
Electrochemistry: Elektrolytic and galvanic cell
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Galvanic series (Beketov, cca 1860):

	 Li, Ca, Al, Mn, Cr ≈ Zn, Cd ≈ Fe, Pb, [H2], Cu, Ag, Au ⊕

Cell = system composed of two electrodes and an electrolyte.

electrolytic cell: electric energy → chemical reaction

galvanic cell: chemical reaction → electric energy

credit: Wikipedia (free)

reversible galvanic cell (zero current)

Electrodes

anode = electrode where oxidation occurs
Cu → Cu2+ + 2 e−

2 Cl− → Cl2 + 2 e−

cathode = electrode where reduction occurs
Cu2+ + 2 e− → Cu
Cl2 + 2 e− → 2 Cl−

Oxidation and reduction are separated in a cell. The charge flows through the circuit.



Anode and cathode
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“anions go to the anode”



Galvanic cells: electrodes, convention
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Electrodes(= half-cells) may be separated by a porous separator, polymeric mem-
brane, salt bridge.

Cathode ⊕ is right (reduction)

Anode 	 is left (oxidation)

	 negative electrode (anode) ⊕ positive electrode (cathode)

| phase boundary ... liquid junction
(porous separator)

‖ salt bridge ...... semipermeable membrane

Examples:
	 Cu(s) | CuCl2(c = 0.1mol dm−3) | Cl2(p = 95kPa) | Pt ⊕

	 Ag(s) | AgCl(s) | NaCl(m = 4mol kg−1) | Na(Hg)
| NaCl(m = 0.1mol kg−1) | AgCl(s) | Ag(s) ⊕

	 Pt | Sn2+(0.1mol dm−3) + Sn4+(0.01mol dm−3) || Fe3+(0.2mol dm−3) | Fe ⊕



Equilibrium cell potential
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Also: electromotive potential/voltage, electromo-
tive force (EMF).

Should be measured at zero-current condition
(balanced bridge, sensitive voltmeter)

Cannot measure a potential of one electrode ⇒
zero defined by the standard hydrogen electrode:

2H+ (aq)+ 2e− → H2 (g)

where H+ = 1 (pH=0)
and H2 = 1 (pH2 = p

st).

Construction of a hydrogen electrode:
Pt sheet covered by platinum black, saturated by
hydrogen

symbols: E, E, Δϕ; in physics: U

credit: wikipedie



Cell potential II
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Electrode potential of electrode X = voltage of cell

	 H2 ( = 1) | H+ ( = 1) | X ⊕

NB: always the reduction potential

Standard (reduction) potential of an electrode: all reacting compounds have unit
activities

Examples: E
e

Cu+2+|Cu
= 0.337V, E

e
Cl2|2Cl− = 1.360V (at 25 ◦C)

If the reaction are written in the way the cell produces energy:
reaction = (reduction at cathode) + (oxidation at anode)

E = E red
cathode + E

ox
anode

If all reactions are written as a reduction:
reaction = (reduction at cathode) − (reduction at anode)

E = Ered
cathode − E

red
anode



Termodynamics of a reversible cell
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Reversibility = reactions can be reversed by a small voltage change. No irreversible
processes (metal dissolution, diffusion, liquid junction. . . )

ΔrGm =Wel = −qE = −zFE [p, T]

⇒ Nernst equation:

E = E
e
−
RT

zF
ln
∏




ν


where ΔrG
e

m = −zFE
e
, K = exp[−ΔrG

e
m/RT] = exp[zFE

e
/RT]

E
e
= E

e,red
cathode + E

e,ox
anode = E

e,red
cathode − E

e,red
anode

ΔrG < 0 i.e. E > 0 ⇒ the cell produces current
E = 0 i.e. ΔrG = 0 = uncharged cell (equilibrium)
distiguish from: equilibrium potential (at zero current)

E
e

Cu2+|Cu
= −E

e
Cu|Cu2+

(oxidation) but E
e

Cl2|2Cl− = E
e
1
2Cl2|Cl−

hydrogen electrode right at 25 ◦C: E = E0 − pH · 0.05916V



Termodynamics of a reversible cell II + 7/26
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only electric work Wel

reversible [p, T]

