# **Electrochemistry: Elektrolytic and galvanic cell**

Galvanic series (Beketov, cca 1860):

$$\Theta$$
 Li, Ca, Al, Mn, Cr  $\approx$  Zn, Cd  $\approx$  Fe, Pb, [H<sub>2</sub>], Cu, Ag, Au  $\oplus$ 

Cell = system composed of two electrodes and an electrolyte.

- electrolytic cell: electric energy → chemical reaction
- galvanic cell: chemical reaction → electric energy
- reversible galvanic cell (zero current)

#### Electrodes

- anode = electrode where oxidation occurs  $Cu \rightarrow Cu^{2+} + 2e^{-}$ 
  - $2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-$
- cathode = electrode where reduction occurs  $Cu^{2+} + 2e^{-} \rightarrow Cu$





Oxidation and reduction are separated in a cell. The charge flows through the circuit.

## Galvanic cells: electrodes, convention

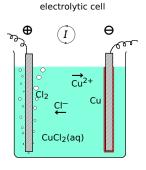
Electrodes(= half-cells) may be separated by a porous separator, polymeric membrane, salt bridge.

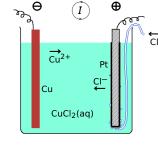
- Cathode 

  is right (reduction)
- Anode \(\Theta\) is left (oxidation)

  - Θ negative electrode (anode)
  - | phase boundary
- ⊕ positive electrode (cathode)
- liquid junction
- (porous separator) :: semipermeable membrane
- salt bridge

# **Examples:**


- $\Theta$  Cu(s) | CuCl<sub>2</sub>( $c = 0.1 \text{ mol dm}^{-3}$ ) | Cl<sub>2</sub>(p = 95 kPa) | Pt  $\Theta$
- $\Theta$  Ag(s) | AgCl(s) | NaCl( $\underline{m}$  = 4 mol kg<sup>-1</sup>) | Na(Hg)


$$| \text{NaCl}(\underline{m} = 0.1 \text{ mol kg}^{-1}) | \text{AgCl(s)} | \text{Ag(s)} \oplus$$

$$\Theta \ \ Pt \ | \ \ Sn^{2+}(0.1 \, mol \, dm^{-3}) \ + \ \ Sn^{4+}(0.01 \, mol \, dm^{-3}) \ || \ \ Fe^{3+}(0.2 \, mol \, dm^{-3}) \ | \ \ Fe \ \ \Theta$$

#### **Anode and cathode**

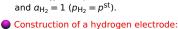
galvanic cell





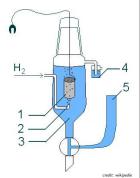
anode cathode

"anions go to the anode"


anode cathode

# **Equilibrium cell potential**

- Also: electromotive potential/voltage, electromotive force (EMF).
- Should be measured at zero-current condition (balanced bridge, sensitive voltmeter)
- Cannot measure a potential of one electrode ⇒ zero defined by the standard hydrogen electrode:


$$2 H^{+}(aq) + 2 e^{-} \rightarrow H_{2}(g)$$

where  $a_{H^+} = 1$  (pH=0)



Pt sheet covered by platinum black, saturated by

 $\bigcirc$  symbols: E,  $\mathcal{E}$ ,  $\Delta \phi$ ; in physics: U



# **Cell potential II**

Electrode potential of electrode X = voltage of cell

$$\Theta \ H_2(a=1) \ | \ H^+(a=1) \ | \ X \ \Theta$$

NB: always the reduction potential

Standard (reduction) potential of an electrode: all reacting compounds have unit activities

**Examples:** 
$$E_{\text{Cu}+^{2+}|\text{Cu}}^{\circ} = 0.337 \,\text{V}, E_{\text{Cl}_2|_2\text{Cl}^-}^{\circ} = 1.360 \,\text{V} \text{ (at } 25 \,^{\circ}\text{C)}$$

