
Membranes and ions
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Semipermeable membrane; glass frit; diaphragm

concentrations of ions on both sides differ

different permeabilities of ions

mechanisms: “∝” = “is proportional”
– ion channels (in cell membrane)
– pores (wider, permeability ∝ diffusivity)
– sorption+diffusion (polymer membrane), . . .

E.g.: cell membrane, kidneys, dialysis, fuel cells, liquid junction (beween elec-
trolytes) [cf. osmotic pressure]

We are interested in the membrane potential in equilibrium:
– one ion permeates through the membrane – zero diffusion (fast!)
– some ions permeate, other do not – Donnan equilibrium

We are interested in the membrane potential during diffusion (irreversible!):
– thin membrane (e.g., cell): (bio)membrane potential (Goldman)
– electrolysis separated by a (thick) membrane:

liquid junction (diffusion) potential

Simple start: one ion permeates
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� HCl, different concentrations at both sides of a membrane (glass, Nafion, . . . )

only cations H+ can permeate

Cations try to diffuse to places with a lower concentration.
Since the anions cannot follow them, a membrane po-
tential arises. In equilibrium, the difference in the chemi-
cal potentials is compensated by the electric potential, Δϕ
(also E, E):

μright
H+ − μleft

H+ + zFΔϕ = 0

Δϕ = ϕright − ϕleft = −RT
zF
ln
right

H+

left
H+
≈ −RT

zF
ln
cright

H+

cleft
H+

⊕ 	
cleft < cright

Δϕ = ϕright − ϕleft

Equivalently: the electrochemical potentials μ̃ = μ + zFϕ (z includes sign) of
ions H+ left and right are the same.

Macroscopic concentrations of H+ (HCl) are unchanged (electroneutrality), only con-
centrations close to surfaces (within double-layer) are affected.

Donnan equilibria
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left : right

NaX : NaCl

NaCl :

anion X− does not permeate

The difference of the electrochemical potentials:

μ̃right
Na+ − μ̃left

Na+ = RT ln
cright

Na+

cleft
Na+

+ FΔϕ
equilibrium

= 0

μ̃right
Cl− − μ̃

left
Cl− = RT ln

cright
Cl−

cleft
Cl−
− FΔϕ equilibrium

= 0

Sum of both equations ⇒
cleft

Na+c
left
Cl− = c

right
Na+ c

right
Cl−

Generally for salt Kννν⊕Aννν	:

(cleft
⊕ )

ννν⊕(cleft
A )ννν	 = (cright

⊕ )ννν⊕(cright
A )ννν	

Donnan equilibria—membrane hydrolysis
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In the left compartment, there is n = 0.01 mol of sodium p-toluensulfonate (NaTsO)
in V left = 100 ml of water; in the right compartment, there is Vright = 1 L of pure
water. The membrane in impermeable for TsO−. Calculate pH in both compartments
in equilibrium at 25 ◦C.

balance start equilibrium

[mol] left : right left : right

TsO− n : n :

Na+ n : n −  : 

OH− : ≈ 0 : 

H+ :  : ≈ 0

Δϕ = −RTF ln
cright
Na+

cleft
Na+

= −RTF ln /Vright

(n−)/V left

= 0.256V

cleft
Na+c

left
OH− = cright

Na+ c
right
OH− (or cright

Na+ /c
left
Na+ = c

right
H+ /cleft

H+ )
n − 
V left

· Kw

/V left
=



Vright
· 

Vright

Numerically (in mol, dm−3; more accurately by iterations)

 =
3
q
Kw(n − )(Vright)2

�n≈ 3
Æ
1×10−14 × 0.01mol = 4.64×10−6mol

pHleft = 4.3, pHright = 8.7

Diffusion potential at a thin membrane
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E.g., cell membrane (lipid double layer with ion channels)

we know ion concentrations cleft
 and cright

 Δϕ = ϕright− ϕleft

stationary diffusion—zero total current
(after establishing voltage Δϕ, which is much faster)

size of molecules neglected, membrane = dielectric continuum

electric field intensity E = − d
dϕ across the membrane is homogeneous follows

from the Poisson equation

d2ϕ/d2 = −ρ/ε : E(L) = E(0) + Lρ/ε ≈ E(0) pro L� λ

Nonzero diffusion flux = irreversible phenomenon  = D|z|F/RT
λ = |z|FPermeability of the membrane for ion : P = DKN/L

D = diffusivity in the membrane material; D in a frit = D in �.