ΔrSm = −
�

∂ΔrGm

∂T

�

p
= zF

�

∂E

∂T

�

p

ΔrHm = −T2
�

∂(ΔrGm/T)

∂T

�

p
= zFT2

�

∂(E/T)

∂T

�

p

Qm = TΔrSm (II. Law for reversible processes)

Oops!
↙
Wp-V

ΔrU = Q +W = Q− pΔrV +Wel

ΔrH = ΔrU + Δr(pV)
[p]
= ΔrU + pΔrV = Q +Wel

Eq. Q = ΔrH holds true only if the only work is pressure-volume

And similarly for standard state (p = pst,  = 1), e.g.:

ΔrS
e

m = −
�

∂ΔrG
e

m

∂T

�

p
= zF

�

∂E
e

∂T

�

p



Reduction potentials and different valences + 8/26
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Example.
E

e
(Cr2+ |Cr) = −0.913V, E

e
(Cr3+ |Cr) = −0.744V.

Calculate E
e
(Cr3+ |Cr2+).

Gibbs energies are additive (not potentials)

Cr2+ + 2e− → Cr ΔrG
e

m = −2F · (−0.913V)

Cr3+ + 3e− → Cr ΔrG
e

m = −3F · (−0.744V)

Cr3+ + 1e− → Cr2+ ΔrG
e

m = −1F · E
e
(Cr3+ |Cr2+)

−1F · E
e
(Cr3+ |Cr2+) = −3F · (−0.744V) + 2F · (−0.913V)

E
e
(Cr3+ |Cr2+) = 3 · (−0.744V) − 2 · (−0.913V) = −0.406V



Electrodes
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of the first kind (one reaction electrode—ion)
– cationic, anionic
– metal, amalgam (metal in Hg), nonmetallic, gas

of the second kind (nonsoluble salt—two reactions)

of the third kind

redox (two exidation states)

ion selective (membrane)



Electrodes of the first kind
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cationic, metal
ox: 	 Zn|Zn2+, red: Zn2+ |Zn ⊕
not for Fe, Al + ions, which are covered by oxides

amalgam
ox: 	 Na(Hg)|Na+, red: Na+ |Na(Hg) ⊕

ENa+|Na = E
e

Na+|Na −
RT

F
ln
Na(Hg)

Na+

saturated amalgam: M(Hg)=1

cationic gas: hydrogen

anionic gas: chlorine, oxygen −→

Cl− |Cl2|Pt ⊕ : Cl2 + 2e− → 2Cl−

OH− |O2|Pt ⊕ : 1
2O2 + 2e− + H2O→ 2OH−

: 1
2O2 + 2e− + 2H+ → H2O

similarly: Br− |Br2|Pt ⊕



Electrodes of the second kind
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silver chloride

Cl− | AgCl | Ag ⊕

AgCl(s) → Ag+ + Cl−

Ag+ + e− → Ag(s)

AgCl(s)+ e− → Ag+ Cl−

EAgCl | Ag | Cl− = E
e

AgCl | Ag | Cl−
−
RT

F
ln
Ag · Cl−

AgCl

= E
e

AgCl | Ag | Cl−
−
RT

F
lnCl−

mercury chloride (calomel)

Cl− | Hg2Cl2 | Hg ⊕

Hg2Cl2(s)+ 2e− → 2Hg+ 2Cl−

Usage: reference electrodes
Pictures by: Analytical chemistry an introduction, 7th edition, Harcourt College, 2000
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Curiosity: Electrodes of the third kind + 12/26
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Ca2+(aq) | Ca(COO)2(s) | Zn(COO)2(s) | Zn(s) ⊕

Three reactions:

Ca2+ + (COO)22− → Ca(COO)2
Zn(COO)2 → (COO)22− + Zn2+

Zn2+ + 2e− → Zn

Ca2+ + Zn(COO)2 + 2e− → Ca(COO)2 + Zn

E = E
e
−
RT

2F
ln

1

Ca2+

Can measure cCa2+—there is no Ca | Ca2+(aq) electrode, because Ca reacts with
water

(Ion-selective electrodes are more advantageous)



Redox electrodes
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metal:

Sn4+ | Sn2+ | Pt ⊕

Sn4+ + 2e− → Sn2+

quinhydrone electrode (pH 1–8):

quinone (p-benzoquinone) + hydroquinone 1:1, sat. � in a buffer

O O (s)+ 2H+ + 2e− → HO OH (s)

quinone (Q) hydroquinone (QH)