If the reaction are written in the way the cell produces energy:

reaction = (reduction at cathode) + (oxidation at anode)

$$E = E_{\text{cathode}}^{\text{red}} + E_{\text{anode}}^{\text{ox}}$$

If all reactions are written as a reduction:

reaction = (reduction at cathode) - (reduction at anode)

$$E = E_{\text{cathode}}^{\text{red}} - E_{\text{anode}}^{\text{red}}$$

# Termodynamics of a reversible cell

Reversibility = reactions can be reversed by a small voltage change. No irreversible processes (metal dissolution, diffusion, liquid junction...)

$$\Delta_r G_m = W_{el} = -qE = -zFE$$
 [p, T]

⇒ Nernst equation:

$$E = E^{\circ} - \frac{RT}{zF} \ln \prod_{i} \alpha_{i}^{\nu_{i}}$$

where  $\Delta_r G_m^{\circ} = -zFE^{\circ}$ ,  $K = \exp[-\Delta_r G_m^{\circ}/RT] = \exp[zFE^{\circ}/RT]$ 

$$E^{\circ} = E^{\circ, \text{red}}_{\text{cathode}} + E^{\circ, \text{ox}}_{\text{anode}} = E^{\circ, \text{red}}_{\text{cathode}} - E^{\circ, \text{red}}_{\text{anode}}$$

- $igoplus \Delta_r G < 0$  i.e.  $E > 0 \Rightarrow$  the cell produces current E = 0 i.e.  $\Delta_r G = 0$  = uncharged cell (equilibrium) distiguish from: equilibrium potential (at zero current)
- $igoplus E_{\text{Cu}^{2+}|\text{Cu}}^{\circ} = -E_{\text{Cu}|\text{Cu}^{2+}}^{\circ}$  (oxidation) but  $E_{\text{Cl}_2|2\text{Cl}^-}^{\circ} = E_{\frac{1}{2}\text{Cl}_2|\text{Cl}^-}^{\circ}$
- $\bigcirc$  hydrogen electrode right at 25 °C:  $E = E_0 pH \cdot 0.05916 V$

## Termodynamics of a reversible cell II

+ 7/26 col08

- igoplus only electric work  $W_{
  m el}$
- reversible [p, T]

$$\Delta_{r}S_{m} = -\left(\frac{\partial \Delta_{r}G_{m}}{\partial T}\right)_{p} = zF\left(\frac{\partial E}{\partial T}\right)_{p}$$

$$\Delta_{r}H_{m} = -T^{2} \left( \frac{\partial (\Delta_{r}G_{m}/T)}{\partial T} \right)_{p} = zFT^{2} \left( \frac{\partial (E/T)}{\partial T} \right)_{p}$$

 $Q_{\rm m} = T\Delta_{\rm r}S_{\rm m}$  (II. Law for reversible processes)

Oops!

$$\Delta_{r}U = Q + W = Q - p\Delta_{r}V + W_{el}$$

$$\Delta_{r}H = \Delta_{r}U + \Delta_{r}(pV) \stackrel{[P]}{=} \Delta_{r}U + p\Delta_{r}V = Q + W_{el}$$

Eq.  $Q = \Delta_r H$  holds true only if the only work is pressure-volume

And similarly for standard state ( $p = p^{st}$ , a = 1), e.g.:

$$\Delta_r S_m^{\scriptscriptstyle \Leftrightarrow} = - \bigg( \frac{\partial \Delta_r G_m^{\scriptscriptstyle \Leftrightarrow}}{\partial T} \bigg)_p = z F \bigg( \frac{\partial E^{\scriptscriptstyle \Leftrightarrow}}{\partial T} \bigg)_p$$

## **Reduction potentials and different valences**

# Example.

 $E^{\circ}(Cr^{2+}|Cr) = -0.913 \text{ V}, E^{\circ}(Cr^{3+}|Cr) = -0.744 \text{ V}.$ Calculate  $E^{\circ}(Cr^{3+}|Cr^{2+})$ .

