

sphere surface = $4\pi r^2$

Example. Estimate the percetage of water molecules on the surface of a fog droplet of diameter 200 nm (optical microscope visibility limit)? % T

The smaller particle, the more pronounced surface phenomena

Interfacial energy

$$\gamma = \left(\frac{\partial G}{\partial \mathcal{A}}\right)_{T,p}$$

liquids: interfacial energy = surface tension

$$dG = dW_{interface} = \gamma d\mathcal{A} \stackrel{I/I, I/g}{=} \gamma \ell dx$$

Often denoted σ .

Units: $Jm^{-2} = Nm^{-1}$, CGS: $dyn cm^{-1} = mNm^{-1}$

surface molecules

have higher energy

Interfacial energy of a crystal depends on the direction (crystal plane)

Surface energy and vaporization enthalpy

Order-of-magnitude estimates:

Typical molecule–molecule separation = $r = \left(\frac{V_m}{N_A}\right)^{1/3}$ Energy of neighboring molecules: *u* Number of neighbors in the bulk: *N*_{bulk} Number of neighbors at surface: *N*_{surf}

2/15

Vaporization internal energy: $\Delta_{vap}U_m = N_{bulk}uN_A/2$ Area per one surface molecule: $\mathcal{A} = r^2$ Surface energy of one molecule: $u_p = (N_{bulk} - N_{surf})u/2$ Surface tension: $\gamma = u_p/\mathcal{A} = (N_{bulk} - N_{surf})u/(2\mathcal{A})$

$$\Rightarrow \gamma \approx \frac{\Delta_{\text{vap}} U_{\text{m}}(N_{\text{bulk}} - N_{\text{surf}})}{V_{\text{m}}^{2/3} N_{\text{A}}^{1/3} N_{\text{bulk}}}$$
(Stefan's rule)

Example. Water (25 °C):

 $N_{\text{bulk}} \approx 4$, $N_{\text{surf}} \approx 3$, $\Delta_{\text{vap}} H_{\text{m}} = 40.65 \text{ kJ mol}^{-1}$, $V_{\text{m}} = 18 \text{ cm}^3 \text{ mol}^{-1}$

$$\gamma \approx \frac{(40650 - 298 \times 8.314) |\text{mol}^{-1} \times (4 - 3)}{(18 \times 10^{-6} \,\text{m}^3 \,\text{mol}^{-1})^{2/3} \times (6.022 \times 10^{23} \,\text{mol}^{-1})^{1/3} \times 4} = 0.165 \,\text{N}\,\text{m}^{-1}$$

Experiment: $\gamma = 0.072 \text{ N m}^{-1}$

Temperature dependence

At saturated pressure, or (at lower T) at constant pressure

In the critical point: $\Delta_{vap}H(T_c) = \Delta_{vap}U(T_c) = 0$ If $\Delta_{vap}H \propto T_c - T$ (inaccurate)

$$\Rightarrow \gamma = \text{const} \cdot \frac{T_{\text{c}} - T}{V_{\text{m}}^{2/3}}$$
(Eötvös)

The surface tension decreases with increasing temperature. It limits to zero at the critical point.

credit: wikipedia

Empirical correction (Ramay and Shields)

$$\gamma = \text{const} \cdot \frac{T_{\text{c}} - 6 \,\text{K} - T}{V_{\text{m}}^{2/3}}$$

Using the critical exponent (Guggenheim-Katayama, van der Waals)

$$\gamma = \text{const} \cdot (T - T_{\text{C}})^{11/9}$$

Laplace pressure

Pressure in a droplet of radius *r* (Young–Laplace):

Soap bubble has two surfaces!

$$\Delta p = p_{\text{inside}} - p_{\text{outside}} = \frac{2\gamma}{r} \quad \stackrel{\text{generally}}{=} \gamma \left(\frac{1}{R_x} + \frac{1}{R_y} \right) \quad \text{where } R_x \text{ a } R_y \text{ are the main radii of curvature}$$

