Membranes and ions [cd www;mz donnan.html] 1/22 col09	Simple start: one ion permeates (jkv -g nafion.png) 2/22 col09
Semipermeable membrane; glass frit; diaphragm	$igoplus $ $m{\Theta}$ HCl, different concentrations at both sides of a membrane (glass, Nafion, \dots)
concentrations of ions on both sides differ	only cations H ⁺ can permeate
• different permeabilities of ions	Cations try to diffuse to places with a lower concentration.
mechanisms: "\alpha" = "is proportional"	Since the anions cannot follow them, a membrane po-
- pores (wider, permeability \propto diffusivity)	cal potentials is compensated by the electric potential, $\Delta \phi$
– sorption+diffusion (polymer membrane),	(also <i>E</i> , <i>ε</i>):
E.g.: cell membrane, kidneys, dialysis, fuel cells, liquid junction (beween elec-	$\mu_{\rm H^+}^{\rm right} - \mu_{\rm H^+}^{\rm left} + zF\Delta\phi = 0$
trolytes) [cf. osmotic pressure]	A = Aright = RT = R
We are interested in the membrane potential in equilibrium: – one ion permeates through the membrane – zero diffusion (fast!)	$\Delta \psi = \psi^{-3} - \psi^{-1} = -\frac{1}{zF} \prod_{\substack{n \neq n \\ H^+}} \approx -\frac{1}{zF} \prod_{\substack{n \neq n \\ H^+}} c_{ieft} c_{ieft$
– some ions permeate, other do not – Donnan equilibrium	Equivalently: the electrochemical potentials $\tilde{\mu}_i = \mu_i + z_i F \phi$ (z_i includes sign) of
• We are interested in the membrane potential during diffusion (irreversible!):	ions H ⁺ left and right are the same.
 thin membrane (e.g., cell): (bio)membrane potential (Goldman) electrolysis separated by a (thick) membrane; 	Macroscopic concentrations of H ⁺ (HCI) are unchanged (electroneutrality), only con-
liquid junction (diffusion) potential	centrations close to surfaces (within double-layer) are affected.
Donnan equilibria 3/22 col09	Donnan equilibria—membrane hydrolysis
left : right	In the left compartment, there is $n = 0.01$ mol of sodium <i>p</i> -toluensulfonate (NaTsO)
NaX : NaCl anion X ⁻ does not permeate	water. The membrane in impermeable for TsO ^{$-$} . Calculate pH in both compartments
NaCl :	in equilibrium at 25 °C.
The difference of the electrochemical potentials:	balance start equilibrium $A \phi = -\frac{RT}{Na^+} \ln c^{\text{right}} Na^+$
$\tilde{\mu}_{\text{NI}+}^{\text{right}} - \tilde{\mu}_{\text{NI}+}^{\text{left}} = RT \ln \frac{c_{\text{NA}+}^{\text{right}}}{c_{\text{NA}+}^{\text{right}}} + F\Delta \phi^{\text{equilibrium}} = 0$	$\begin{array}{ c c c c c }\hline \hline I SO^{-} & n & : & n & : \\\hline \hline \hline I SO^{-} & n & : & n & : \\\hline \hline \end{array}$
clent 'Na' CNa+	Na ⁺ n : $n-x$: x = $-\frac{RT}{E} \ln \frac{x/V^{\text{right}}}{x/V^{\text{right}}}$
$\ddot{u}^{right} = \ddot{u}^{left} = RT \ln \frac{c^{c}Cl}{c} = FAA^{equilibrium}$	OH^- : ≈ 0 : X $= 0.256V$
$\mu_{CI^-} = \mu_{CI^-} = 1711111 c_{CI^-}^{\text{left}} = 7240 = -0000000000000000000000000000000000$	Inf inf right right loft loft
Sum of both equations \Rightarrow	$c_{\text{Na}^+}^{\text{left}} = c_{\text{Na}^+}^{\text{left}} c_{\text{OH}^-}^{\text{left}} \text{ (or } c_{\text{Na}^+}^{\text{left}} / c_{\text{Na}^+}^{\text{left}} - c_{\text{H}^+}^{\text{left}} / c_{\text{H}^+}^{\text{left}})$ $n - x K_w \qquad x x$
$c_{Na^{+}}^{left}c_{CI^{-}}^{left}=c_{Na^{+}}^{right}c_{CI^{-}}^{right}$	$\frac{1}{V^{\text{left}}} \cdot \frac{1}{X/V^{\text{left}}} = \frac{1}{V^{\text{right}}} \cdot \frac{1}{V^{\text{right}}}$
Generally for salt $K_{\boldsymbol{\mathcal{V}}_{\Theta}}A_{\boldsymbol{\mathcal{V}}_{\Theta}}$:	Numerically (in mol, dm^{-3} ; more accurately by iterations)
$(c_{\oplus}^{\text{left}})^{\boldsymbol{\gamma}_{\oplus}}(c_{A}^{\text{left}})^{\boldsymbol{\gamma}_{\ominus}} = (c_{\oplus}^{\text{right}})^{\boldsymbol{\gamma}_{\oplus}}(c_{A}^{\text{right}})^{\boldsymbol{\gamma}_{\ominus}}$	$x = \sqrt[3]{K_{\rm W}(n-x)(V^{\rm right})^2} \approx^{\infty} \sqrt[3]{1 \times 10^{-14} \times 0.01} \text{mol} = 4.64 \times 10^{-6} \text{mol}$
Diffusion potential at a thin membrane 5/22 coll99	Thin membrane: Goldman equation
Diffusion potential at a thin membrane5/22 col09E.g., cell membrane (lipid double layer with ion channels)	Thin membrane: Goldman equation $6/22$ col09Flux of ions <i>i</i> at x (left x = 0, right x = 1): $[I_i] = mol m^{-2} s^{-1}$
Diffusion potential at a thin membrane $5/22$ $col09$ E.g., cell membrane (lipid double layer with ion channels)• we know ion concentrations c_i^{left} and c_i^{right}	Thin membrane: Goldman equation $6/22 \\ col09$ Flux of ions i at x (left x = 0, right x = L); $[J_i] = mol m^{-2} s^{-1}$ $\lambda_{i}c_i \mathcal{E}$ D_i
Diffusion potential at a thin membrane $5/22$ $col09$ E.g., cell membrane (lipid double layer with ion channels) ϕ we know ion concentrations c_i^{left} and c_i^{right} ϕ stationary diffusion—zero total current (after establishing voltage $\Delta\phi$, which is much faster) $\Delta\phi = \phi^{\text{right}} - \phi^{\text{left}}$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); $[J_i] = mol m^{-2} s^{-1}$ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i F} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i F \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $d_{c_i} D_i c_i z_i F \mathcal{E}$
