

Adsorption 1/18 coll1	Physical adsorption and chemisorption 2/18 coll1
molecular adsorption	physical adsorption chemisorption
$(g) \rightarrow (s), (l) \rightarrow (s)/(l), \dots$ ion adsorption	forces physical (weak: van der Waals, covalent bonds H-bonds)
Paneth-Fajans rule exchange ion adsorption, exutations in eluminaciditate 	specificity non-specific (easy to liquefy – specific easily adsorbed)
counterions in aluminosilicates	adsorption -20 to -40 kJ mol ⁻¹ -40 to -400 kJ mol ⁻¹ heat (\approx condensation heat) (\approx reaction heat)
	Ineat (a condensation heat) number of several layers possible one layer layers (as condensation)
	activation 0 > 0 energy
\uparrow Ar on graphite \rightarrow	rate high (seconds) slow at low <i>T</i> , fast at high <i>T</i>
 adsorption: on surface (interface) absorption: inside (bulk) 	amount large below T_c , small above T_c small; usually given by kinetics adsorbed
• sorption: both	reversibility easy (vacuum, temperature) not so easy (vacuum + higher T)
Langmuir adsorption isotherm 3/18 coll1	Options 4/18 coll1
Good for chemisorption, adsorption in small cavities (zeolites); limited for physical adsorption ($p \ll p^{s}$)	Dissociative adsorption
Independent (noninteracting) adsorption centers of one kind	$2L + A_2 \rightarrow 2LA$
Max 1 molecule/center (one layer)	$\theta = \frac{bp_{\rm A}^{1/2}}{1 + bp_{\rm A}^{1/2}}$
Known: Activity of the adsorbate: $a_A = \frac{p_A}{p_{SL}}$, or from solution: $a_A = \frac{c_A(\odot)}{c^{SL}}$	$1 + bp_{A}^{1/2}$
Equilibrium constant of adsorption K _{ad} 1	Competitive adsorption (2 compounds):
$L+A \rightarrow LA$ θ	$L + A \rightarrow LA$
$[LA] + [L] = c_{L0}, \frac{[LA]}{a_{A}[1]} = K_{ad}$	$L + B \rightarrow LB$
	$\theta_{A} = \frac{b_{A} p_{A}}{1 + b_{A} p_{A} + b_{B} p_{B}}$
Coverage (saturation):	$1 + D_A p_A + D_B p_B$
$\theta = \frac{\text{adsorbed amount}}{\text{maximum amount (monolayer)}} = \frac{[\text{LA}]}{c_{\text{LO}}} = \frac{K_{\text{ad}}a_{\text{A}}}{1 + K_{\text{ad}}a_{\text{A}}}$	
Gas: $\theta = \frac{bp_A}{1 + bp_A}, b = \frac{k_{ad}}{p^{st}}$	
Heterogeneous catalysis + ^{5/18} _{col11}	Heterogeneous catalysis + $\frac{6/18}{coll1}$
A catalyst in solid phase, large specific surface area.	Reaction in (g) or (less typically) in (l):
 A catalyst in solid phase, large specific surface area. The rate-determining process may be: diffusion (in solution: k drops if we increase the viscosity) chemisorption (<i>T</i>-dependent) 	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react
 A catalyst in solid phase, large specific surface area. The rate-determining process may be: diffusion (in solution: k drops if we increase the viscosity) chemisorption (<i>T</i>-dependent) surface diffusion 	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react
 A catalyst in solid phase, large specific surface area. The rate-determining process may be: diffusion (in solution: k drops if we increase the viscosity) chemisorption (<i>T</i>-dependent) surface diffusion Example – chemisorption determines the rate, A → B Independent active centers L, adsorption equilibrium 	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$
 A catalyst in solid phase, large specific surface area. The rate-determining process may be: diffusion (in solution: k drops if we increase the viscosity) chemisorption (<i>T</i>-dependent) surface diffusion Example – chemisorption determines the rate, A → B Independent active centers L, adsorption equilibrium 	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_P}{d\tau} = k\theta_A\theta_B = k\frac{b_Ap_Ab_Bp_B}{(1 + b_Ap_A + b_Bp_A)^2}$ Most common type for heat-activated reactions on a solid catalyst, e.g.:
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\underset{k_{-1}}{\overset{k_2}{\longrightarrow}}} B + L$ If not $k_2 \ll k_{-1}$, fol- low the Michaelis- Menten kinetics	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_P}{d\tau} = k\theta_A\theta_B = k\frac{b_Ap_Ab_Bp_B}{(1 + b_Ap_A + b_Bp_A)^2}$
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\underset{k=1}{\longrightarrow}} LA \stackrel{k_2}{\underset{k=1}{\longrightarrow}} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k\theta_{A}\theta_{B} = k\frac{b_{A}\rho_{A}b_{B}\rho_{B}}{(1 + b_{A}\rho_{A} + b_{B}\rho_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence.