Derivation 1 from the surface energy vs. volume dependence: work needed to increase the surface by dA is $dW_{surf} = \gamma dA$ work needed to swell the drop by dV is $dW_{vol} = \Delta p dV$

$$dW_{\rm vol} = dW_{\rm surf} \Rightarrow \Delta p = \frac{\gamma d\mathcal{A}}{dV} = \frac{\gamma d(4\pi r^2)}{d(\frac{4}{3}\pi r^3)} = \frac{\gamma 8\pi r dr}{4\pi r^2 dr} = \frac{2\gamma}{r}$$

Derivation 2 from the force *F* acting on the cross section area A_{\emptyset} :

circumference =
$$l = 2\pi r$$
, $F = l\gamma$, $A_{\emptyset} = \pi r^2$, $\Delta p = F/A_{\emptyset}$

4/15 col10

Capillary action

Capillary action

in a capillary of radius r

$$h = \frac{\cos\theta \, 2\pi r \, \gamma}{\pi r^2 \, \rho g} = \frac{2\gamma \cos\theta}{r\rho g}$$

 θ = contact angle

hydrophilic (lyophilic) surface: $\theta < 90^{\circ}$ (water–glass)

hydrophobic (lyophobic) surface: $\theta > 90^{\circ}$ (mercury–glass, water–teflon, water– lotus leave)

Young equation and spreading

6/15 *col*10

On a solid:

Young equation: vector sum of interfacial tensions = 0

 $\gamma_{\rm sg} = \gamma_{\rm ls} + \gamma_{\rm lg}\cos\theta$

Spreading: $\gamma_{sg} > \gamma_{ls} + \gamma_{lg} (\gamma_{sg} - \gamma_{ls} - \gamma_{lg} > 0)$ **Liquid droplet on liquid:**

Surface tension

Methods of calculation: balance of forces, energy minimum

Example. Calculate the maximum size of pores (stomata, sg. stoma) in the leaves of 10 m high trees. Water surface tension is $\gamma = 72 \text{ mN m}^{-1}$. (Ignore osmotic pressure.)

Example. Calculate the thickness of a mercury puddle on a flat non-wetting surface. $\gamma = 0.485 \,\mathrm{N}\,\mathrm{m}^{-1}$, $\rho = 13.6 \,\mathrm{g}\,\mathrm{cm}^{-3}$.

"puddle" of spilled crude oil on water

credit: wikipedia [SEM image]

Using units

Example. Estimate the typical size (volume) for which the surface forces are of the same order as gravitational forces.

8/15

*col*10

$$[\rho] = \text{kg m}^{-3}, [\gamma] = \text{N m}^{-1} = \text{kg s}^{-2}, [g] = \text{m s}^{-2}$$

$$m = \sqrt{\frac{kg \, s^{-2}}{m \, s^{-2} \cdot kg \, m^{-3}}} \quad \Rightarrow \quad l \sim \sqrt{\frac{\gamma}{g\rho}}, \quad V \sim \left(\frac{\gamma}{g\rho}\right)^{3/2}$$

for water $V \approx 0.02 \text{ cm}^3 \approx \text{droplet volume } (0.02-0.05 \text{ cm}^3)$ Slowest surface waves: $\lambda = 2\pi \sqrt{\frac{\gamma}{g\rho}}$

l is called capillary length

Cohesion and adhesion work

Cohesion work (energy) W_k (per unit area of the interface, here I/I)

the same for s/s

Adhesion work (energy) W_a (per unit area of the interface, here l/s)

9/15

*col*10

(1)
(1)
(1)
(1)
(1)

$$W_a = \gamma_{sg} + \gamma_{lg} - \gamma_{ls}$$

(s)
(s)
(s)

the same for I_1/I_2 , s_1/s_2

Spreading: interface s/l created at the expense of l/l: Cohesion work $|/| = W_k = 2\gamma_{lg}$ Θ Adhesion work s/l = $W_a = \gamma_{sg} + \gamma_{lg} - \gamma_{ls} \oplus$

Harkins spreading coefficient:

$$S_{l/s} = W_a - W_k = \gamma_{sg} - \gamma_{ls} - \gamma_{lg}$$

 $S_{I/s} > 0 \Rightarrow$ energy is gained \Rightarrow liquid spreads NB sign: W_a = energy needed to unstick