Diffusion potential at a thin membrane $5/22$ $col09$ E.g., cell membrane (lipid double layer with ion channels)• we know ion concentrations c_i^{left} and c_i^{right} • stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)• size of molecules neglected, membrane = dielectric continuum	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); $[J_i] = mol m^{-2} s^{-1}$ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i F} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i F \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $= -D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i F \mathcal{E}}{RT}$
Diffusion potential at a thin membrane $5/22$ $col09$ E.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} •• stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows	Thin membrane: Goldman equation6/22 col09Flux of ions i at x (left x = 0, right x = L); [J _i] = mol m ⁻² s ⁻¹ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $= -D_i \frac{\mathrm{d}c_i}{\mathrm{dx}} + \frac{D_i c_i z_i \mathcal{F} \mathcal{E}}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can beintegrated (constrained on x (stationary flux—nothing accumulates). Equation can be
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} •• stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\alpha/\epsilon$: $E(L) = E(0) + L\alpha/\epsilon \approx E(0)$ pro $L \ll \lambda$	Thin membrane: Goldman equation 6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m^{-2} s^{-1} $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F}\phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $J_i = -D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i \mathcal{F}\mathcal{E}}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables):
Diffusion potential at a thin membrane $5/22$ $cologE.g., cell membrane (lipid double layer with ion channels)• we know ion concentrations c_i^{left} and c_i^{right}• stationary diffusion—zero total current(after establishing voltage \Delta\phi, which is much faster)• size of molecules neglected, membrane = dielectric continuum• electric field intensity \mathcal{E} = -\frac{d}{dx}\phi across the membrane is homogeneous followsfrom the Poisson equationd^2\phi/dx^2 = -\rho/\epsilon: E(L) = E(0) + L\rho/\epsilon \approx E(0) \text{ pro } L \ll \lambdaNonzero diffusion flux = irreversible phenomenon$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m^{-2} s^{-1} $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i F} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i F \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $= -D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i F \mathcal{E}}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_{0}^{L} dx = \int_{-left}^{c_i right} \frac{D_i}{c_i z_i F \mathcal{E} D_i (RT - I_i)} dc_i$
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} •• stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon : E(L) = E(0) + L\rho/\epsilon \approx E(0) \text{ pro } L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon Permeability of the membrane for ion $i: P_i = D_i K_{Ni}/L$ $u_i = D_i z_i F/RT$ $\lambda_i = z_i Fu_i$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m^{-2} s^{-1} $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $= -D_i \frac{\mathrm{d}c_i}{\mathrm{dx}} + \frac{D_i c_i z_i \mathcal{F} \mathcal{E}}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L \mathrm{dx} = \int_{c_i^{\text{right}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F} \mathcal{E} D_i / RT - J_i} \mathrm{d}c_i$ better $\int_{K_{Ni} c_i^{\text{left}}}^{K_{Ni} c_i^{\text{right}}} (K_{Ni} \text{ cancel out})$ We calculate J_i from concentrations and \mathcal{E} . After several steps:
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} $\Delta \phi = \phi^{right} - \phi^{left}$ • stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0)$ pro $L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $D_i = diffusivity$ in the membrane material; D_i in a frit = D_i in \odot .	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m^{-2} s^{-1} $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F}\phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $= -D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i \mathcal{F}\mathcal{E}}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{left}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F}\mathcal{E} D_i/RT - J_i} dc_i$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $e^{z_i} e^{\text{left}} - e^{\text{right}}$
Diffusion potential at a thin membrane $5/22$ $cologE.g., cell membrane (lipid double layer with ion channels)• we know ion concentrations c_i^{\text{left}} and c_i^{\text{right}}• stationary diffusion—zero total current(after establishing voltage \Delta\phi, which is much faster)• size of molecules neglected, membrane = dielectric continuum• electric field intensity \mathcal{E} = -\frac{d}{dx}\phi across the membrane is homogeneous followsfrom the Poisson equationd^2\phi/dx^2 = -\rho/\epsilon : E(L) = E(0) + L\rho/\epsilon \approx E(0) \text{ pro } L \ll \lambdaNonzero diffusion flux = irreversible phenomenonD_i = diffusivity in the membrane material; D_i in a frit = D_i in \odot."Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless forcamption from liquid \Rightarrow L = D_i C_i^{\text{right}}$	Final membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m^{-2} s^{-1}J_i = -D_i grad c_i + $\frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i grad [\mu_i + z_i \mathcal{F}\phi] = -\frac{D_i}{RT} c_i grad \tilde{\mu}_i$ $= -D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i \mathcal{F}\mathcal{E}}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{left}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F}\mathcal{E} D_i / RT - J_i} dc_i$ better $\int_{K_{NI} c_i^{\text{left}}}^{K_{NI} c_i^{\text{right}}} (K_{Ni} \text{ cancel out})$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F}\mathcal{E} \frac{\mathcal{E}^{z_i} c_i^{\text{left}} - c_i^{\text{right}}}{\mathcal{E}^{z_i - 1}}$, where $\epsilon = \exp\left(\frac{\mathcal{FL}\mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F}\Delta\phi}{RT}\right)$
