Electrochemistry: Elektrolytic and galvanic cell

Galvanic series (Beketov, cca 1860):

 Θ Li, Ca, Al, Mn, Cr \approx Zn, Cd \approx Fe, Pb, [H₂], Cu, Ag, Au \oplus

Cell = system composed of two electrodes and an electrolyte.

electrolytic cell: electric energy \rightarrow chemical reaction

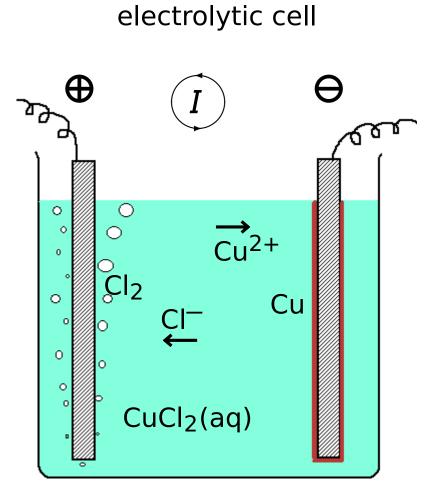
galvanic cell: chemical reaction \rightarrow electric energy

reversible galvanic cell (zero current)

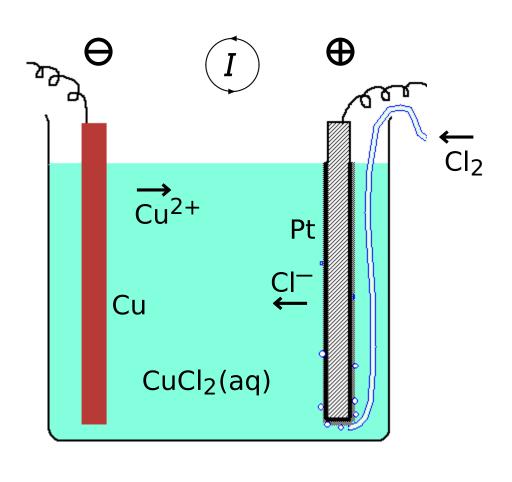
Electrodes

anode = electrode where oxidation occurs $Cu \rightarrow Cu^{2+} + 2e^{-}$ $2Cl^{-} \rightarrow Cl_{2} + 2e^{-}$

Cathode = electrode where reduction occurs $Cu^{2+} + 2e^{-} \rightarrow Cu$ $Cl_2 + 2e^{-} \rightarrow 2Cl^{-}$ The Weisselfer Constrained in the Second


credit: Wikipedia (free)

1/26


*col*08

Oxidation and reduction are separated in a cell. The charge flows through the circuit.

Anode and cathode

anode cathode "anions go to the anode"

galvanic cell

anode cathode

Galvanic cells: electrodes, convention

Electrodes(= half-cells) may be separated by a porous separator, polymeric membrane, salt bridge.

- - ⊖ negative electrode (anode)
 - | phase boundary
 - | salt bridge

- positive electrode (cathode)
 liquid junction
- i (porous separator)
- :: semipermeable membrane

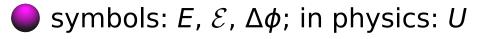
Examples:

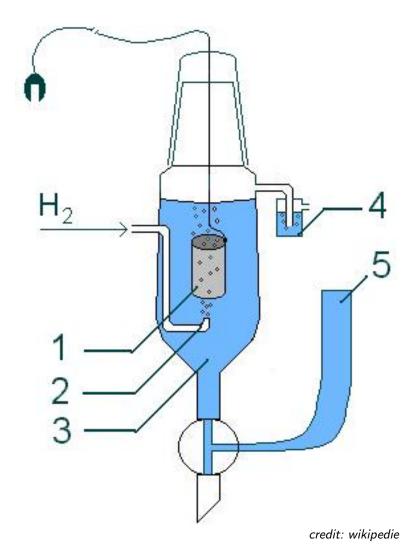
```
\Theta Cu(s) | CuCl<sub>2</sub>(c = 0.1 mol dm<sup>-3</sup>) | Cl<sub>2</sub>(p = 95 kPa) | Pt \Theta
```