“Nernst distribution coefficient” KN here = sorption coefficient, dimensionless for

sorption from liquid ⇒ J = P(c
right
 − cleft

 )

For univalent ions: P ∝ D ∝  ∝ λ . This is enough: we shall see that the voltage

depends only on the ratio of permeabilities.

Thin membrane: Goldman equation
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Flux of ions  at  (left  = 0, right  = L); [ J] =mol m−2 s−1

J = −D grad c +
λcE
zF

= − D
RT

c grad [μ + zFϕ] = −
D
RT

c grad μ̃

= −D
dc
d
+
DczFE
RT

J does not depend on  (stationary flux—nothing accumulates). Equation can be
integrated (separation of variables):

better
∫ KNc

right


KNc
left


(KN cancel out)

∫ L

0
d =

∫ cright


cleft


D
czFED/RT − J

dc

We calculate J from concentrations and E. After several steps:

JRT = DzFE
εzcleft

 − cright


εz − 1 , where ε = exp
�
FLE
RT

�
= exp

�
−FΔϕ
RT

�

Zero total current: NB signs: Δϕ = ϕright − ϕleft = −LE
0 =

∑



zJ

Thin membrane: Goldman equation
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Additional simplification: only univalent ions (|z| = 1)

Let’s sum anions and cations separately, replacing D ∝ P
⇒ linear equation for ε, after rearranging:

Δϕ = −RT
F
ln

∑
cations Pc

right
 +

∑
anions Pc

left
∑

cations Pc
left
 +

∑
anions Pc

right


Goldman equation: example
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Relative permeabilities of main ions in the mammalian plasmatic membrane are:
P(K+) = 1, P(Na+) = 0.04, P(Cl−) = 0.45

Concentrations inside the cell (in mmol dm−3):
[K+]right = 400, [Na+]right = 50, [Cl−]right = 50

Concentrations outside the cell (in mmol dm−3):
[K+] left = 20, [Na+] left = 500, [Cl−] left = 560

The resting potential of the membrane:

Δϕ = −RT
F
ln

∑
cations Pc

right
 +

∑
anions Pc

left
∑

cations Pc
left
 +

∑
anions Pc

right


Δϕ = −8.314 J mol−1 K−1 × 310K

96485C mol−1
× ln 1 × 400 + 0.04 × 50 + 0.45 × 560

1 × 20 + 0.04 × 500 + 0.45 × 50
= −0.063V

The inside of the cell (“right”) is negative, because K+ faster escape from the cell



Cell membrane—continued
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Numerical solution for:
L = 4 nm
εr = 4
KN = 0.001 (membrane
concentration is 1000× smaller)
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Thick membrane (frit, liquid junction)
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Irreversible process, complex problem (partial differential equation).

Simplification:

solution of a uni-univalent salt at both sides, conc. cleft and cright

the membrane is thick ⇒ grad c⊕ = grad c	 = const
It follows from the Poisson equation d2ϕ/d2 = −∑ zFc/ϵ – every layer is elec-
troneutral, small difference will curve ϕ() as needed

Formulas: μ̃ = μ + zFϕ, ~j = −c~∇μ̃, ~J = − cDRT
~∇μ̃, RT = DzF, z	 < 0

flux of cations: J⊕ = −D⊕
d

d
c⊕ −

D⊕F
RT

c⊕
d

d
ϕ

flux of anions: J	 = −D	
d

d
c	 +

D	F
RT

c	
d

d
ϕ

Steady state: j =
∑
 zJ = J	 − J⊕ = 0, c⊕ = c	 = c ⇒

x

cleftcleftcleftcleftcleft crightcrightcrightcrightcright

(D	 − D⊕)
dc

d
= (D	 + D⊕)

F

RT
c
dϕ

d
, separation of variables c, ϕ:

D	 − D⊕
D	 + D⊕

ln
cright

cleft
=

F

RT
Δϕ Δϕ = (t	 − t⊕)

RT

F
ln
cright

cleft
t± =

D±
D	 + D⊕

Thick membrane II
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Applications: voltage loss at a liquid junction (diffusion potential), e.g.:

	 Ag | AgCl | HCl(cleft) ... HCl(cright) | AgCl | Ag ⊕
For uni-univalent salt and t	 = t⊕ it holds Δϕ = 0. Therefore in salt bridges there are
solutions with t	 ≈ t⊕ (e.g., KCl: t⊕ = 0.49, t	 = 0.51)

Generalization for salt Kz	ννν⊕Az⊕ννν	:

Δϕ =
�
t	
|z	 |

− t⊕
z⊕

�
RT

F
ln
cright

cleft

Inaccurate “derivation” (for uni-univalent salt):
Let 1 mole of charge (1F) flows from left to right.
This is t	 anions migrating left and t⊕ cations migrating right:

+t	 anions (cleft) :: −t	 anions (cright)

−t⊕ cations (cleft) :: +t⊕ cations (cright)

ΔG = −t	RT ln
cright
	
cleft
	

+ t⊕RT ln
cright
⊕
cleft
⊕

?
= −zFΔϕ ⇒ Δϕ = (t	 − t⊕)

RT

F
ln
cright

cleft

But ΔG 6= work for an irreversible process – fails for a thin membrane

Comparison of thin and thick membranes
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1:1 electrolyte
cright : cleft = 10

thin membrane (L� λ)
Controlled by electric forces (they determine
the local concentrations)
The simplified reasoning (previous slide)
fails!

thick membrane (L� λ)
Controlled by diffusion (electric forces
screened off)
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φ
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For t⊕ = 1 (only cations permeate), both equations give

Δϕ = −RT
zF
ln
cright

cleft

For t⊕ = 1
2, we have Δϕ = 0 (symmetry cations:anions)

Osmosis
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The membrane lets through solvent (optionally with small molecules). The solvents
tries to permate to the place with a lower chemical potential ⇒ osmotic pressure

μ•1(pA) ≡ μ1(pA,1)

1
=

so
lv

en
t

μ•1(pA)
!
= μ1B(pB, 1B)

id.�
= μ•1(pB) + RT ln1B = μ•1(pB) + RT ln(1 − 2B)

V1m=const, 2�1= μ•1(pA) + V1m(pB − pA︸ ︷︷ ︸) − RT2B ⇒ V1m = RT
n2
n



⇒  = n2
nV1m

RT = n2
V RT = c2RT

J. H. van ’t Hoff, H. N. Morse
n2, c2 are incl. dissociation

Osmosis
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The osmotic pressure is a colligative property – it depends on the number of
particles (amount of substance)

Osmolarity = amount of substance (not permeating through the membrane) in
unit volume
Osmolality = amount of substance (not permeating through the membrane) par
unit mass of the solvent

Example. Calculate the osmolality of 0.15 mol of NaCl in 1 kg of water.

0.3 mol of ions in 1 kg of water, osmolality = 0.3 osmol kg−1
Approximately ρ = 1kg dm−3 ⇒ osmolarity

.
= 0.3osmol dm−3

Loosely 0.15 M � NaCl = 0.3 Osm � NaCl

Osmotic pressure more accurately:  = c2RT(1 + Bc2 + δc
3/2
2 + Cc22 + . . .)

B: second osmotic virial coefficient – interaction of a pair of solutes
for colloid particles determined mainly by the excluded volume

δ: ionic interactions (Debye-Hückel)
C: triples of solutes

Osmosis
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extra/intracellular solutions are iso-
tonic

ultrafiltrate (primary urine) is pro-
duces in glomeruli (sg. glomerulus)
by reverse osmosis (ultrafiltration) of
blood; macromolecules do not pass,
osmotic pressure 30–60 mm Hg (ac-
cording to the source) > diastolic pressure

dialysis

sea water desalination by reverse os-
mosis

determining molar masses

credit: wikipedia

Example. Calculate the minimum pressure needed to desalinate sea water by re-
verse osmosis at 300 K, and the minimum energy needed to produce 1 m3 of fresh
water. The total concentration of ions in sea water is 1.12 mol dm−3. 28bar;2.8MJ

Example
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The osmotic pressure of a solution of an en-
zyme in water (25 ◦C) is

c

g dm−3
1 2 3 4 5 6



Pa
25 54 83 118 152 191

Calculate the molar mass.

c = c2M

After dividing by M:



c
=
RT

M
+
RTB

M2
c

0 1 2 3 4 5 6

cw/(g dm-3)

22
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24
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32

33

34

Π
/c

w
/(

P
a
 d

m
3
 g

-1
)