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} •• stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0)$ pro $L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon D_i = diffusivity in the membrane material; D_i in a frit = D_i in \circ . "Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless for sorption from liquid $\Rightarrow J_i = P_i(c_i^{right} - c_i^{left})$	Final membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m^{-2} s^{-1}J_i = -D_i grad c_i + $\frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i grad [\mu_i + z_i \mathcal{F}\phi] = -\frac{D_i}{RT} c_i grad \tilde{\mu}_i$ = $-D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i \mathcal{F}\mathcal{E}}{RT}$ Ji does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{right}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F}\mathcal{E} D_i / RT - J_i} dc_i$ better $\int_{K_{Ni} c_i^{\text{right}}}^{K_{Ni} c_i^{\text{right}}} (K_{Ni} \text{ cancel out})$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F}\mathcal{E} \frac{e^{z_i} c_i^{\text{left}} - c_i^{\text{right}}}{e^{z_i} - 1}$, where $e = \exp\left(\frac{\mathcal{FL}\mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F}\Delta\phi}{RT}\right)$ Zero total current:NB signs: $\Delta\phi = \phi^{\text{right}} - \phi^{\text{left}} = -L\mathcal{E}$
Diffusion potential at a thin membrane $5/22 \\ colog$ E.g., cell membrane (lipid double layer with ion channels)• we know ion concentrations c_i^{left} and c_i^{right} • stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon : E(L) = E(0) + L\rho/\epsilon \approx E(0) \text{ pro } L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $D_i = \text{diffusivity in the membrane material; } D_i \text{ in a frit } D_i \text{ in o.}.$ "Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless for sorption from liquid $\Rightarrow J_i = P_i(c_i^{\text{right}} - c_i^{\text{left}})$ For univalent ions: $P_i \propto D_i \propto u_i \propto \lambda_i$ This is enough: we shall see that the voltage depends only on the ratio of permeabilities.	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m^{-2} s^{-1} $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $= -D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i \mathcal{F} \mathcal{E}}{RT}$ Ji does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{refint}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F} \mathcal{E} D_i / RT - J_i} dc_i$ better $\int_{K_{\text{NIC}}^{k_{\text{right}}}}^{K_{\text{NIC}}^{\text{right}}} (K_{\text{Ni}} \text{ cancel out})$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F} \mathcal{E} \frac{e^{Z_i} c_i^{\text{left}} - c_i^{\text{right}}}{e^{Z_i - 1}}$, where $\epsilon = \exp\left(\frac{\mathcal{F} \mathcal{L} \mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current:NB signs: $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}} = -\mathcal{L} \mathcal{E}$
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} $\Delta \phi = \phi^{right} - \phi^{left}$ • stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0)$ pro $L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $D_i = diffusivity in the membrane material; D_i in a frit = D_i in \odot."Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless forsorption from liquid \Rightarrow J_i = P_i(c_i^{right} - c_i^{left})For univalent ions:P_i \propto D_i \propto u_i \propto \lambda_i. This is enough: we shall see that the voltagedepends only on the ratio of permeabilities.7/22colog$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m^{-2} s^{-1}J_i = -D_i grad c_i + $\frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ = $-D_i \frac{dc_i}{dx} + \frac{D_i c_i c_i z_i \mathcal{F} \mathcal{E}}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{left}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F} \mathcal{E} D_i / RT} dc_i$ better $\int_{K_N c_i^{\text{right}}}^{K_N c_i^{\text{right}}} (K_N i \text{ cancel out})$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F} \mathcal{E} \frac{\mathcal{E}^{c_i c_i^{\text{left}}} - c_i^{\text{right}}}{e^{z_i - 1}}$, where $\epsilon = \exp\left(\frac{\mathcal{F} \mathcal{L} \mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current:NB signs: $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}} = -\mathcal{L} \mathcal{E}$ $0 = \sum_i z_i J_i$
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} •• stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0) \text{ pro } L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $D_i = \text{diffusivity in the membrane material; } D_i \text{ in a frit } D_i \text{ in } \phi."Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless forsorption from liquid \Rightarrow J_i = P_i(c_i^{\text{right}} - c_i^{\text{left}})For univalent ions:P_i \propto D_i \propto u_i \propto \lambda_i. This is enough: we shall see that the voltagedepends only on the ratio of permeabilities.7/22_{colog}Additional simplification: only univalent ions (z_i = 1)$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J _i] = mol m ⁻² s ⁻¹ Ji = -Di grad ci + $\frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F}\phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ = $-D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i \mathcal{F}\mathcal{E}}{RT}$ Ji does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{cleft}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F} \mathcal{E} D_i / RT - J_i} dc_i$ better $\int_{K_N c_i^{\text{cleft}}}^{K_N c_i^{\text{right}}} (K_N \text{ cancel out})$ We calculate J_i from concentrations and \mathcal{E} . After several steps:Ji RT = D_i z_i \mathcal{F} \mathcal{E} \frac{e^{z_i c_i^{\text{left}}} - c_i^{\text{right}}}{e^{z_i - 1}}, where $\epsilon = \exp\left(\frac{\mathcal{F} \mathcal{L} \mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current:NB signs: $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}} = -\mathcal{L} \mathcal{E}$ 0 = $\sum_i z_i J_i$ 8/22 cologRelative permeabilities of main ions in the mammalian plasmatic membrane are:
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} $\Delta \phi = \phi^{right} - \phi^{left}$ • stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2 \phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0) \text{ pro } L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $D_i = diffusivity in the membrane material; D_i in a frit = D_i in \circ."Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless forsorption from liquid \Rightarrow J_i = P_i(c_i^{right} - c_i^{left})For univalent ions:P_i \propto D_i \propto u_i \propto \lambda_i. This is enough: we shall see that the voltagedepends only on the ratio of permeabilities.7/22cologAdditional simplification: only univalent ions (z_i = 1)Let's sum anions and cations separately, replacing D_i \propto P_i7/22colog$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m^{-2} s^{-1} $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{right}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F} \mathcal{E} D_i / RT - J_i} dc_i$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F} \mathcal{E} \frac{\mathcal{E}^{2i} c_i^{\text{eff}} - c_i^{\text{right}}}{\mathcal{E}^{2i-1}}$, where $\epsilon = \exp\left(\frac{\mathcal{F} \mathcal{L} \mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current: $0 = \sum_i z_i J_i$ B signs: $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}} = -\mathcal{L} \mathcal{E}$ $0 = \sum_i z_i J_i$ Relative permeabilities of main ions in the mammalian plasmatic membrane are: $\mathcal{P}(K^+) = 1, \mathcal{P}(Na^+) = 0.04, \mathcal{P}(C\Gamma^-) = 0.45$
Diffusion potential at a thin membrane $5/22 \\ colog$ E.g., cell membrane (lipid double layer with ion channels)• we know ion concentrations c_i^{left} and c_i^{right} • stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0) \text{ pro } L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $D_i = diffusivity in the membrane material; D_i in a frit = D_i in \odot."Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless forsorption from liquid \Rightarrow J_i = P_i(c_i^{right} - c_i^{left})For univalent ions:P_i \propto D_i \propto u_i \propto \lambda_i. This is enough: we shall see that the voltagedepends only on the ratio of permeabilities.7/22cologAdditional simplification: only univalent ions (z_i = 1)Let's sum anions and cations separately, replacing D_i \propto P_i\Rightarrow linear equation for \epsilon, after rearranging:$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m^{-2} s^{-1}J_i = -D_i grad c_i + $\frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i grad [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i grad \tilde{\mu}_i$ = $-D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i \mathcal{F} \mathcal{E}}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables):better $\int_{K_N \mathcal{L}_i^{\text{right}}}^{K_N \mathcal{L}_i^{\text{right}}} dc_i$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F} \mathcal{E} \frac{\mathcal{E}^{z_i c_i^{\text{left}}}{e^{z_i - 1}}$, where $\epsilon = \exp\left(\frac{\mathcal{F} \mathcal{L} \mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current:NB signs: $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}} = -\mathcal{L} \mathcal{E}$ $0 = \sum_i z_i J_i$ $0 = \sum_i z_i J_i$ Goldman equation: example $8/22$ cologRelative permeabilities of main ions in the mammalian plasmatic membrane are: $\mathcal{P}(K^+) = 1$, $\mathcal{P}(Na^+) = 0.04$, $\mathcal{P}(Cl^-) = 0.45$ Concentrations inside the cell (in mmol dm^{-3}): $[K^+]^{\text{right}} = 400$, $[Na^+]^{\text{right}} = 50$, $[Cl^-]^{\text{right}} = 50$
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}}$ • stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0) \text{ pro } L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $D_i = \text{diffusivity in the membrane material; } D_i \text{ in a frit } D_i \text{ in o.}$ "Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless for sorption from liquid $\Rightarrow J_i = P_i(c_i^{\text{right}} - c_i^{\text{left}})$ For univalent ions: $P_i \propto D_i \propto u_i \propto \lambda_i$. This is enough: we shall see that the voltage depends only on the ratio of permeabilities. Thin membrane: Goldman equation $7/22_c_{colog}$ Additional simplification: only univalent ions ($ z_i = 1$)Let's sum anions and cations separately, replacing $D_i \propto P_i$ \Rightarrow linear equation for ϵ , after rearranging:	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m^{-2} s^{-1} $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can beintegrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{right}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F} \mathcal{E} D_i / RT - J_i} dc_i$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F} \mathcal{E} \frac{e^{z_i c_i^{\text{left}} - c_i^{\text{right}}}{e^{z_i - 1}}$, where $\epsilon = \exp\left(\frac{\mathcal{F} \mathcal{L} \mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current:NB signs: $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}} = -\mathcal{L} \mathcal{E}$ $0 = \sum_i z_i J_i$ Relative permeabilities of main ions in the mammalian plasmatic membrane are: $\mathcal{P}(K^+) = 1, \mathcal{P}(Na^+) = 0.04, \mathcal{P}(CI^-) = 0.45$ Concentrations inside the cell (in mmol dm^{-3}): $[K^+]^{\text{right}} = 400, [Na^+]^{\text{right}} = 50, [CI^-]^{\text{right}} = 50$ Concentrations outside the cell (in mmol dm^{-3}):