 Θ Ag(s) | AgCl(s) | NaCl($\underline{m} = 4 \mod kg^{-1}$) | Na(Hg) | NaCl($\underline{m} = 0.1 \mod kg^{-1}$) | AgCl(s) | Ag(s) \oplus

⊖ Pt | $Sn^{2+}(0.1 \text{ mol dm}^{-3})$ + $Sn^{4+}(0.01 \text{ mol dm}^{-3})$ || $Fe^{3+}(0.2 \text{ mol dm}^{-3})$ | Fe ⊕

Equilibrium cell potential


- Also: electromotive potential/voltage, electromotive force (EMF).
- Should be measured at zero-current condition (balanced bridge, sensitive voltmeter)
- Cannot measure a potential of one electrode ⇒ zero defined by the standard hydrogen electrode:


 $2 H^+ (aq) + 2 e^- \rightarrow H_2 (g)$

```
where a_{H^+} = 1 (pH=0)
and a_{H_2} = 1 (p_{H_2} = p^{st}).
```

Construction of a hydrogen electrode:

Pt sheet covered by platinum black, saturated by hydrogen

Cell potential II

Electrode potential of electrode X = voltage of cell

$$\Theta$$
 H₂ (a = 1) | H⁺ (a = 1) | X \oplus

NB: always the reduction potential

Standard (reduction) potential of an electrode: all reacting compounds have unit activities

Examples:
$$E_{Cu+^{2+}|Cu}^{\circ} = 0.337 \text{ V}, E_{Cl_2|_2Cl^-}^{\circ} = 1.360 \text{ V} \text{ (at 25 °C)}$$

If the reaction are written in the way the cell produces energy: reaction = (reduction at cathode) + (oxidation at anode)

$$E = E_{cathode}^{red} + E_{anode}^{ox}$$

If all reactions are written as a reduction:

reaction = (reduction at cathode) - (reduction at anode)

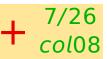
$$E = E_{\text{cathode}}^{\text{red}} - E_{\text{anode}}^{\text{red}}$$

Termodynamics of a reversible cell

Reversibility = reactions can be reversed by a small voltage change. No irreversible processes (metal dissolution, diffusion, liquid junction...)

$$\Delta_{\rm r}G_{\rm m} = W_{\rm el} = -qE = -zFE \quad [p,T]$$

 \Rightarrow Nernst equation:


$$E = E^{\oplus} - \frac{RT}{zF} \ln \prod_{i} a_{i}^{\nu_{i}}$$

where
$$\Delta_{\rm r}G_{\rm m}^{\oplus} = -zFE^{\oplus}$$
, $K = \exp[-\Delta_{\rm r}G_{\rm m}^{\oplus}/RT] = \exp[zFE^{\oplus}/RT]$
 $E^{\oplus} = E_{\rm cathode}^{\oplus,\rm red} + E_{\rm anode}^{\oplus,\rm ox} = E_{\rm cathode}^{\oplus,\rm red} - E_{\rm anode}^{\oplus,\rm red}$

● $\Delta_r G < 0$ i.e. $E > 0 \Rightarrow$ the cell produces current E = 0 i.e. $\Delta_r G = 0 =$ uncharged cell (equilibrium) distiguish from: equilibrium potential (at zero current)

•
$$E_{Cu^{2+}|Cu}^{\circ} = -E_{Cu|Cu^{2+}}^{\circ}$$
 (oxidation) but $E_{Cl_{2}|2Cl^{-}}^{\circ} = E_{\frac{1}{2}Cl_{2}|Cl^{-}}^{\circ}$
• hydrogen electrode right at 25 °C: $E = E_{0} - pH \cdot 0.05916$

Termodynamics of a reversible cell II

🔵 only electric work W_{el}

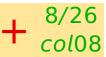
reversible [*p,T*]

$$\Delta_{\rm r} S_{\rm m} = -\left(\frac{\partial \Delta_{\rm r} G_{\rm m}}{\partial T}\right)_{\rho} = zF\left(\frac{\partial E}{\partial T}\right)_{\rho}$$
$$\Delta_{\rm r} H_{\rm m} = -T^2 \left(\frac{\partial (\Delta_{\rm r} G_{\rm m}/T)}{\partial T}\right)_{\rho} = zFT^2 \left(\frac{\partial (E/T)}{\partial T}\right)_{\rho}$$