Chemical potential of a droplet

Transfer (1 mol) of liquid from the bulk (below a flat interface, $r = \infty$) to droplets of diameter r. Pressure increases by $\Delta p = 2\gamma/r$ and the chemical potential by

$$\Delta \mu = \mu_r^{(1)} - \mu_{\infty}^{(1)} = V_{\rm m}^{(1)} \Delta p = V_{\rm m}^{(1)} \frac{2\gamma}{r}$$

Liquid is in equilibrium with vapor $(\mu_{\infty}^{(1)} = \mu^{\bullet})$:

$$\mu_{\infty}^{(l)} = \mu^{(g)}(p_{\infty}^{s}) = \mu^{\circ} + RT \ln \frac{p_{\infty}^{s}}{p^{st}}$$
$$\mu_{r}^{(l)} = \mu_{\infty}^{(l)} + \Delta \mu = \mu^{(g)}(p_{r}^{s}) = \mu^{\circ} + RT \ln \frac{p_{r}^{s}}{p^{st}}$$
$$\Rightarrow \text{Kelvin equation} \ln \frac{p_{r}^{s}}{p_{\infty}^{s}} = \pm \frac{2\gamma V_{m}^{(l)}}{RTr} \quad (also Gibbs-Thomson or Ostwald-Freundlich)$$

⇒ saturated vapor pressure higher above a droplet / lower in a cavity

Example. Saturated vapor pressure of water at 25 °C is 3.15 kPa. Calculate the partial pressure of water above a membrane of pore diameters 100 nm. $\gamma_{water} = 72 \text{ mN m}^{-1}$.

 p_{∞}^{s} p_{τ}^{s}

 $\left(\frac{\partial\mu}{\partial\rho}\right)_T = V_{\rm m}^{({\rm I})}$

Nucleation

Supersaturated vapor ($p > p_{\infty}^{s}$ or $T < T_{boil}$), supersaturated solution ($c > c_{\infty}^{s}$), superheated liquid ($T > T_{boil}$), etc., are **metastable**, beyond the spinodal **unstable** (cf. spinodal decomposition)

Nucleation = creation of nuclei of a new (stable) phase in a metastable region. A Gibbs energy barrier must be crossed.

Mechanism of nucleation:

location homogeneous (wet air: $S \ge 4$)

heterogeneous on dirt, surface (wet air: $S \ge 1.02$) on ions (wet air: $S \ge 1.25$)

Homogeneous nucleation by the Kelvin equation (CNT, classical nucleation theory): A nucleus grows for $p > p_r^s \Rightarrow$ minimum radius of the nucleus:

$$r^* = \frac{2\gamma V_{\rm m}}{RT} \frac{1}{\ln S}$$

distillation – boiling chips (stones) to prevent overheating

bubble chambers to detect ionized radiation (obsolete)

Saturation
$$S = p/p_{\infty}^{s}$$

Spinodal decomposition

= spontaneous split of an unstable phase into two phases. There is no barrier.

Helmholtz energy or Gibbs energy as a function of composition:

[vlc movies/supercooling.mp4]13/15 col10

Example: critical nucleus size

Calculate the critical nucleus size for humid (150% rel. humidity) air at 25 °C. $\gamma = 72 \text{ mN m}^{-1}$.

 $r^* = 2.6 \times 10^{-9}$ m (2400 molecules)

Ostwald ripening

Higher saturated pressure above small droplets \Rightarrow small droplets evaporate, big ones grow.

Higher concentration above small crystals \Rightarrow small crystals dissolve, large crystals grow.

- Precipitate ageing (digestion) ⇒ bigger crystals ⇒ can be filtered
- snow quality change
- lice cream becomes crunchy
- fog \rightarrow drizzle

14/15

*col*10

credit: http://soft-matter.seas.harvard.edu/ index.php/Ostwald_ripening, Clarke(2003)

Measuring surface tension of liquids

credit: L. Bartovská