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}}$ • stationary diffusion-zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0) \text{ pro } L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $\mu_i = D_i z_i F/RT$ $\lambda_i = z_i F/RT$ <	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J _i] = mol m ⁻² s ⁻¹ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can beintegrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{right}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F} \mathcal{E} D_i / RT - J_i} dc_i$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F} \mathcal{E} \frac{e^{z_i c_i^{\text{left}} - c_i^{\text{right}}}{e^{z_i - 1}}$, where $\epsilon = \exp\left(\frac{\mathcal{F} \mathcal{L} \mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current:NB signs: $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}} = -\mathcal{L} \mathcal{E}$ $0 = \sum_i z_i J_i$ Relative permeabilities of main ions in the mammalian plasmatic membrane are: $\mathcal{P}(K^+) = 1, \mathcal{P}(Na^+) = 0.04, \mathcal{P}(CI^-) = 0.45$ Concentrations inside the cell (in mmol dm ⁻³): $[K^+]^{\text{right}} = 400, [Na^+]^{\text{right}} = 50, [CI^-]^{\text{right}} = 50$ Concentrations outside the cell (in mmol dm ⁻³): $[K^+]^{\text{left}} = 20, [Na^+]^{\text{right}} = 500, [CI^-]^{\text{right}} = 500$
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} •• stationary diffusion-zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx} \phi$ across the membrane is homogeneous follows from the Poisson equation $d^2 \phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0)$ pro $L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $\mu_i = D_i z_i F/RT$ $\lambda_i = z_i FullPermeability of the membrane for ion i: P_i = D_i K_{Ni}/LD_i = diffusivity in the membrane material; D_i in a frit = D_i in \circ."Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless forsorption from liquid \Rightarrow J_i = P_i(c_i^{right} - c_i^{left})For univalent ions:P_i \propto D_i \propto u_i \propto \lambda_i. This is enough: we shall see that the voltagedepends only on the ratio of permeabilities.Thin membrane:Goldman equation2/22_{colog}Additional simplification: only univalent ions (z_i = 1)Let's sum anions and cations separately, replacing D_i \propto P_i\Rightarrow linear equation for \epsilon_i after rearranging:\Delta \phi = -\frac{RT}{F} \ln \frac{\sum_{cations} P_i c_i^{right} + \sum_{anions} P_i c_i^{right}}{\sum_{cations} P_i c_i^{right} + \sum_{anions} P_i c_i^{right}}$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J _i] = mol m ⁻² s ⁻¹ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{2\ell_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can beintegrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{right}}}^{c_i^{\text{right}}} \frac{D_i}{c_i (2\ell_i^{\text{FE}} D_i/RT - J_i} dc_i$ better $\int_{K_N c_i^{\text{right}}}^{K_N c_i^{\text{right}}} \frac{dc_i}{e^{2i} - 1}$, where $\epsilon = \exp\left(\frac{FL\mathcal{E}}{RT}\right) = \exp\left(-\frac{F\Delta\phi}{RT}\right)$ Zero total current: $0 = \sum_i z_i J_i$ Belative permeabilities of main ions in the mammalian plasmatic membrane are: $P(K^+) = 1, P(Na^+) = 0.04, P(Cl^-) = 0.45$ Concentrations inside the cell (in mmol dm ⁻³): $[K^+]^{\text{right}} = 400, [Na^+]^{\text{right}} = 500, [Cl^-]^{\text{right}} = 500$ Concentrations outside the cell (in mmol dm ⁻³): $[K^+]^{\text{right}} = 20, [Na^+]^{\text{right}} = 500, [Cl^-]^{\text{right}} = 500$ The resting potential of the membrane:
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} •• stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0) \text{ pro } L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $d^2\phi/dx^2 = -\rho/\epsilon$: $E(L) = D_i K_{Ni}/L$ $u_i = D_i z_i F/RT$ $\lambda_i = z_i FullD_i = diffusivity in the membrane for ion i: P_i = D_i K_{Ni}/Lu_i = D_i z_i F/RT\lambda_i = z_i FullD_i = diffusivity in the membrane material; D_i in a frit = D_i in \odot."Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless forsorption from liquid \Rightarrow J_i = P_i(c_i^{right} - c_i^{left})For univalent ions: P_i \propto D_i \propto u_i \propto \lambda_i. This is enough: we shall see that the voltagedepends only on the ratio of permeabilities.Thin membrane: Goldman equation7/22cologAdditional simplification: only univalent ions (z_i = 1)Let's sum anions and cations separately, replacing D_i \propto P_i\Rightarrow linear equation for \epsilon, after rearranging:\Delta \phi = -\frac{RT}{F} \ln \frac{\sum_{cations} P_i c_i^{right} + \sum_{canions} P_i c_i^{right}}{\sum_{cations} P_i c_i^{right} + \sum_{canions} P_i c_i^{right}$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); $[J_i] = mol m^{-2} s^{-1}$ $J_i = -D_i grad c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i grad [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i