Mnv

 $Q_{\rm m} = T \Delta_{\rm r} S_{\rm m}$ (II. Law for reversible processes)

Oops!


$$\Delta_{\rm r} U = Q + W = Q - p\Delta_{\rm r} V + W_{\rm el}$$

$$\Delta_{\rm r} H = \Delta_{\rm r} U + \Delta_{\rm r} (pV) \stackrel{[p]}{=} \Delta_{\rm r} U + p\Delta_{\rm r} V = Q + W_{\rm el}$$

Eq. $Q = \Delta_r H$ holds true only if the only work is pressure-volume

And similarly for standard state ($p = p^{st}$, a = 1), e.g.:

$$\Delta_{\rm r} S_{\rm m}^{\oplus} = -\left(\frac{\partial \Delta_{\rm r} G_{\rm m}^{\oplus}}{\partial T}\right)_{\rho} = zF\left(\frac{\partial E^{\oplus}}{\partial T}\right)_{\rho}$$

Reduction potentials and different valences

Example.

 $E^{\circ}(Cr^{2+}|Cr) = -0.913 \text{ V}, E^{\circ}(Cr^{3+}|Cr) = -0.744 \text{ V}.$ Calculate $E^{\circ}(Cr^{3+}|Cr^{2+}).$

Gibbs energies are additive (not potentials)

$Cr^{2+} + 2e^{-}$	\rightarrow	Cr	$\Delta_{\rm r}G^{\oplus}_{\rm m} = -2F \cdot (-0.913{\rm V})$
Cr ³⁺ + 3 e ⁻	\rightarrow	Cr	$\Delta_{\rm r}G_{\rm m}^{\oplus} = -3F \cdot (-0.744{\rm V})$
Cr ³⁺ + 1 e ⁻	\rightarrow	Cr ²⁺	$\Delta_{\rm r}G^{\diamond}_{\rm m} = -1F \cdot E^{\diamond}({\rm Cr}^{3+} {\rm Cr}^{2+})$
$-1F \cdot E^{\circ}(\mathrm{Cr}^{3+} \mathrm{Cr}^{2+}) = -3F \cdot (-0.744\mathrm{V}) + 2F \cdot (-0.913\mathrm{V})$			
$E^{\circ}(Cr^{3+} Cr^{2+}) = 3 \cdot (-0.744 \text{ V}) - 2 \cdot (-0.913 \text{ V}) = -0.406 \text{ V}$			

Electrodes

of the first kind (one reaction electrode—ion)

- cationic, anionic
- metal, amalgam (metal in Hg), nonmetallic, gas
- of the second kind (nonsoluble salt—two reactions)
- of the third kind
- redox (two exidation states)
- ion selective (membrane)

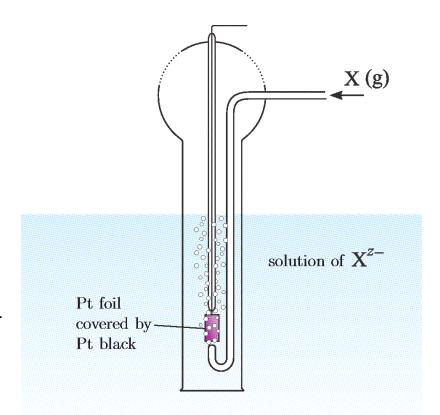
Electrodes of the first kind

cationic, metal ox: ⊖ Zn|Zn²⁺, red: Zn²⁺|Zn ⊕ not for Fe, Al + ions, which are covered by oxides

amalgam

ox: ⊖ Na(Hg)|Na⁺, red: Na⁺|Na(Hg) ⊕

 $E_{\text{Na}^+|\text{Na}} = E_{\text{Na}^+|\text{Na}}^{\circ} - \frac{RT}{F} \ln \frac{\alpha_{\text{Na}(\text{Hg})}}{\alpha_{\text{Na}^+}}$


saturated amalgam: $a_{M(Hg)=1}$

cationic gas: hydrogen

🕨 anionic gas: chlorine, oxygen 🛛 🛶

Cl⁻|Cl₂|Pt ⊕ : Cl₂ + 2 e⁻ → 2 Cl⁻
OH⁻|O₂|Pt ⊕ :
$$\frac{1}{2}$$
O₂ + 2 e⁻ + H₂O → 2 OH⁻
: $\frac{1}{2}$ O₂ + 2 e⁻ + 2H⁺ → H₂O

