Otypes: $\underbrace{\mathrm{l} / \mathrm{g} \mathrm{l/l}}_{\text {mobile }} \mathrm{s} / \mathrm{g} \mathrm{s} / \mathrm{l} \mathrm{s} / \mathrm{s}$

$$
\text { sphere surface }=4 \pi r^{2}
$$

Example. Estimate the percetage of water molecules on the surface of a fog droplet of diameter 200 nm (optical microscope visibility limit)?

The smaller particle, the more pronounced surface phenomena

Interfacial energy

$$
\gamma=\left(\frac{\partial G}{\partial \mathcal{A}}\right)_{T, p}
$$

liquids: interfacial energy = surface tension

$$
\mathrm{d} G=\mathrm{d} W_{\text {interface }}=\gamma \mathrm{d} \mathcal{A} \stackrel{\mathrm{I} / \mathrm{I}, \mathrm{I} / \mathrm{g}}{=} \gamma \ell \mathrm{d} x
$$

Often denoted σ.
Units: $\mathrm{Jm}^{-2}=\mathrm{Nm}^{-1}$, CGS: dyncm $\mathrm{cm}^{-1}=\mathrm{mN} \mathrm{m}^{-1}$

surface molecules have higher energy

O Interfacial energy of a crystal depends on the direction (crystal plane)

Surface energy and vaporization enthalpy

Order-of-magnitude estimates:

Typical molecule-molecule separation $=r=\left(\frac{V_{\mathrm{m}}}{N_{\mathrm{A}}}\right)^{1 / 3}$
Energy of neighboring molecules: u
Number of neighbors in the bulk: $N_{\text {bulk }}$
Number of neighbors at surface: $N_{\text {surf }}$

Vaporization internal energy: $\Delta_{\text {vap }} U_{\mathrm{m}}=N_{\text {bulk }} u N_{\mathrm{A}} / 2$
Area per one surface molecule: $\mathcal{A}=r^{2}$
Surface energy of one molecule: $u_{\mathrm{p}}=\left(N_{\text {bulk }}-N_{\text {surf }}\right) u / 2$
Surface tension: $\gamma=u_{p} / \mathcal{A}=\left(N_{\text {bulk }}-N_{\text {surf }}\right) u /(2 \mathcal{A})$
$\Rightarrow \gamma \approx \frac{\Delta_{\text {vap }} U_{\mathrm{m}}\left(N_{\text {bulk }}-N_{\text {surf }}\right)}{V_{\mathrm{m}}^{2 / 3} N_{\mathrm{A}}^{1 / 3} N_{\text {bulk }}}$ (Stefan's rule)
Example. Water ($25^{\circ} \mathrm{C}$):
$N_{\text {bulk }} \approx 4, N_{\text {surf }} \approx 3, \Delta_{\text {vap }} H_{\mathrm{m}}=40.65 \mathrm{~kJ} \mathrm{~mol}^{-1}, V_{\mathrm{m}}=18 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$

$$
\gamma \approx \frac{(40650-298 \times 8.314) \mathrm{Jmol}^{-1} \times(4-3)}{\left(18 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)^{2 / 3} \times\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)^{1 / 3} \times 4}=0.165 \mathrm{~N} \mathrm{~m}^{-1}
$$

Experiment: $\gamma=0.072 \mathrm{Nm}^{-1}$

Temperature dependence

At saturated pressure, or (at lower T) at constant pressure

In the critical point: $\Delta_{\text {vap }} H\left(T_{\mathrm{C}}\right)=\Delta_{\text {vap }} U\left(T_{\mathrm{C}}\right)=0$ If $\Delta_{\mathrm{vap}} H \propto T_{\mathrm{C}}-T$ (inaccurate)
$\Rightarrow \gamma=$ const $\cdot \frac{T_{\mathrm{c}}-T}{V_{\mathrm{m}}^{2 / 3}}$ (Eötvös)
The surface tension decreases with increasing temperature. It limits to zero at the critical point.

Empirical correction (Ramay and Shields)

$$
\gamma=\text { const } \cdot \frac{T_{\mathrm{c}}-6 \mathrm{~K}-T}{V_{\mathrm{m}}^{2 / 3}}
$$

Using the critical exponent (Guggenheim-Katayama, van der Waals)

$$
\gamma=\text { const } \cdot\left(T-T_{\mathrm{C}}\right)^{11 / 9}
$$

Laplace pressure

Pressure in a droplet of radius r (Young-Laplace): two surfaces!

$$
\Delta p=p_{\text {inside }}-p_{\text {outside }}=\frac{2 \gamma}{r} \stackrel{\text { generally }}{=} \gamma\left(\frac{1}{R_{x}}+\frac{1}{R_{y}}\right) \quad \begin{aligned}
& \text { where } R_{x} \text { a } R_{y} \text { are the } \\
& \text { main radii of curvature }
\end{aligned}
$$