grad \tilde{\mu}_i$ $= -D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i \mathcal{F} \mathcal{E}}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{right}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F} \mathcal{E} D_i / RT} - J_i dc_i$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F} \mathcal{E} \frac{e^{z_i c_i^{\text{left}} - c_i^{\text{right}}}{e^{z_i - 1}}$, where $\epsilon = \exp\left(\frac{\mathcal{F} \mathcal{L} \mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current: $0 = \sum_i z_i J_i$ Relative permeabilities of main ions in the mammalian plasmatic membrane are: $\mathcal{P}(K^+) = 1, \mathcal{P}(Na^+) = 0.04, \mathcal{P}(CI^-) = 0.45$ Concentrations inside the cell (in mmol dm^{-3}): $[K^+]^{\text{right}} = 400, [Na^+]^{\text{right}} = 50, [CI^-]^{\text{right}} = 50$ Concentrations outside the cell (in mmol dm^{-3}): $[K^+]^{\text{right}} = 20, [Na^+]^{\text{right}} = 50, [CI^-]^{\text{right}} = 50$ Concentrations outside the cell (in mol dm^{-3}): $[K^+]^{\text{right}} = 1, \frac{D_i \sum_{cations} \mathcal{P}_i c_i^{\text{right}} + \sum_{anions} \mathcal{P}_i c_i^{\text{left}}$ $\Delta \phi = -\frac{RT}{T} ln \frac{\sum_{cations} \mathcal{P}_i c_i^{\text{right}} + \sum_{anions} \mathcal{P}_i c_i^{\text{left}}}{right}$
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} •• stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0) \text{ pro } L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $D_i = diffusivity in the membrane for ion i: P_i = D_i K_{Ni}/Lu_i = D_i z_i F/RT\lambda_i = z_i Fu_i D_i = diffusivity in the membrane for ion i: P_i = D_i K_{Ni}/Lu_i = D_i z_i F/RT\lambda_i = z_i Fu_i To runivalent ions:P_i \propto D_i \propto u_i \propto \lambda_iThis is enough: we shall see that the voltagedepends only on the ratio of permeabilities.Thin membrane:Goldman equation7/22cologAdditional simplification: only univalent ions z_i = 1Let's sum anions and cations separately, replacing D_i \propto P_i\Rightarrow linear equation for \epsilon, after rearranging:\Delta \phi = -\frac{RT}{F} \ln \frac{\sum_{cations} P_i c_i^{left} + \sum_{anions} P_i c_i^{left}}{\sum_{cations} P_i c_i^{left} + \sum_{anions} P_i c_i^{right}}$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J _i] = mol m ⁻² s ⁻¹ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $J_i = -D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i \mathcal{F} \mathcal{E}}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{right}}}^{c_i^{\text{right}}} \frac{D_i}{c_i z_i \mathcal{F} \mathcal{E} D_i / RT} - J_i dc_i$ better $\int_{\mathcal{K}_{Nu} \mathcal{C}_i^{\text{right}}}^{\mathcal{K}_{Nu} \mathcal{C}_i^{\text{right}}} (\mathcal{K}_{Ni} \text{ cancel out})$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F} \mathcal{E} \frac{e^{z_i c_i^{\text{left}}} - c_i^{\text{right}}}{e^{z_i - 1}}$, where $\epsilon = \exp\left(\frac{\mathcal{F} \mathcal{L} \mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current:NB signs: $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}} = -\mathcal{L} \mathcal{E}$ $0 = \sum_i z_i J_i$ $0 = \sum_i z_i J_i$ Goldman equation: example $\frac{8/22}{colog}$ Relative permeabilities of main ions in the mammalian plasmatic membrane are: $\mathcal{P}(K^+) = 1, \mathcal{P}(Na^+) = 0.04, \mathcal{P}(Cl^-) = 0.45$ Concentrations outside the cell (in mmol dm^{-3}): $[K^+]^{\text{right}} = 400, [Na^+]^{\text{right}} = 50, [Cl^-]^{\text{right}} = 50$ The resting potential of the membrane: $\Delta \phi = -\frac{RT}{\mathcal{F}} \ln \frac{\sum_{\text{cations}} \mathcal{P}_i c_i^{\text{right}} + \sum_{\text{anions}} \mathcal{P}_i c_i^{\text{left}}}$
Diffusion potential at a thin membrane 5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} •• stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx} \phi$ across the membrane is homogeneous follows from the Poisson equation $d^2 \phi/dx^2 = -\rho/\epsilon$: $E(L) = E(0) + L\rho/\epsilon \approx E(0)$ pro $L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $Permeability of the membrane for ion i: P_i = D_i K_{Ni}/Lu_i = D_i Z_i F/RT\lambda_i = z_i Fu_i D_i = diffusivity in the membrane material; D_i in a frit = D_i in \circ."Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless forsorption from liquid \Rightarrow J_i = P_i (c_i^{right} - c_i^{left})For univalent ions:P_i \propto D_i \propto u_i \propto \lambda_i. This is enough: we shall see that the voltagedepends only on the ratio of permeabilities.Thin membrane: Goldman equation\Delta \phi = -\frac{RT}{F} ln \sum_{cations} P_i c_i^{right} + \sum_{anions} P_i c_i^{right}\sum_{cations} P_i c_i^{right} + \sum_{anions} P_i c_i^{right}$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J _i] = mol m ⁻² s ⁻¹ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $= -D_i \frac{dc_i}{dx} + \frac{D_i c_i z_i \mathcal{F} \mathcal{E}}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_1^{eff}}^{c_1^{eff} \operatorname{th}} \frac{D_i}{c_i z_i \mathcal{F} \mathcal{E} D_i / RT - J_i} dc_i$ better $\int_{K_N \mathcal{L}_i^{eff}}^{K_N \mathcal{L}_i^{eff} \operatorname{th}} (K_{N_i} \operatorname{caccel out})$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F} \mathcal{E} \frac{\mathcal{E}^{ieff} c_i^{eff} - c_i^{efght}}{e^{z_i - 1}}$, where $\epsilon = \exp\left(\frac{\mathcal{F} L \mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current:NB signs: $\Delta \phi = \phi^{right} - \phi^{left} = -L \mathcal{E}$ $0 = \sum_i z_i J_i$ $\theta = \sum_i z_i J_i$ Goldman equation: example $\theta/22$ cologRelative permeabilities of main ions in the mammalian plasmatic membrane are: $\mathcal{P}(K^+) = 1$, $\mathcal{P}(N^+) = 0.04$, $\mathcal{P}(Cl^-) = 0.45$ Concentrations outside the cell (in mmol dm ⁻³): $[K^+]^{right} = 400$, $[Na^+]^{right} = 50$, $[Cl^-]^{right} = 50$ Chart exits on the det cell (in mmol dm ⁻³): $[K^+]^{right} = 20$, $[Na^+]^{right} = 50$, $[Cl^-]^{right} = 50$ $\Delta \phi = -\frac{RT}{\mathcal{F}} \ln \frac{\sum_{cations} \mathcal{P}_i c_i^{right} + \sum_{anions} \mathcal{P}_i c_i^{right}}{\sum_{cations} \mathcal{P}_i c_i^{right} + \sum_{anions} \mathcal{P}_i c_i^{right}}$ $\Delta \phi = -\frac{8.314 J \operatorname{mol}^{-1} K^{-1} \times 310 K}{\rho_i c_i^{right} + \sum_{anions} \mathcal{P}_i c_i^{right}$