🔵 similarly: Br[—]|Br₂|Pt ⊕

Electrodes of the second kind

silver chloride

CI[−] | AgCl | Ag ⊕

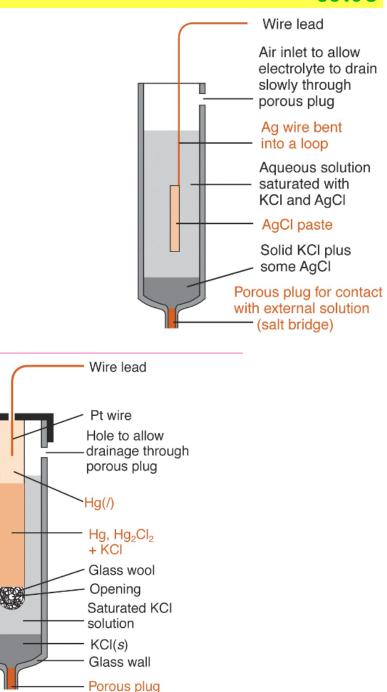
$$AgCl(s) \rightarrow Ag^{+} + Cl^{-}$$

$$Ag^{+} + e^{-} \rightarrow Ag(s)$$

$$AgCl(s) + e^{-} \rightarrow Ag(s)$$

$$AgCI(S) + e \rightarrow Ag + CI$$

$$RT$$


$$E_{AgCI|Ag|CI^{-}} = E_{AgCI|Ag|CI^{-}}^{\bullet} - \frac{H}{F} \ln \frac{\pi_{Ag} - \sigma_{CI}}{\alpha_{AgCI}}$$
$$= E_{AgCI|Ag|CI^{-}}^{\bullet} - \frac{RT}{F} \ln \alpha_{CI^{-}}$$
$$\bullet \text{ mercury chloride (calomel)}$$
$$CI^{-} |Hg_2CI_2|Hg \oplus$$

 $Hg_2CI_2(s) + 2e^- \rightarrow 2Hg + 2CI^-$

 $a_{\Lambda \alpha} \cdot a_{\alpha}$

Usage: reference electrodes

Pictures by: Analytical chemistry an introduction, 7th edition, Harcourt College, 2000

(salt bridge)

11/26 *col*08

$$+ \frac{12/26}{col08}$$

$$Ca^{2+}(aq) | Ca(COO)_2(s) | Zn(COO)_2(s) | Zn(s) \oplus$$

Three reactions:

$$\begin{array}{rcl} \text{Ca}^{2+} + (\text{COO})_2^{2-} & \rightarrow & \text{Ca}(\text{COO})_2 \\ & & \text{Zn}(\text{COO})_2 & \rightarrow & (\text{COO})_2^{2-} + \text{Zn}^{2+} \\ & & \text{Zn}^{2+} + 2 \, \text{e}^- & \rightarrow & \text{Zn} \end{array}$$

$$Ca^{2+} + Zn(COO)_2 + 2e^- \rightarrow Ca(COO)_2 + Zn$$

$$E = E^{\leftrightarrow} - \frac{RT}{2F} \ln \frac{1}{\alpha_{\text{Ca}^{2+}}}$$

Can measure $c_{Ca^{2+}}$ —there is no Ca | Ca²⁺(aq) electrode, because Ca reacts with water

(Ion-selective electrodes are more advantageous)

Redox electrodes

e metal:

quinhydrone electrode (pH 1–8):

quinone (p-benzoquinone) + hydroquinone 1:1, sat. \odot in a buffer

$$O= (s) + 2H^{+} + 2e^{-} \rightarrow HO (s)$$

quinone (Q) hydroquinone (QH)

Nernst equation:

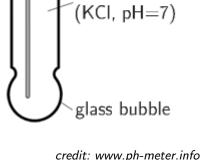
$$E_{Q|QH} = E_{Q|QH}^{\oplus} - \frac{RT}{2F} \ln \frac{a_{QH}}{a_Q \cdot a_{H^+}^2} = E_{Q|QH}^{\oplus} + \frac{RT}{F} \ln a_{H^+}$$
$$\doteq (0.699 - 0.059 \cdot pH) V$$

Usage: measuring pH

Ion-selective electrodes

Semipermeable membrane (for some ions only)

Glass electrode


Membrane of special thin glass permeable for H^+ (and other ions).