Derivation 1 from the surface energy vs. volume dependence:
work needed to increase the surface by $\mathrm{d} \mathcal{A}$ is $₫ W_{\text {surf }}=\gamma \mathrm{d} \mathcal{A}$ work needed to swell the drop by $\mathrm{d} V$ is $đ W_{\text {vol }}=\Delta p \mathrm{~d} V$

$$
\mathrm{d} W_{\mathrm{vol}}=\mathrm{d} W_{\text {surf }} \Rightarrow \Delta p=\frac{\gamma \mathrm{d} \mathcal{A}}{\mathrm{~d} V}=\frac{\gamma \mathrm{d}\left(4 \pi r^{2}\right)}{\mathrm{d}\left(\frac{4}{3} \pi r^{3}\right)}=\frac{\gamma 8 \pi r \mathrm{~d} r}{4 \pi r^{2} \mathrm{~d} r}=\frac{2 \gamma}{r}
$$

Derivation 2 from the force F acting on the cross section area $\mathcal{A}_{\varnothing}$:

$$
\text { circumference }=l=2 \pi r, \quad F=l \gamma, \quad \mathcal{A}_{\varnothing}=\pi r^{2}, \quad \Delta p=F / \mathcal{A}_{\varnothing}
$$

Capillary action

Capillary action

in a capillary of radius r

$$
h=\frac{\cos \theta 2 \pi r \gamma}{\pi r^{2} \rho g}=\frac{2 \gamma \cos \theta}{r \rho g}
$$

$\theta=$ contact angle

hydrophilic (lyophilic) surface: $\theta<90^{\circ}$ (water-glass)
hydrophobic (lyophobic) surface: $\theta>90^{\circ}$ (mercury-glass, water-teflon, waterlotus leave)

On a solid:

wetting

non-wetting

spreading

Young equation: vector sum of interfacial tensions $=0$

$$
\gamma_{\mathrm{sg}}=\gamma_{\mathrm{ls}}+\gamma_{\mathrm{Ig}} \cos \theta
$$

Spreading: $\gamma_{\mathrm{sg}}>\gamma_{\mathrm{Is}}+\gamma_{\mathrm{Ig}}\left(\gamma_{\mathrm{sg}}-\gamma_{\mathrm{ls}}-\gamma_{\mathrm{Ig}}>0\right)$
Liquid droplet on liquid:

Methods of calculation: balance of forces, energy minimum

Example. Calculate the maximum size of pores (stomata, sg. stoma) in the leaves of 10 m high trees. Water surface tension is $\gamma=72 \mathrm{mN} \mathrm{m}^{-1}$. (Ignore osmotic pressure.)
min $6{ }^{\circ} 乙=p$
Example. Calculate the thickness of a mercury puddle on a flat non-wetting surface. $\gamma=$ $0.485 \mathrm{~N} \mathrm{~m}^{-1}, \rho=13.6 \mathrm{~g} \mathrm{~cm}^{-3}$.

"puddle" of spilled crude oil on water

Using units

Example. Estimate the typical size (volume) for which the surface forces are of the same order as gravitational forces.
$[\rho]=\mathrm{kg} \mathrm{m}^{-3},[\gamma]=\mathrm{Nm}^{-1}=\mathrm{kg} \mathrm{s}^{-2},[g]=\mathrm{ms}^{-2}$

$$
\mathrm{m}=\sqrt{\frac{\mathrm{kg} \mathrm{~s}^{-2}}{\mathrm{~ms}^{-2} \cdot \mathrm{~kg} \mathrm{~m}^{-3}}} \Rightarrow l \sim \sqrt{\frac{\gamma}{g \rho}}, V \sim\left(\frac{\gamma}{g \rho}\right)^{3 / 2}
$$

for water $V \approx 0.02 \mathrm{~cm}^{3} \approx$ droplet volume ($0.02-0.05 \mathrm{~cm}^{3}$)
Slowest surface waves: $\lambda=2 \pi \sqrt{\frac{\gamma}{g \rho}}$
l is called capillary length

Cohesion and adhesion work

Cohesion work (energy) W_{k} (per unit area of the interface, here I/I)

the same for s / s

Adhesion work (energy) W_{a} (per unit area of the interface, here I/s)

Spreading: interface s / l created at the expense of I / I :
Cohesion work $\mathrm{I} / \mathrm{l}=W_{\mathrm{k}}=2 \gamma_{\mathrm{lg}}$

Adhesion work $\mathrm{s} / \mathrm{l}=W_{\mathrm{a}}=\gamma_{\mathrm{sg}}+\gamma_{\mathrm{lg}}-\gamma_{\mathrm{ls}} \oplus$