### Gibbs energies are additive (not potentials)

$$\begin{array}{cccc} Cr^{2+} + 2\,e^- & \to & Cr & \Delta_r G_m^{+} = -2F \cdot (-0.913\,V) \\ \hline Cr^{3+} + 3\,e^- & \to & Cr & \Delta_r G_m^{+} = -3F \cdot (-0.744\,V) \\ \hline \hline Cr^{3+} + 1\,e^- & \to & Cr^{2+} & \Delta_r G_m^{+} = -1F \cdot E^{\circ}(Cr^{3+}|Cr^{2+}) \end{array}$$

$$-1F \cdot E^{\circ}(Cr^{3+}|Cr^{2+}) = -3F \cdot (-0.744 \text{ V}) + 2F \cdot (-0.913 \text{ V})$$

$$E^{\circ}(Cr^{3+}|Cr^{2+}) = 3 \cdot (-0.744 \text{ V}) - 2 \cdot (-0.913 \text{ V}) = -0.406 \text{ V}$$

### **Electrodes**

9/26

11/26

- of the first kind (one reaction electrode—ion)
  - cationic, anionic
  - metal, amalgam (metal in Hg), nonmetallic, gas
- of the second kind (nonsoluble salt—two reactions)
- of the third kind
- redox (two exidation states)
- ion selective (membrane)

#### **Electrodes of the first kind**

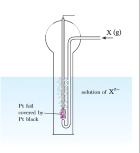
10/26

- cationic, metal
  - ox: ⊖ Zn|Zn<sup>2+</sup>, red: Zn<sup>2+</sup>|Zn ⊕

not for Fe, Al + ions, which are covered by oxides

- amalgam
  - ox: ⊖ Na(Hg)|Na<sup>+</sup>, red: Na<sup>+</sup>|Na(Hg) ⊕

$$E_{\text{Na}^+|\text{Na}} = E_{\text{Na}^+|\text{Na}}^{\circ} - \frac{RT}{F} \ln \frac{\alpha_{\text{Na}(\text{Hg})}}{\alpha_{\text{Na}^+}}$$


saturated amalgam:  $a_{M(Hg)=1}$ 

- cationic gas: hydrogen
- anionic gas: chlorine, oxygen ----

$$\text{CI$^-$|CI_2$|Pt} \ \oplus \ : \ \text{CI}_2 + 2 \, \text{e}^- \rightarrow 2 \, \text{CI}^-$$

OH<sup>-</sup>|O<sub>2</sub>|Pt 
$$\oplus$$
 :  $\frac{1}{2}$ O<sub>2</sub> + 2 e<sup>-</sup> + H<sub>2</sub>O  $\rightarrow$  2 OH<sup>-</sup>  
:  $\frac{1}{2}$ O<sub>2</sub> + 2 e<sup>-</sup> + 2H<sup>+</sup>  $\rightarrow$  H<sub>2</sub>O

Similarly: Br<sup>−</sup>|Br<sub>2</sub>|Pt ⊕



## **Electrodes of the second kind**

silver chloride

$$\begin{array}{ccc} AgCI(s) & \rightarrow & Ag^+ + CI^- \\ Ag^+ + e^- & \rightarrow & Ag(s) \\ \\ AgCI(s) + e^- & \rightarrow & Ag + CI^- \end{array}$$

$$E_{\text{AgCI}|\text{Ag}|\text{CI}^-} = E_{\text{AgCI}|\text{Ag}|\text{CI}^-}^{\circ} - \frac{RT}{F} \ln \frac{a_{\text{Ag}} \cdot a_{\text{CI}^-}}{a_{\text{AgCI}}}$$
$$= E_{\text{AgCI}|\text{Ag}|\text{CI}^-}^{\circ} - \frac{RT}{F} \ln a_{\text{CI}^-}$$

mercury chloride (calomel)

$$Cl^- \mid Hg_2Cl_2 \mid Hg \oplus$$

$$Hg_2Cl_2(s) + 2e^- \rightarrow 2Hg + 2Cl^-$$

Usage: reference electrodes

**Redox electrodes** 



$$\mathrm{Sn^{4+}}$$
 |  $\mathrm{Sn^{2+}}$  | Pt  $\oplus$ 

$$\text{Sn}^{4+} + 2 \, \text{e}^- \rightarrow \, \text{Sn}^{2+}$$

quinhydrone electrode (pH 1–8):

quinone (p-benzoquinone) + hydroquinone 1:1, sat.  $\odot$  in a buffer

$$O=\$$
  $O=\$   $O=\$ 

Nernst equation:

$$E_{Q|QH} = E_{Q|QH}^{+} - \frac{RT}{2F} \ln \frac{\frac{1}{a_{QH}}}{a_{Q} \cdot a_{H}^{2}} = E_{Q|QH}^{+} + \frac{RT}{F} \ln a_{H} + \frac{1}{F} \ln a_{H}$$