Difference of chem. pot. of both solutions

 $\mu(H^+, \odot) - \mu(H^+, electrode)$

$$= \frac{1}{RT} \ln \frac{a(H^+, \odot)}{a(H^+, \text{electrode})}$$

is compensated by the electric work -FE. \Rightarrow Nernst equation

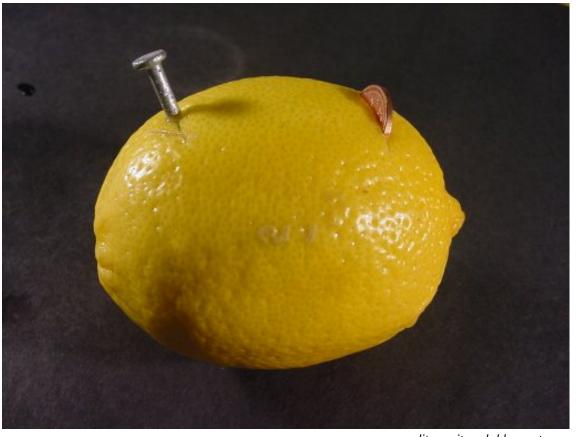
AgCI covered silver wire

ref. silver
chloride
$$\nearrow$$

glass \rightarrow

credit: wikipedie

$$E = \text{const} - \frac{RT}{F} \ln a(H^+, \odot) = \text{const} - \frac{RT}{F} \cdot \ln 10 \cdot \text{pH}$$


Usage: measuring pH (2-12), other ions

Galvanic cells

- By the source of ΔG :
- chemical
- concentration
 - electrolyte
 - electrode
- By ion transfer:

- with salt bridge
- with membrane

credit: payitoweb.blogspot.com

anode:
$$Fe(s) \rightarrow Fe^{3+}(aq) + 3e^{-}(-0.04V)$$

 $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}(-0.44V)$
cathode: $\frac{1}{2}O_2 + 2e^{-} + 2H^+ \rightarrow H_2O(1.23V)$
or reduction of organic
compounds (vitamin C)

Simple chemical cell

Single electrolyte + electrodes

Example. Consider a Pt electrode saturated by hydrogen and Ag wire covered by AgCl submerged in a solution of HCl ($c = 0.01 \text{ mol dm}^{-3}$) on the top of the highest Czech mountain, Sněžka (1602 m above sea level). The standard reduction potential of the Ag/AgCl/Cl⁻ electrode is 0.222 V ($p^{\text{st}} = 101325$ Pa). Calculate the cell voltage. A sea-level-reduced pressure

is 999 mbar, temperature 25 °C.

p = 83128 Pa0.4561 V ($\gamma = 1$) 0.4621 V (lim. DH) (HD) V 0.4616 V (DH)

Chemical cell—separated electrolytes

Porous barrier (liquid junction) (:). Irreversible \Rightarrow liquid junction (diffusion) potential. Reduced by the salt bridge (||).

Example:

⊖ Zn(s) | ZnSO₄ || CuSO₄ | Cu(s) ⊕

Electrode concentration cell

Examples:

```
\Theta Pt—H<sub>2</sub>(p_1) | HCl(aq.) | H<sub>2</sub>(p_2)—Pt \oplus
```

(Given polarity for $p_1 > p_2$)

 \ominus Li(Hg)(x₁) | LiCl(aq) | Li(Hg)(x₂) \oplus

(Given polarity for $x_1 > x_2$)

Battery

(One or) more connected cells.