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} $\Delta \phi = \phi^{right} - \phi^{left}$ • stationary diffusion-zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx}\phi$ across the membrane is homogeneous follows from the Poisson equation $d^2\phi/dx^2 = -\rho/\epsilon$: $\mathcal{E}(L) = \mathcal{E}(0) + L\rho/\epsilon \approx \mathcal{E}(0)$ pro $L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $D_i = D_i Z_i F/RT$ $\lambda_i = Z_i F/RT$ <b< th=""><td>Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J_i] = mol m⁻² s⁻¹$J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i c^2}{z_i F} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i F\phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $= -D_i \frac{dc_i}{dx} + \frac{D_i c_i 2^i F^E}{RT}$$J_i$ does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{right}}}^{c_i^{\text{right}}} \frac{D_i}{c_i 2^i F^E D_i/RT - J_i} dc_i$better $\int_{K_{NL}c_i^{\text{right}}}^{K_{NL}c_i^{\text{right}}} (K_{Ni} \text{ cancel out})$We calculate J_i from concentrations and \mathcal{E}. After several steps:$J_i RT = D_i z_i F^E \frac{e^{z_i c_i^{\text{left}} - c_i^{\text{right}}}{e^{z_i - 1}}$, where $\epsilon = \exp\left(\frac{FL^E}{RT}\right) = \exp\left(-\frac{F\Delta\phi}{RT}\right)$Zero total current:NB signs: $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}} = -L\mathcal{E}$$0 = \sum_i z_i J_i$$0 = \sum_i z_i J_i$Goldman equation: example$8/22$ cologRelative permeabilities of main ions in the mammalian plasmatic membrane are: $P(K^+) = 1, P(Na^+) = 0.04, P(Cl^-) = 0.45$Concentrations outside the cell (in mmol dm⁻³): $[K^+]^{\text{right}} = 400, [Na^+]^{\text{right}} = 50, [Cl^-]^{\text{right}} = 50$Concentrations outside the cell (in mmol dm⁻³): $\sum_{\text{cations}} P_i c_i^{\text{right}} + \sum_{\text{anions}} P_i c_i^{\text{left}}$$\Delta \phi = -\frac{RT}{F} \ln \frac{\sum_{\text{cations}} P_i c_i^{\text{right}} + \sum_{\text{anions}} P_i c_i^{\text{left}}}{20 + 0.04 \times 50 + 0.45 \times 560}$$\Delta \phi = -\frac{8.314 J \mod ^{-1} K^{-1} \times 310 K}{96485 \operatorname{Cmol}^{-1}} \times \ln \frac{1 \times 400 + 0.04 \times 50 + 0.45 \times 560}{1 \times 20 + 0.04 \times 500 + 0.45 \times 550}$</td></b<>	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); [J _i] = mol m ⁻² s ⁻¹ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i c^2}{z_i F} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i F\phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $= -D_i \frac{dc_i}{dx} + \frac{D_i c_i 2^i F^E}{RT}$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can be integrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{right}}}^{c_i^{\text{right}}} \frac{D_i}{c_i 2^i F^E D_i/RT - J_i} dc_i$ better $\int_{K_{NL}c_i^{\text{right}}}^{K_{NL}c_i^{\text{right}}} (K_{Ni} \text{ cancel out})$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i F^E \frac{e^{z_i c_i^{\text{left}} - c_i^{\text{right}}}{e^{z_i - 1}}$, where $\epsilon = \exp\left(\frac{FL^E}{RT}\right) = \exp\left(-\frac{F\Delta\phi}{RT}\right)$ Zero total current:NB signs: $\Delta \phi = \phi^{\text{right}} - \phi^{\text{left}} = -L\mathcal{E}$ $0 = \sum_i z_i J_i$ $0 = \sum_i z_i J_i$ Goldman equation: example $8/22$ cologRelative permeabilities of main ions in the mammalian plasmatic membrane are: $P(K^+) = 1, P(Na^+) = 0.04, P(Cl^-) = 0.45$ Concentrations outside the cell (in mmol dm ⁻³): $[K^+]^{\text{right}} = 400, [Na^+]^{\text{right}} = 50, [Cl^-]^{\text{right}} = 50$ Concentrations outside the cell (in mmol dm ⁻³): $\sum_{\text{cations}} P_i c_i^{\text{right}} + \sum_{\text{anions}} P_i c_i^{\text{left}}$ $\Delta \phi = -\frac{RT}{F} \ln \frac{\sum_{\text{cations}} P_i c_i^{\text{right}} + \sum_{\text{anions}} P_i c_i^{\text{left}}}{20 + 0.04 \times 50 + 0.45 \times 560}$ $\Delta \phi = -\frac{8.314 J \mod ^{-1} K^{-1} \times 310 K}{96485 \operatorname{Cmol}^{-1}} \times \ln \frac{1 \times 400 + 0.04 \times 50 + 0.45 \times 560}{1 \times 20 + 0.04 \times 500 + 0.45 \times 550}$