From the plot:
RT

M
.
= 24Pa g−1 dm3 = 24Pa kg−1m3

M =
8.314Pa m3 K−1 × 298K

24Pa g−1 dm3
= 103kg mol−1 ≡ 103kDa



Van’t Hoff factor
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Eq.  = c2RT is sometimes written as

 = c2RT

where c2 is the analytic (formal) concentration and  is the van ’t Hoff factor, i.e.,
the average number of molecules (not permeating) the compound dissociates to.
Examples:

(glucose) = 1

(NaCl) = 2

(CH3COOH) = 1 + α

Saturated vapor pressure of a solution
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Raoult + Dalton law

p = py = p
s
 , p =

∑



p =
∑



p
s


Apply to:
1 = solvent
2 = non-volatile solute (2 ≈ 0 or n2� n1)

if disociated in �, the fragments are counted in n2 and 2

p1 = 1ps
1 = p

s
1 − 2ps

1

or

Δp = −2ps
1 = −ps

1

n2
n1 + n2

n2�n1≈ −ps
1

n2
n1

The saturated pressure of a solution is lower than
that of a pure solvent at the same temperature.

Ebullioscopy
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1 = solvent alternative derivation:
see next slide2 = solute (incl. dissociation)

Or ΔT = KEm2, where
m2 is the chemical-
formula-based molal-
ity and  is the van ’t
Hoff’s factor

At constant p, Δp is compensated (→ −Δp) by increasing the boiling point of the
solution by ΔT. Using the Clausius–Clapeyron equation:

1

p

Δp

ΔT
≈ ΔvapHm

RT2

⇒

ΔT ≈ −Δp
ps
1

RT2boil,1

ΔvapH1,m
=
ps
1
n2
n1

ps
1

RT2boil,1

ΔvapH1,m
= KEm2

where

KE =
RT2boil,1M1

ΔvapH1,m
= ebullioscopic constant

The boiling temperature of a solution is higher
than that of a pure solvent at the same pressure.

Example. Calculate the boiling point of a soup (1% wt. NaCl) at normal pressure.
KE(water) = 0.513K kg mol−1. 100.18◦C

Cryoscopy
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A compound dissolves in a liquid solvent, but there is no mixed crystal in the solid
phase ⇒ melting (fusion) temperature decreases.

n2� n1
1 ≈ 1

Derivation: 1 = solvent, 2 = solute

1 = 1, T = Tfus : μs
1(Tfus) = μl

1(Tfus)

μ•s1 (Tfus) = μ•l1 (Tfus)

1 < 1, T = Tfus + ΔT : μs
1(Tfus + ΔT) = μl

1(Tfus + ΔT)

μ•s1 (Tfus + ΔT) = μ•l1 (Tfus + ΔT) + RT ln1

ΔT

�
∂μ•s1
∂T

�
= ΔT

 
∂μ•l1
∂T

!
+ RT ln(1 − 2)

ΔT
∂(μ•l1 − μ•s1 )

∂T
= ΔT(−ΔfusSm) = ΔT

−ΔfusH•m
T

= −RT ln(1 − 2) ≈ RT2 ≈ RTM1m2

ΔT = −KKm2 KK =
M1RT2fus

ΔfusH•m
= cryoscopic

constant

or Kf = −KK
ΔT = Kfm

non-dissoc.
2

Example. Calculate the freezing temperature of beer (4.5 vol.% alcohol, density of
alcohol=0.8 g cm−3). KK,water = 1.85K kg mol−1. −1.5◦C

Vapor pressure osmometry
21/22
co09

pure solvent evaporates

vapor condenses on a solution (lower vapor pressure)

⇒ pure solvent cools down, solution heats up

ΔT ∝ concentration (colligative property)

Colligative properties – summary
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. . . depend on the number of molecules (moles) dissolved.

boiling temperature increase (ebullioscopy), ΔT = KEm2 = KE
m2

m1M2

melting temperature decrease (cryoscopy), ΔT = −KKm2ΔT = −KK
m2

m1M2
e.g., camphor KK = 40K kg mol−1, tfus = 176 ◦C.

osmotic pressure,  = c2RT =
m2
VM2

RT

pressure of (ideal) gas, p = nRT/V = cRT = m
VM2

RT

Usage: determining molar masses

Accuracy: ebullioscopy < cryoscopy <
vapor pressure
osmometry <

membrane
osmometry