Common disposable batteries:

```
\bigcirc Alkaline battery (Zn, MnO<sub>2</sub> + C)
```

 Θ Zn | KOH (gel) | MnO₂ \oplus

 $Zn + 2OH^- \rightarrow ZnO + H_2O + 2e^ 2MnO_2 + H_2O + 2e^- \rightarrow Mn_2O_3 + 2OH^-$

Lithium (Li metal is light, has high potential) Electrolyte = salt (e.g., LiBF₄) in organic polar solvent Several possibilities, e.g.:

 $Li \rightarrow Li^{+} + e^{-}$ $Mn^{IV}O_{2} + Li^{+} + e^{-} \rightarrow Mn^{III}LiO_{2}$

Rechargeable batteries

19/26 *col*08

Li-ion, Li-polymer: Li is in C (max. 1 Li in 6 C)

 Θ Li (in C) | LiBF₄ or polymer | LiCoO₂.CoO₂ \oplus

Positive electrode (e.g., in discharged state) LiCoO₂ = layers of CoO₂ intercalated by layers Li⁺. Charging: Li⁺ to the solution, Co ^{III} \rightarrow Co ^{IV}

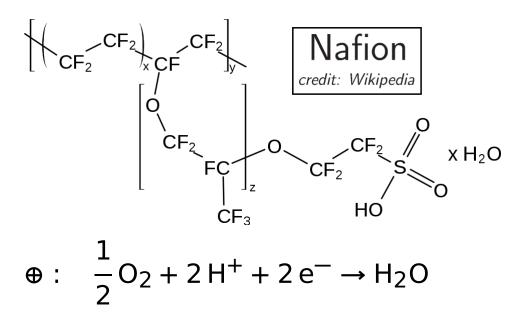
Ni-MH: hydrogen in metal hydride (M = LaNi₅, CeAl₅, TiNi₂ ...)

 Θ H | MH | KOH(aq.) | Ni(OH)₂ | β-NiOOH | Ni \oplus

lead–acid battery (high current)

 Θ Pb | PbSO₄ (s) | H₂SO₄ (20–30 wt. %) | PbO₂(s) | PbSO₄ (s) | Pb \oplus Summary reaction:

 $Pb + PbO_2 + 2H_2SO_4 \xrightarrow{discharge} 2PbSO_4 + 2H_2O_{recharge}$


or for anode and cathode:

$$Pb + SO_4^{2-} \rightarrow PbSO_4(s) + 2e^-$$

PbO₂ + SO₄²⁻ + 4H⁺ + 2e⁻ → PbSO₄(s) + 2H₂O

Fuel cells

- e.g., oxygen and hydrogen
- $\Theta: \quad H_2 \rightarrow 2 H^+ + 2 e^-$

protons permeate through a membrane

expensive catalysts (Pt) purity of gases (CO)

isopropanol fuel cell

Solubility product

Example. Determine the solubility product of AgCl using the standard potentials at 25 °C.

Data: $E^{\circ}(Ag|Ag^{+}) = 0.799 V$, $E^{\circ}(Ag|AgC||C|^{-}) = 0.222 V$.

⊖ Ag | AgCl(aq.) | AgCl(s) | Ag ⊕

 $\Theta, \text{red}: Ag^{+} + e^{-} \rightarrow Ag \qquad \Delta_{r}G^{\oplus}_{m} = -FE^{\oplus}_{Ag^{+}|Ag} \qquad \times (-1)$ $\Theta, \text{red}: AgCl + e^{-} \rightarrow Ag + Cl^{-} \qquad \Delta_{r}G^{\oplus}_{m} = -FE^{\oplus}_{Ag|AgCl|Cl^{-}} \qquad \times (+1)$ $AgCl \rightarrow Ag^{+} + Cl^{-} \qquad \Delta_{r}G^{\oplus}_{m} = -F(E^{\oplus}_{Ag|AgCl|Cl^{-}} - E^{\oplus}_{Ag^{+}|Ag})$ $K_{s} = \exp\left(-\frac{\Delta_{r}G^{\oplus}}{RT}\right) = \exp\left[\frac{F}{RT}(E^{\oplus}_{Ag|AgCl|Cl^{-}} - E^{\oplus}_{Ag^{+}|Ag})\right] = 1.76 \times 10^{-10}$