Usage: measuring pH

# **Curiosity: Electrodes of the third kind**

+ <sup>12/26</sup> col08

$$\mathsf{Ca^{2+}(aq)}\mid \mathsf{Ca}(\mathsf{COO})_2(\mathsf{s})\mid \mathsf{Zn}(\mathsf{COO})_2(\mathsf{s})\mid \mathsf{Zn}(\mathsf{s}) \oplus\\$$

Three reactions:

$$Ca^{2+} + (COO)_2^{2-} \rightarrow Ca(COO)_2$$
  
 $Zn(COO)_2 \rightarrow (COO)_2^{2-} + Zn^{2+}$   
 $Zn^{2+} + 2e^- \rightarrow Zn$ 

$$Ca^{2+} + Zn(COO)_2 + 2e^- \rightarrow Ca(COO)_2 + Zn$$
  
$$E = E^{\circ} - \frac{RT}{2F} \ln \frac{1}{a_{Ca^{2+}}}$$

Can measure  $c_{\mathrm{Ca^{2+}}}$ —there is no Ca | Ca<sup>2+</sup>(aq) electrode, because Ca reacts with water

(Ion-selective electrodes are more advantageous)

# Ion-selective electrodes

14/2

Semipermeable membrane (for some ions only)

### Glass electrode

Membrane of special thin glass permeable for  $\mathrm{H}^+$  (and other ions).

Difference of chem. pot. of both solutions

$$\mu(H^+, \circ) - \mu(H^+, electrode)$$

$$= \frac{1}{RT} \ln \frac{\alpha(H^+, \odot)}{\alpha(H^+, \text{electrode})}$$

is compensated by the electric work -FE.  $\Rightarrow$  Nernst equation



$$E = \operatorname{const} - \frac{RT}{F} \ln \alpha(H^+, \odot) = \operatorname{const} - \frac{RT}{F} \cdot \ln 10 \cdot pH$$

Usage: measuring pH (2–12), other ions

## **Galvanic cells**

By the source of  $\Delta G$ :

- chemical
- concentrationelectrolyte
  - electrode

By ion transfer:

- one electrolyte
- with salt bridge
- with membrane



anode:  $Fe(s) \rightarrow Fe^{3+}(aq) + 3e^{-}(-0.04 \text{ V})$   $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}(-0.44 \text{ V})$ cathode:  $\frac{1}{2}O_2 + 2e^{-} + 2H^{+} \rightarrow H_2O$  (1.23 V) or reduction of organic compounds (vitamin C)

# Simple chemical cell

[xcat ev/clanekagcl.ev] 16/26 col08

Single electrolyte + electrodes

**Example.** Consider a Pt electrode saturated by hydrogen and Ag wire covered by AgCl submerged in a solution of HCl ( $c=0.01\,\mathrm{mol\,dm^{-3}}$ ) on the top of the highest Czech mountain, Sněžka (1602 m above sea level). The standard reduction potential of the Ag/AgCl/Cl<sup>-</sup> electrode is 0.222 V ( $\rho^{\mathrm{st}}=101325\,\mathrm{Pa}$ ). Calculate the cell

voltage. A sea-level-reduced pressure is 999 mbar, temperature 25 °C.

69 82128 = q(1 =  $\gamma$ ) V 1824.0 (HG .mil) V 1284.0 (HG) V 8184.0



### Chemical cell—separated electrolytes

Porous barrier (liquid junction) (:).

**Irreversible** ⇒ liquid junction (diffusion) potential.

Reduced by the **salt bridge** (||).