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\underset{k_{-1}}{\overset{k_2}{\longrightarrow}}} B + L$ If not $k_2 \ll k_{-1}$, fol- low the Michaelis- Menten kinetics	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k\theta_{A}\theta_{B} = k\frac{b_{A}p_{A}b_{B}p_{B}}{(1 + b_{A}p_{A} + b_{B}p_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence. Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g)
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\underset{k=1}{\longrightarrow}} LA \stackrel{k_2}{\underset{k=1}{\longrightarrow}} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k\theta_{A}\theta_{B} = k\frac{b_{A}p_{A}b_{B}p_{B}}{(1 + b_{A}p_{A} + b_{B}p_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence. Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_{P}}{d\tau} = k\theta_{A}p_{B} = k\frac{b_{A}p_{A}p_{B}}{1 + b_{A}p_{A}}$
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\leftarrow} LA \stackrel{k_2}{\leftarrow} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1+K_{ad}c_A} \stackrel{gas}{\propto} \frac{bp_A}{1+bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2K_{ad}c_{L0}c_A \stackrel{gas}{\propto} p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \stackrel{gas}{=} \text{const}$ (saturated catalyst – Oth order)	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k\theta_{A}\theta_{B} = k\frac{b_{A}p_{A}b_{B}p_{B}}{(1 + b_{A}p_{A} + b_{B}p_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence. Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g)
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\underset{k_{-1}}{\leftarrow}} LA \stackrel{k_2}{\longrightarrow} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1 + K_{ad}c_A} \overset{gas}{\propto} \frac{bp_A}{1 + bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2c_{Ad}c_{L0}c_A \overset{gas}{\propto} p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \overset{gas}{=} const}$ (saturated catalyst – Oth order) E.g., decomposition of phosphane (phosphine, PH_3) on tungsten (W).	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k\theta_{A}\theta_{B} = k\frac{b_{A}p_{A}b_{B}p_{B}}{(1 + b_{A}p_{A} + b_{B}p_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence. Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_{P}}{d\tau} = k\theta_{A}p_{B} = k\frac{b_{A}p_{A}p_{B}}{1 + b_{A}p_{A}}$ E.g., H + H \rightarrow H ₂ on dust grains in the interstelar space
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, A \rightarrow B Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\leftarrow} LA \stackrel{k_2}{\leftarrow} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1+K_{ad}c_A} \stackrel{gas}{\propto} \frac{bp_A}{1+bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2C_{ad}c_{L0}c_A \stackrel{gas}{\propto} p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \stackrel{gas}{=} \text{const}$ (saturated catalyst – Oth order)	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k\theta_{A}\theta_{B} = k\frac{b_{A}p_{A}b_{B}p_{B}}{(1 + b_{A}p_{A} + b_{B}p_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence. Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_{P}}{d\tau} = k\theta_{A}p_{B} = k\frac{b_{A}p_{A}p_{B}}{1 + b_{A}p_{A}}$ E.g., H + H \rightarrow H ₂ on dust grains in the interstelar space 8/18 colli
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\leftrightarrow} LA \stackrel{k_2}{\to} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1+K_{ad}c_A} \stackrel{gas}{\propto} \frac{bp_A}{1+bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2K_{ad}c_{L0}c_A \stackrel{gas}{\propto} p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \stackrel{gas}{=} const}$ (saturated catalyst – Oth order) E.g., decomposition of phosphane (phosphine, PH_3) on tungsten (W). BET Isotherm	8/18 Reaction in (g) or (less typically) in (l):A + B \rightarrow PLangmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_P}{d\tau} = k \theta_A \theta_B = k \frac{b_A \rho_A b_B \rho_B}{(1 + b_A \rho_A + b_B \rho_A)^2}$ Most common type for heat-activated reactions on a solid catalyst, e.g.:CO + 2 H2CO + 2 H2CH3OHComplex rate/temperature dependence.Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_P}{d\tau} = k \theta_A \rho_B = k \frac{b_A \rho_A \rho_B}{1 + b_A \rho_A}$ E.g., H + H \rightarrow H2 on dust grains in the interstelar spaceBET IsothermAdsorption center = L, molecule = A, complexes LA, LA2,
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\leftarrow} LA \stackrel{k_2}{\leftarrow} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1 + K_{ad}c_A} \stackrel{gas}{\propto} \frac{bp_A}{1 + bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \stackrel{gas}{=} const (saturated catalyst - Oth order)$ E.g., decomposition of phosphane (phosphine, PH ₃) on tungsten (W). BET Isotherm	8/18 Reaction in (g) or (less typically) in (l):A + B \rightarrow PLangmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_P}{d\tau} = k \theta_A \theta_B = k \frac{b_A p_A b_B p_B}{(1 + b_A p_A + b_B p_A)^2}$ Most common type for heat-activated reactions on a solid catalyst, e.g.:CO + 2 H2CO + 2 H2CO + 2 H2CO + 2 H2OC H3OHComplex rate/temperature dependence.Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_P}{d\tau} = k \theta_A p_B = k \frac{b_A p_A p_B}{1 + b_A p_A}$ E.g., H + H \rightarrow H2 on dust grains in the interstelar space BET Isotherm $\frac{8/18}{col11}$ Adsorption center = L, molecule = A, complexes LA, LA2,