Short-circuit cell(virtual Ag in ⊙ AgCl): the Nernst equation is

$$E = 0 = (E_{\text{Ag}|\text{AgCI}|\text{CI}^-}^{\diamond} - E_{\text{Ag}^+|\text{Ag}}^{\diamond}) - \frac{RT}{F} \ln(a_{\text{CI}^-} \cdot a_{\text{Ag}^+})$$

= equilibrium condition

 $a_{Cl^-} \cdot a_{Ag^+} = K_s$

Electrode reaction:

- 1. diffusion of reactants to the electrode,
- (2. reaction in the adjacent layer),
- 3. adsorption of reactants to the electrode,
- 4. electron transfer of adsorbed molecules/ions and the electrode,
- 5. desorption of the products,
- (6. reaction in the adjacent layer),
- 7. diffusion of products out of the electrode.

In case of slowdown: polarization of electrodes:

- concentration polarization (1., 7.)
- chemical polarization

Overpotential 23/26 col08

is the voltage needed above the equilibrium potential (at one electrode) for the reaction to be actually observed—a sort of the activation energy.

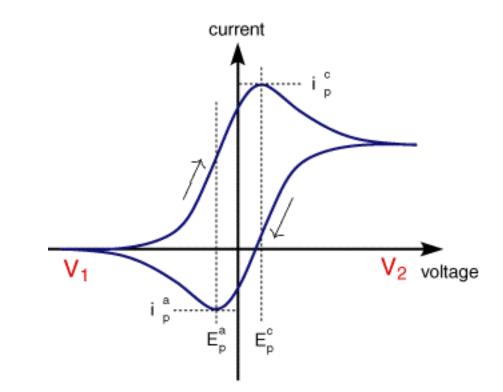
- Depeds on the electrode material (hydrogen on Pt: small, on Cu: 0.5 V, on Zn: 0.7 V),
- decreases slightly with increasing temperature,
- be depends on the current density $(\eta \approx a + b \ln j)$,
- increases power consumption during electrolysis
- High hydrogen overpotential on metals allows electrochemical deposition of metals with (slightly) negative potentials (Cr, Co), lead-acid battery some compounds catalyze H₂ production, can be used in analysis

Corrosion

- cathodic phase:
 metal is deposited

Cathodic protection:

passive – by anode of a more reactive metal (Zn, Al), which dissolves and produces a negative protective voltage on an object (ship hull) – "sacrificial anode"

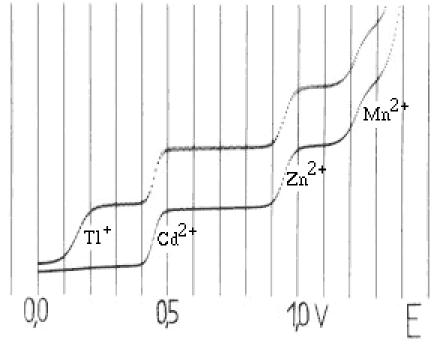


credit: RŠmi Kaupp (Wikimedia Commons)

active – additional ⊖ voltage on the object, anode is ⊕ (large pipes upto 50 V, 50 A)

Electroanalytical methods

- coulometry charge or current needed for a chemical reaction (Faraday's laws of electrolysis; Cu, Ag, O₂+H₂)
 - calibration of ammeters (ampere meters)
 - coulometric titration (const. current, time to equivalence)
- potentiometry voltage of a cell, (almost) zero current activity (concentration) of a substance is determined, then:
 - pH (glass electrode, quinhydrone, ...)
 - other ions
 - acidity constants
 - solubility products
 - activity coefficients
 - potentiometric titrations (pH etc.)
- voltammetry current vs. applied voltage:
 - cyclic voltammetry (right)
 - polarography


25/26

*col*08

Polarography

Voltammetric technique with a dropping mercury electrode

- Linear E: sensitivity up to 1×10⁻⁵ mol dm⁻³ Problem: capacitive current
- Differential pulse polarography (DPP): sensitivity to 1×10^{-7} mol dm⁻³

Jaroslav Heyrovský

credits: http://canov.jergym.cz/objevite/objev2/hey.htm, picture of polarograph by Luká Mioch, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4079721