**Example:** 

⊕ Zn(s) | ZnSO<sub>4</sub> || CuSO<sub>4</sub> | Cu(s) ⊕

#### Electrode concentration cell

#### **Examples:**

$$\Theta$$
 Pt—H<sub>2</sub>( $p_1$ ) | HCl(aq.) | H<sub>2</sub>( $p_2$ )—Pt  $\Theta$ 

(Given polarity for  $p_1 > p_2$ )

 $\ominus \ \mathsf{Li}(\mathsf{Hg})(x_1) \mid \mathsf{LiCl}(\mathsf{aq}) \mid \mathsf{Li}(\mathsf{Hg})(x_2) \ \oplus \\$ 

(Given polarity for  $x_1 > x_2$ )

**Battery** 

(One or) more connected cells.

Common disposable batteries:

Alkaline battery (Zn, MnO<sub>2</sub> + C)

$$\Theta$$
 Zn | KOH(gel) | MnO<sub>2</sub>  $\Theta$ 

$$Zn + 2OH^- \rightarrow ZnO + H_2O + 2e^-$$
  
 $2MnO_2 + H_2O + 2e^- \rightarrow Mn_2O_3 + 2OH^-$ 

Lithium (Li metal is light, has high potential) Electrolyte = salt (e.g., LiBF<sub>4</sub>) in organic polar solvent Several possibilities, e.g.:

$$\begin{array}{ccc} & \text{Li} & \rightarrow & \text{Li}^{+} + \text{e}^{-} \\ \text{Mn}^{\text{IV}}\text{O}_{2} + \text{Li}^{+} + \text{e}^{-} & \rightarrow & \text{Mn}^{\text{III}}\text{LiO}_{2} \end{array}$$

# **Rechargeable batteries**

19/26

Li-ion, Li-polymer: Li is in C (max. 1 Li in 6C)

⊖ Li (in C) | LiBF<sub>4</sub> or polymer | LiCoO<sub>2</sub>.CoO<sub>2</sub> ⊕

Positive electrode (e.g., in discharged state) LiCoO $_2$  = layers of CoO $_2$  intercalated by layers Li<sup>+</sup>. Charging: Li<sup>+</sup> to the solution, Co <sup>III</sup>  $\rightarrow$  Co <sup>IV</sup>

Ni-MH: hydrogen in metal hydride (M = LaNi5, CeAl5, TiNi2 . . . )

 $\Theta$  H | MH | KOH(aq.) | Ni(OH)<sub>2</sub> |  $\beta$ -NiOOH | Ni  $\Theta$ 

lead-acid battery (high current)

e Pb | PbSO<sub>4</sub>(s) | H<sub>2</sub>SO<sub>4</sub>(20-30 wt. %) | PbO<sub>2</sub>(s) | PbSO<sub>4</sub>(s) | Pb ⊕

Summary reaction:

$$\begin{array}{c} \text{Pb} + \text{PbO}_2 + 2\,\text{H}_2\text{SO}_4 & \stackrel{\text{discharge}}{\underset{\text{recharge}}{\longleftarrow}} & 2\,\text{PbSO}_4 + 2\,\text{H}_2\text{O} \end{array}$$

or for anode and cathode:

$$Pb + SO_4^{2-} \rightarrow PbSO_4(s) + 2e^-$$
  
 $PbO_2 + SO_4^{2-} + 4H^+ + 2e^- \rightarrow PbSO_4(s) + 2H_2O_3$ 

 $PbO_2 + SO_4^{2-} + 4H^+ + 2e^- \rightarrow PbSO_4(s) + 2H_2O$ 

**Solubility product** 

**Example.** Determine the solubility product of AgCl using the standard potentials at 25°C. Data:  $E^{\circ}(Ag|Ag^{+}) = 0.799 \text{ V}, E^{\circ}(Ag|AgC||C|^{-}) = 0.222 \text{ V}.$ 

