∂2
+

∂2

∂y2
+

∂2

∂z2

!
cdV

∂c
∂τ
= D∇2c

Second Fick Law
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Example. Coca-Cola in a cylinder (height 10 cm) + pure water (10 cm). What time
is needed until the surface concentration = half of bottom concentration? 4months

Fourier method:
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Diffusion and the Brownian motion
[traj/brown.sh] 7/18

co07

Instead of for c(~r, τ), let us solve the 2nd Fick
law for the probability of finding a particle, start-
ing from origin at τ = 0. We get the Gaussian
distribution with half-width ∝

1D: c(, τ) = (4πDτ)−1/2 exp
 
− 2

4Dτ

!

3D: c(~r, τ) = (4πDτ)−3/2 exp
 
− r2

4Dτ

!
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1D: 〈2〉 = 2Dτ

Last example – order-of-magnintude
τ ≈ 2/2D =4 months
(for  = 0.1m)

3D: 〈r2〉 = 6Dτ 0
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Brownian motion as a random walk
[show/galton.sh]
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(Smoluchowski, Einstein)

within time Δτ, a particle moves randomly
– by Δ with probability 1/2
– by −Δ with probability 1/2

Using the central limit theorem:

in one step: Var = 〈2〉 = Δ2
in n steps (in time τ = nΔτ): Var = nΔ2

⇒ Gaussian normal distribution with σ =
p
nΔ2 =

p
τ/ΔτΔ:

1
p
2πσ

e−2/2σ2 =
1

p
2πτ

p
Δτ

Δ
exp


−−

2

2τ

Δτ

Δ2




which is for 2D = Δ2/Δτ the same as c(, τ)

NB: Var
def.
= 〈( − 〈〉)2〉, for 〈〉 = 0, then Var = 〈2〉

Example. Calculate Var, where  is a random number from interval (−1,1) 1/6



Electric conductivity
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Ohm Law (here: U = voltage, U = ϕ2 − ϕ1):

R =
U


 =

1

R
U 1/R = conductivity, [1/R] = 1/Ω = S = Siemens

(Specific) conductivity (conductance) κ is 1/resistance of a unit cube

1

R
= κ

A


A = area,  = layer thickness, [κ] = S m−1

Vector notation: ~j = κ ~E = −κ~∇ϕ
~j = el. current density, j = /A, ~E = el. field intensity, E = U/

Electric conductivity
10/18
co07

substance κ/(S m−1)
graphene 1×108
silver 63×106
sea water 5

Ge 2.2

tap water 0.005 to 0.05

Si 1.6×10−3
distilled water (contains CO2) 7.5×10−5
deionized water 5.5×10−6
glass 1×10−15–1×10−11
teflon 1×10−25–1×10−23

Molar conductivity
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Strong electrolytes: conductivity proportional to concentration.

Molar conductivity λ:

λ =
κ

c

Units: [κ] = S m−1, [λ] = S m2mol−1.

Watch units—best convert c to mol m−3!

Example. Conductivity of a 0.1 M solution of HCl o is 4 S m−1. Calculate the molar
conductivity. 0.04Sm2mol−1

Mobility and molar conductivity
12/18
co07

Mobility of an ion = averaged velocity in a unit electric field:

 =

E

E = U/ = el. intensity, U = voltage

Charges ze of velocity  and concentration c cause the current density

↙
“κ”

j = czF = EczF
!
= λcE ⇒ λ = zF =molar conductivity of ion 

Ions (in dilute solutions) migrate independently (Kohlrausch law), for electrolyte
Cz⊕+ννν⊕ AzA−

ννν	 : here we define zA > 0

j = jA + jC = (λAcA + λCcC)E = (λAνννA + λCνννC)cE
Mathematically

λ =
κ

c
=
∑



νννλ

Nothing is ideal
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Limiting molar conductivity = molar conductivity at infinite dilution

λ∞ = limc→0
λ

Departure from the limiting linear behavior (cf. Debye–Hückel theory):