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} $\Delta \phi = \phi^{right} - \phi^{left}$ • stationary diffusion—zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx} \phi$ across the membrane is homogeneous follows from the Poisson equation $d^2 \phi/dx^2 = -\rho/\epsilon : \mathcal{E}(L) = \mathcal{E}(0) + L\rho/\epsilon \approx \mathcal{E}(0) \text{ pro } L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $u_i = D_i z_i F/RT$ $\lambda_i = z_i Fu_i $ D_i = diffusivity in the membrane for ion $i: P_i = D_i K_{Ni}/L$ $D_i = diffusivity in the membrane material; D_i in a fitt = D_i in \bullet."Nernst distribution coefficient" K_{Ni} here = sorption coefficient, dimensionless forsorption from liquid \Rightarrow J_i = P_i(c_i^{right} - c_i^{left})For univalent ions:P_i \propto D_i \propto u_i \propto \lambda_i. This is enough: we shall see that the voltagedepends only on the ratio of permeabilities.Thin membrane:Goldman equation2^{722}_{col09}Additional simplification: only univalent ions (z_i = 1)Let's sum anions and cations separately, replacing D_i \propto P_i\Rightarrow linear equation for \varepsilon, after rearranging:\Delta \phi = -\frac{RT}{F} \ln \sum_{cations} P_i c_i^{right} + \sum_{anions} P_i c_i^{right}\Delta \phi = -\frac{RT}{F} \ln \sum_{cations} P_i c_i^{right} + \sum_{anions} P_i c_i^{right}$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); $[J_i] = mol m^{-2} s^{-1}$ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $J_i = -D_i \operatorname{drad} c_i + \frac{\lambda_i c_i \mathcal{E}}{dx} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can beintegrated (separation of variables): $\int_0^L dx = \int_{c_i}^{c_i^{right}} \frac{D_i}{c_i z_i \mathcal{F} \mathcal{E} D_i / RT - J_i} dc_i$ better $\int_{K_N \mathcal{C}_i^{right}}^{K_N \mathcal{C}_i^{right}} (K_N \operatorname{cancel out})$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F} \mathcal{E} \frac{e^{2i} c_i^{left} - c_i^{right}}{e^{2i-1}}$, where $\epsilon = \exp\left(\frac{\mathcal{F} L \mathcal{E}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current:NB signs: $\Delta \phi = \phi^{right} - \phi^{left} = -L \mathcal{E}$ $0 = \sum_i z_i J_i$ Goldman equation: example $\ell_i^{2/22}$ Concentrations on sinde the cell (in mmoldm ⁻³): $[K^+]^{right} = 400, [Na^+]^{right} = 50, [Cl^-]^{right} = 50$ Concentrations outside the cell (in mmoldm ⁻³): $[K^+]^{right} = 20, [Na^+]^{right} = 500, [Cl^-]^{right} + \sum_{anions} \mathcal{P}_i c_i^{right}$ $\Delta \phi = -\frac{RT}{F} \ln \frac{\sum_{cations} \mathcal{P}_i c_i^{right} + \sum_{anions} \mathcal{P}_i c_i^{right}}{\sum_{cations} \mathcal{P}_i c_i^{right} + \sum_{anions} \mathcal{P}_i c_i^{right}}$ $\Delta \phi = -\frac{RT}{F} \ln \frac{\sum_{cations} \mathcal{P}_i c_i^{right} + \sum_{anions} \mathcal{P}_i c_i^{right}}{\sum_{cations} \mathcal{P}_i c_i^{right} + \sum_{$
Diffusion potential at a thin membrane5/22 cologE.g., cell membrane (lipid double layer with ion channels)•• we know ion concentrations c_i^{left} and c_i^{right} •• we know ion concentrations c_i^{left} and c_i^{right} •• stationary diffusion-zero total current (after establishing voltage $\Delta \phi$, which is much faster)•• size of molecules neglected, membrane = dielectric continuum• electric field intensity $\mathcal{E} = -\frac{d}{dx} \phi$ across the membrane is homogeneous follows from the Poisson equation $d^2 \phi/dx^2 = -\rho/\epsilon$: $\mathcal{E}(L) = \mathcal{E}(0) + L\rho/\epsilon \approx \mathcal{E}(0) \text{ pro } L \ll \lambda$ Nonzero diffusion flux = irreversible phenomenon $\mu_i = D_i x_i /L$ $u_i = D_i z_i F/RT$ $\lambda_i = z_i Fu_i $ D_i = diffusivity in the membrane for ion $i: P_i = D_i k_N i/L$ $u_i = D_i z_i F/RT$ $\lambda_i = z_i Fu_i $ D_i = diffusivity in the membrane for ion $i: P_i = D_i k_N i/L$ $u_i = D_i z_i F/RT$ $\lambda_i = z_i Fu_i $ D_i = diffusivity in the membrane material: D_i in a firt = D_i in \circ . "Nernst distribution coefficient" K_N here = sorption coefficient, dimensionless for sorption from liquid $\Rightarrow J_i = P_i(c_i^{right} - c_i^{left})$ For univalent ions: $P_i \propto D_i \propto u_i \propto \lambda_i$. This is enough: we shall see that the voltage depends only on the ratio of permeabilities.Thin membrane: Goldman equation $T/22_i$ Cations $P_i c_i^{right} + \sum_{anions} P_i c_i^{right}$ $\sum_{colog} P_i c_i^{right} + \sum_{anions} P_i c_i^{right}$ $\sum_{colog} P_i c_i^{right} + \sum_{anions} P_i c_i^{right}$ $\Delta \phi = -\frac{R_T}{F}$ $u_i = 0$ $\sum_{colog} P_i c_i^{right} + \sum_{anions} P_i c_i^{right}$ $\sum_{colog} P_i c_i^{right} + \sum_{anions} P_i c_i^{right} + \sum_{anions} P_i c_i^{righ$	Thin membrane: Goldman equation6/22 cologFlux of ions i at x (left x = 0, right x = L); $[J_i] = molm^{-2}s^{-1}$ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ $J_i = -D_i \operatorname{grad} c_i + \frac{\lambda_i c_i \mathcal{E}}{z_i \mathcal{F}} = -\frac{D_i}{RT} c_i \operatorname{grad} [\mu_i + z_i \mathcal{F} \phi] = -\frac{D_i}{RT} c_i \operatorname{grad} \tilde{\mu}_i$ J_i does not depend on x (stationary flux—nothing accumulates). Equation can beintegrated (separation of variables): $\int_0^L dx = \int_{c_i^{\text{eff}}}^{c_i^{\text{right}}} \frac{D_i}{c_i \mathcal{E} \mathcal{E} D_i / RT - J_i} dc_i$ We calculate J_i from concentrations and \mathcal{E} . After several steps: $J_i RT = D_i z_i \mathcal{F} \mathcal{E} \frac{\mathcal{E}^i c_i^{\text{left}} - c_i^{\text{right}}}{\mathcal{E}^{2i-1}}$, where $e = \exp\left(\frac{\mathcal{F} \mathcal{L}}{RT}\right) = \exp\left(-\frac{\mathcal{F} \Delta \phi}{RT}\right)$ Zero total current: $0 = \sum_i z_i J_i$ Relative permeabilities of main ions in the mammalian plasmatic membrane are: $P(K^+) = 1, P(Na^+) = 0.04, P(C\Gamma^-) = 0.45$ Concentrations outside the cell (in mmol dm^{-3}): $[K^+]^{\text{right}} = 20, [Na^+]^{\text{right}} = 50, [C\Gamma^-]^{\text{right}} = 50$ The resting potential of the membrane: $\Delta \phi = -\frac{RT}{F} \ln \frac{\sum_{\text{cations}} P_i c_i^{\text{right}} + \sum_{\text{anions}} P_i c_i^{\text{right}}}{\sum_{\text{cations}} P_i c_i^{\text{right}} + \sum_{\text{anions}} P_i c_i^{\text{right}}$ $\Delta \phi = -0.063 \vee$ The inside of the cell ("right") is negative, because K ⁺ faster escape from the cell