Harkins spreading coefficient:

$$
S_{\mathrm{I} / \mathrm{s}}=W_{\mathrm{a}}-W_{\mathrm{k}}=\gamma_{\mathrm{sg}}-\gamma_{\mathrm{Is}}-\gamma_{\mathrm{Ig}}
$$

$S_{I / s}>0 \Rightarrow$ energy is gained \Rightarrow liquid spreads
NB sign: $W_{a}=$ energy needed to unstick

Chemical potential of a droplet

Transfer (1 mol) of liquid from the bulk (below a flat interface, $r=\infty$) to droplets of diameter r. Pressure increases by $\Delta p=$ $2 \gamma / r$ and the chemical potential by

$$
\Delta \mu=\mu_{r}^{(\mathrm{I})}-\mu_{\infty}^{(\mathrm{I})}=V_{\mathrm{m}}^{(\mathrm{I})} \Delta p=V_{\mathrm{m}}^{(\mathrm{l})} \frac{2 \gamma}{r}
$$

Liquid is in equilibrium with vapor $\left(\mu_{\infty}^{(1)}=\mu^{\bullet}\right)$:

$$
\begin{array}{r}
\mu_{\infty}^{(\mathrm{I})}=\mu^{(\mathrm{g})}\left(p_{\infty}^{\mathrm{s}}\right)=\mu^{\circ}+R T \ln \frac{p_{\infty}^{\mathrm{s}}}{p^{\mathrm{st}}} \\
\mu_{r}^{(\mathrm{I})}=\mu_{\infty}^{(\mathrm{I})}+\Delta \mu
\end{array}=\mu^{(\mathrm{g})}\left(p_{r}^{\mathrm{s}}\right)=\mu^{\circ}+R T \ln \frac{p_{r}^{\mathrm{s}}}{p^{\mathrm{st}}}
$$

\Rightarrow Kelvin equation $\ln \frac{p_{r}^{\mathrm{s}}}{p_{\infty}^{\mathrm{s}}}= \pm \frac{2 \gamma V_{\mathrm{m}}^{(\mathrm{l})}}{R T r} \quad \begin{aligned} & \text { (also Gibbs-Thomson } \\ & \text { or Ostwald-Freundlich) }\end{aligned}$
\Rightarrow saturated vapor pressure higher above a droplet / lower in a cavity
Example. Saturated vapor pressure of water at $25^{\circ} \mathrm{C}$ is 3.15 kPa . Calculate the partial pressure of water above a membrane of pore diameters $100 \mathrm{~nm} . \gamma_{\text {water }}=$ $72 \mathrm{mN} \mathrm{m}{ }^{-1}$.

Nucleation

Supersaturated vapor ($p>p_{\infty}^{s}$ or $T<T_{\text {boil }}$), supersaturated solution ($c>c_{\infty}^{s}$), superheated liquid ($T>T_{\text {boil }}$), etc., are metastable, beyond the spinodal unstable (cf. spinodal decomposition)

Nucleation $=$ creation of nuclei of a new (stable) phase in a metastable region. A Gibbs energy barrier must be crossed.

Mechanism of nucleation:

Saturation $S=p / p_{\infty}^{s}$
homogeneous (wet air: $S \gtrsim 4$)
heterogeneous on dirt, surface (wet air: $S \gtrsim 1.02$) on ions (wet air: $S \gtrsim 1.25$)
Homogeneous nucleation by the Kelvin equation (CNT, classical nucleation theory): A nucleus grows for $p>p_{r}^{\mathrm{S}} \Rightarrow$ minimum radius of the nucleus:

$$
r^{*}=\frac{2 \gamma V_{\mathrm{m}}}{R T} \frac{1}{\ln S}
$$

distillation - boiling chips (stones) to prevent overheating
bubble chambers to detect ionized radiation (obsolete)

Spinodal decomposition

$=$ spontaneous split of an unstable phase into two phases. There is no barrier.
Helmholtz energy or Gibbs energy as a function of composition:

Example: critical nucleus size

Calculate the critical nucleus size for humid (150\% rel. humidity) air at $25^{\circ} \mathrm{C} . \gamma=$ $72 \mathrm{mN} \mathrm{m}^{-1}$.

Ostwald ripening

Higher saturated pressure above small droplets \Rightarrow small droplets evaporate, big ones grow.

Higher concentration above small crystals \Rightarrow small crystals dissolve, large crystals grow.
precipitate ageing (digestion) \Rightarrow bigger crystals \Rightarrow can be filtered
snow quality change
ice cream becomes crunchy
fog \rightarrow drizzle

Measuring surface tension of liquids

kapilární metoda

metoda maximálního tlaku v bublině

metoda odtrhování prstence