⊕ Ag | AgCl(aq.) | AgCl(s) | Ag ⊕

$$AgCI \rightarrow Ag^{+} + CI^{-} \Delta_{r}G_{m}^{\circ} = -F(E_{Ag|AgCI|CI^{-}}^{\circ} - E_{Ag^{+}|Ag}^{\circ})$$

$$K_{\text{S}} = \text{exp}\bigg(-\frac{\Delta_{\text{r}}G^{\circ}}{RT}\bigg) = \text{exp}\bigg[\frac{F}{RT}(E_{\text{Ag}|\text{AgCI}|\text{CI}^{-}}^{\circ} - E_{\text{Ag}^{+}|\text{Ag}}^{\circ})\bigg] = 1.76 \times 10^{-10}$$

Short-circuit cell(virtual Ag in o AgCl): the Nernst equation is

$$E = 0 = (E_{\text{Aq|AqC||C|}^{-}}^{\circ} - E_{\text{Aq}^{+}|\text{Aq}}^{\circ}) - \frac{RT}{F} \ln(\alpha_{\text{Cl}^{-}} \cdot \alpha_{\text{Aq}^{+}})$$

= equilibrium condition

**Overpotential** 

$$a_{\text{CI}^-} \cdot a_{\text{Ag}^+} = K_{\text{S}}$$

is the voltage needed above the equilibrium potential (at one electrode) for the reaction to be actually observed—a sort of the activation energy.

Depeds on the electrode material (hydrogen on Pt: small, on Cu: 0.5 V, on Zn: 0.7 V),

decreases slightly with increasing temperature,

 $\bigcirc$  depends on the current density  $(\eta \approx a + b \ln j)$ ,

👄 increases power consumption during electrolysis

• high hydrogen overpotential on metals allows electrochemical deposition of metals with (slightly) negative potentials (Cr, Co), lead-acid battery some compounds catalyze H2 production, can be used in analysis

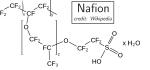
**Fuel cells** 

e.g., oxygen and hydrogen

 $\Theta: H_2 \rightarrow 2 H^+ + 2 e^-$ 

protons permeate through a membrane

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$


 $\frac{1}{2}$ O<sub>2</sub> + 2H<sup>+</sup> + 2e<sup>-</sup>  $\rightarrow$  H<sub>2</sub>O

expensive catalysts (Pt) purity of gases (CO)

isopropanol fuel cell

Electrode reaction:

20/26



Kinetics of electrode phenomena

1. diffusion of reactants to the electrode,

(2. reaction in the adjacent layer),

3. adsorption of reactants to the electrode,

4. electron transfer of adsorbed molecules/ions and the electrode,

5. desorption of the products,

(6. reaction in the adjacent laver).

7. diffusion of products out of the electrode.

In case of slowdown: polarization of electrodes:

concentration polarization (1., 7.)

chemical polarization

Corrosion

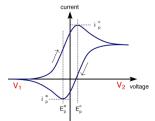
anodic phase: e metal is dissolved

cathodic phase: 
 metal is deposited

Cathodic protection:

passive – by anode of a more reactive metal (Zn, Al), which dissolves and produces a negative protective voltage on an object (ship hull) - "sacrificial anode"

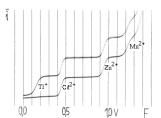



active – additional Θ voltage on the object, anode is Θ (large pipes upto 50 V, 50)

# **Electroanalytical methods**

25/26 col08

**Polarography** 


- ocoulometry charge or current needed for a chemical reaction (Faraday's laws of electrolysis; Cu, Ag,  $O_2+H_2$ )
  - calibration of ammeters (ampere meters)
  - coulometric titration (const. current, time to equivalence)
- optentiometry voltage of a cell, (almost) zero current activity (concentration) of a substance is determined, then:
  - pH (glass electrode, quinhydrone, ...)
  - other ions
  - acidity constants
  - solubility products
  - activity coefficients
  - potentiometric titrations (pH etc.)
- voltammetry current vs. applied voltage:
  - cyclic voltammetry (right)
  - polarography



Voltammetric technique with a dropping mercury elec-

igoplus Linear E: sensitivity up to  $1 \times 10^{-5}$  mol dm<sup>-3</sup> Problem: capacitive current

Differential pulse polarography (DPP): sensitivity to  $1 \times 10^{-7} \, \text{mol dm}^{-3}$ 





26/26

Jaroslav Heyrovský