λ = λ(c) = λ∞ − const
p
c nebo λ = λ∞ − const

Æ
c

Typical values:

cation λ∞/(S m2mol−1) anion λ∞/(S m2mol−1)
H+ 0.035 OH− 0.020

Na+ 0.0050 Cl− 0.0076

Ca2+ 0.012 SO42− 0.016

Mobility and molar conductivity decreases with the ion size (Cl− is slow), solva-
tion (small Li+ + 4 H2O is slow)

H+, OH− are fast movie credit: Matt K. Petersen, Wikipedia

→

Conductivity of weak electrolytes
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We count ions only, not unionized acid

In the limiting concentration:

κ = λ∞cions = λ∞αc
def.
= λexptlc

α =
λexptl

λ∞

Ostwald’s dilution law:

K =
c

cst

α2

1 − α =
c

cst

(λexptl)2

λ∞(λ∞ − λexptl)
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Conductivity and the diffusion coefficient
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Einstein (Nernst–Einstein) equation: microscopically:

 =
ze

kBT
D

here z is with sign
D =

kBT

ƒ
=

kBT

F/
=

kBT

zeE /(E)
=

kBT

ze/
=
RT
zF

zFD = RT ⇒ λ = zF =
z2 F

2

RT
D

diffusion: caused by a gradient of concentration/chemical potential

~J = −D~∇c = −c
D
RT
~∇μ

~j = −c
zFD
RT

~∇μ = −c~∇μ

migration: caused by el. field

~j = −κ~∇ϕ = −cλ~∇ϕ = −czF~∇ϕ
Let us define the electrochemical potential μ̃ = μ + zFϕ, then

~j = −c~∇μ̃ = −c
DzF

RT
~∇μ̃ = −c

λ
zF
~∇μ̃

Transference numbers
[pic/nernstovavrstva.sh]16/18
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Transference number (transport number) of an ion is the fraction of the total
current that is carried by that ion during migration (electrolysis).

t	 =
	

=

	
	 + ⊕

 = velocity
ννν = stechiom. coeff.

Ions move at different speeds under the same field. For Kz⊕+ννν⊕ Az	−ννν	 (electroneutrality:
z	c	 = z⊕c⊕; here z	 > 0)

t	 =
	c	z	

	c	z	 + ⊕c⊕z⊕
=

	
	 + ⊕

=
	

	 + ⊕
=

z	D	
z	D	 + z⊕D⊕

=
ννν	λ	

ννν	λ	 + ννν⊕λ⊕

Properties: t	 + t⊕ = 1,
t	
t⊕
=
	
⊕

 = E,  =
ze

kBT
D, λ = zF

Example. Electrolysis of CuSO4: tCu2+ = 40%, tSO4
2− = 60%.

cathode

	
Cu

������������

Nernst layer

total←− Cu2+
100%←−

diffusion←− Cu2+
60%←−

diffusion←− SO42−
60%−→

������������

· · ·

������������

bulk

migration←− Cu2+
40%←−

migration−→ SO42−
60%←−



Examples
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Example. Calculate the specific conductivity of a uni-univalent electrolyte MA of
concentration 0.01mol dm−3, assuming that both M and A are of the same size as
the sucrose molecule (D = 5.2×10−6 cm2 s−1 at 25 ◦C)?

κ=0.04Sm−1(λ±=0.002Sm−2mol−1)

Note: 0.01 M � of KCl has κ = 0.14S m−1 > 0.04S m−1, because the ions are smaller
than sucrose

Example. Calculate the migration speeds of ions M+, A− between electrodes 1 cm
apart with applied voltage 2 V.

M+=−A−=4×10−6ms−1=15mmh−1

 = E  =
ze

kBT
D λ = zF

Conductivity measurements
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Usage: determination of ion concentrations (usually small)
⇒ solubility, dissociation constants, conductometric titration. . .

Resistance constant of conductance cell (probe) C (dimension = m−1):

1

R
= κ · A


⇒ Rκ =



A
= C

C determined from a solution of known conductivity (e.g., KCl), C = R�κ�.