Nernst equation:

↙
1

EQ|QH = E
e

Q|QH −
RT

2F
ln

QH

Q · 2H+
= E

e
Q|QH +

RT

F
lnH+

.
= (0.699 − 0.059 · pH)V

Usage: measuring pH



Ion-selective electrodes
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Semipermeable membrane (for some ions only)

Glass electrode

Membrane of special thin glass permeable for H+ (and
other ions).
Difference of chem. pot. of both solutions

μ(H+,�) − μ(H+,electrode)

=
1

RT
ln

(H+,�)

(H+,electrode)
is compensated by the electric work −FE. ⇒ Nernst

equation

credit: www.ph-meter.info

ref. silver
chloride ↗

glass →

credit: wikipedie

E = const−
RT

F
ln(H+,�) = const−

RT

F
· ln 10 · pH

Usage: measuring pH (2–12), other ions



Galvanic cells
15/26
co08

By the source of ΔG:

chemical

concentration
– electrolyte
– electrode

By ion transfer:

one electrolyte

with salt bridge

with membrane
credit: payitoweb.blogspot.com

anode: Fe(s)→ Fe3+(aq) + 3e− (−0.04V)
Fe(s)→ Fe2+(aq) + 2e− (−0.44V)

cathode: 12O2 + 2e− + 2H+ → H2O (1.23V)
or reduction of organic
compounds (vitamin C)



Simple chemical cell
[xcat ev/clanekagcl.ev]16/26
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Single electrolyte + electrodes

Example. Consider a Pt electrode saturated by hydrogen and Ag wire covered by
AgCl submerged in a solution of HCl (c = 0.01mol dm−3) on the top of the highest
Czech mountain, Sněžka (1602 m above sea level). The standard reduction poten-
tial of the Ag/AgCl/Cl− electrode is 0.222 V (pst = 101325 Pa). Calculate the cell
voltage. A sea-level-reduced pressure
is 999 mbar, temperature 25 ◦C.

p=83128Pa
0.4561V(γ=1)
0.4621V(lim.DH)
0.4616V(DH)



Chemical cell—separated electrolytes
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Porous barrier (liquid junction) (...).
Irreversible ⇒ liquid junction (diffusion) potential.
Reduced by the salt bridge (||).

Example:

	 Zn(s) | ZnSO4 || CuSO4 | Cu(s) ⊕

Electrode concentration cell

Examples:

	 Pt—H2(p1) | HCl(aq.) | H2(p2)—Pt ⊕

(Given polarity for p1 > p2)

	 Li(Hg)(1) | LiCl(aq) | Li(Hg)(2) ⊕

(Given polarity for 1 > 2)



Battery
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(One or) more connected cells.

Common disposable batteries:

Alkaline battery (Zn, MnO2 + C)

	 Zn | KOH(gel) | MnO2 ⊕

Zn+ 2OH− → ZnO+ H2O+ 2e−

2MnO2 + H2O+ 2e− → Mn2O3 + 2OH−

Lithium (Li metal is light, has high potential)
Electrolyte = salt (e.g., LiBF4) in organic polar solvent
Several possibilities, e.g.:

Li → Li+ + e−

MnIVO2 + Li+ + e− → MnIIILiO2



Rechargeable batteries
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Li-ion, Li-polymer: Li is in C (max. 1 Li in 6 C)

	 Li (in C) | LiBF4 or polymer | LiCoO2.CoO2 ⊕

Positive electrode (e.g., in discharged state) LiCoO2 = layers of CoO2 intercalated
by layers Li+. Charging: Li+ to the solution, Co III → Co IV

Ni-MH: hydrogen in metal hydride (M = LaNi5, CeAl5, TiNi2 . . . )

	 H | MH | KOH(aq.) | Ni(OH)2 | β-NiOOH | Ni ⊕

lead–acid battery (high current)

	 Pb | PbSO4 (s) | H2SO4 (20–30wt. %) | PbO2(s) | PbSO4 (s) | Pb ⊕

Summary reaction:

Pb+ PbO2 + 2H2SO4
discharge
→←

recharge
2PbSO4 + 2H2O

or for anode and cathode:

Pb+ SO42− → PbSO4 (s)+ 2e−

PbO2 + SO42− + 4H+ + 2e− → PbSO4 (s)+ 2H2O



Fuel cells
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e.g., oxygen and hydrogen

	 : H2→ 2H+ + 2e−

protons permeate through a membrane

⊕ :
1

2
O2 + 2H+ + 2e− → H2O

expensive catalysts (Pt)
purity of gases (CO)

isopropanol fuel cell −→



Solubility product + 21/26
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Example. Determine the solubility product of AgCl using the standard potentials at
25 ◦C.
Data: E

e
(Ag|Ag+) = 0.799V, E

e
(Ag|AgCl|Cl−) = 0.222V.

	 Ag | AgCl(aq.) | AgCl(s) | Ag ⊕

	, red : Ag+ + e− → Ag ΔrG
e

m = −FE
e

Ag+|Ag × (−1)

⊕, red : AgCl+ e− → Ag+ Cl− ΔrG
e

m = −FE
e

Ag|AgCl|Cl− × (+1)

AgCl → Ag+ + Cl− ΔrG
e

m = −F(E
e

Ag|AgCl|Cl− − E
e

Ag+|Ag)

Ks = exp
�

−
ΔrG

e
RT

�

= exp
�

F

RT
(E

e
Ag|AgCl|Cl− − E

e
Ag+|Ag)

�

= 1.76×10−10

Short-circuit cell(virtual Ag in � AgCl): the Nernst equation is

E = 0 = (E
e

Ag|AgCl|Cl− − E
e

Ag+|Ag) −
RT

F
ln(Cl− · Ag+)

= equilibrium condition

Cl− · Ag+ = Ks



Kinetics of electrode phenomena
22/26
co08

Electrode reaction:

1. diffusion of reactants to the electrode,
2.( reaction in the adjacent layer),
3. adsorption of reactants to the electrode,
4. electron transfer of adsorbed molecules/ions and the electrode,
5. desorption of the products,
6.( reaction in the adjacent layer),
7. diffusion of products out of the electrode.

In case of slowdown: polarization of electrodes:

concentration polarization (1., 7.)

chemical polarization



Overpotential
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is the voltage needed above the equilibrium potential (at one electrode) for the
reaction to be actually observed—a sort of the activation energy.

Depeds on the electrode material
(hydrogen on Pt: small, on Cu: 0.5 V, on Zn: 0.7 V),

decreases slightly with increasing temperature,

depends on the current density (η ≈  + b ln j),

− increases power consumption during electrolysis

+ high hydrogen overpotential on metals allows electrochemical deposition of met-
als with (slightly) negative potentials (Cr, Co), lead-acid battery
some compounds catalyze H2 production, can be used in analysis



Corrosion
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anodic phase: 	 metal is dissolved

cathodic phase: ⊕ metal is deposited

Cathodic protection:

passive – by anode of a more reactive
metal (Zn, Al), which dissolves and
produces a negative protective volt-
age on an object (ship hull) – “sacri-
ficial anode”

credit: RŠmi Kaupp (Wikimedia Commons)

active – additional 	 voltage on the object, anode is ⊕ (large pipes upto 50 V, 50
A)



Electroanalytical methods
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coulometry – charge or current needed for a chemical reaction
(Faraday’s laws of electrolysis; Cu, Ag, O2+H2)
– calibration of ammeters (ampere meters)
– coulometric titration (const. current, time to equivalence)

potentiometry – voltage of a cell, (almost) zero current
activity (concentration) of a substance is determined, then:
– pH (glass electrode, quinhydrone, . . . )
– other ions
– acidity constants
– solubility products
– activity coefficients
– potentiometric titrations (pH etc.)

voltammetry – current vs. applied
voltage:
– cyclic voltammetry (right)
– polarography

credit: http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/linear-sweep-and-cyclic-voltametry-the-principles



Polarography
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Voltammetric technique with a dropping mercury elec-
trode

Linear E: sensitivity up to 1×10−5mol dm−3

Problem: capacitive current

Differential pulse polarography (DPP):
sensitivity to 1×10−7mol dm−3

Jaroslav Heyrovský
credits: http://canov.jergym.cz/objevite/objev2/hey.htm, picture of polarograph by Luká Mioch, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4079721