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\leftrightarrow} LA \stackrel{k_2}{\to} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1+K_{ad}c_A} \overset{gas}{=} \frac{bp_A}{1+bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2K_{ad}c_{L0}c_A \overset{gas}{=} p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \overset{gas}{=} const$ (saturated catalyst – Oth order) E.g., decomposition of phosphane (phosphine, PH ₃) on tungsten (W). BET Isotherm Stephen Brunauer Paul Hugh Emmet Edward Teller* Usage: determining the specific	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_P}{d\tau} = k\theta_A\theta_B = k\frac{b_A\rho_A b_B\rho_B}{(1 + b_A\rho_A + b_B\rho_A)^2}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_2 \xrightarrow{ZnO} CH_3OH$ Complex rate/temperature dependence. Eiye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_P}{d\tau} = k\theta_A \rho_B = k\frac{b_A \rho_A \rho_B}{1 + b_A \rho_A}$ E.g., H + H \rightarrow H ₂ on dust grains in the interstelar space BET isotherm $\frac{8/18}{coll1}$ Adsorption center = L, molecule = A, complexes LA, LA ₂ , Balance: $\sum_{n=0}^{\infty} [LA_n] = c_{L0}$, coverage: $\theta = \frac{1}{c_{L0}} \sum_{n=0}^{\infty} n[LA_n] \in (0, \infty)$
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example - chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\leftarrow} LA \stackrel{k_2}{\leftarrow} B + L$ $for k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1 + K_{ad}c_A} \stackrel{gas}{\propto} \frac{bp_A}{1 + bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2K_{ad}c_{L0}c_A \stackrel{gas}{\propto} p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \stackrel{gas}{=} const$ (saturated catalyst – Oth order) E.g., decomposition of phosphane (phosphine, PH_3) on tungsten (W). BET Isotherm Stephen Brunauer Paul Hugh Emmet Edward Teller* Usage: determining the specific surface area of adsorbent	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_P}{d\tau} = k\theta_A\theta_B = k\frac{b_A\rho_A b_B\rho_B}{(1 + b_A\rho_A + b_B\rho_A)^2}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_2 \xrightarrow{ZnO} CH_3OH$ Complex rate/temperature dependence. Eiye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_P}{d\tau} = k\theta_A \rho_B = k\frac{b_A \rho_A \rho_B}{1 + b_A \rho_A}$ E.g., H + H \rightarrow H ₂ on dust grains in the interstelar space BET isotherm $\frac{8/18}{coll1}$ Adsorption center = L, molecule = A, complexes LA, LA ₂ , Balance: $\sum_{n=0}^{\infty} [LA_n] = c_{L0}$, coverage: $\theta = \frac{1}{c_{L0}} \sum_{n=0}^{\infty} n[LA_n] \in (0, \infty)$
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\leftrightarrow} LA \stackrel{k_2}{\to} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1+K_{ad}c_A} \overset{gas}{=} \frac{bp_A}{1+bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2K_{ad}c_{L0}c_A \overset{gas}{=} p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \overset{gas}{=} const$ (saturated catalyst – Oth order) E.g., decomposition of phosphane (phosphine, PH ₃) on tungsten (W). BET Isotherm Stephen Brunauer Paul Hugh Emmet Edward Teller* Usage: determining the specific	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k \theta_{A} \theta_{B} = k \frac{b_{A} \rho_{A} b_{B} \rho_{B}}{(1 + b_{A} \rho_{A} + b_{B} \rho_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $C0 + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence. Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_{P}}{d\tau} = k \theta_{A} \rho_{B} = k \frac{b_{A} \rho_{A} \rho_{B}}{1 + b_{A} \rho_{A}}$ E.g., H + H \rightarrow H ₂ on dust grains in the interstelar space BET isotherm $\begin{cases} 8/18 \\ collider col$
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\underset{k=1}{\leftarrow}} LA \stackrel{k_2}{\underset{k=1}{\leftarrow}} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1 + K_{ad}c_A} \propto \frac{bp_A}{1 + bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2K_{ad}c_{L0}c_A \propto p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \stackrel{gas}{=} const$ (saturated catalyst – Oth order) E.g., decomposition of phosphane (phosphine, PH_3) on tungsten (W). BET isotherm • independent adsorption centers of the same kind simple but problematic as-	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k\theta_{A}\theta_{B} = k\frac{b_{A}\rho_{A}b_{B}\rho_{B}}{(1 + b_{A}\rho_{A} + b_{B}\rho_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence. Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_{P}}{d\tau} = k\theta_{A}\rho_{B} = k\frac{b_{A}\rho_{A}\rho_{B}}{1 + b_{A}\rho_{A}}$ E.g., H + H \rightarrow H ₂ on dust grains in the interstelar space BET Isotherm $\begin{cases}8/18\\coll1\end{cases}$ Adsorption center = L, molecule = A, complexes LA, LA ₂ , Balance: $\sum_{n=0}^{\infty} [LA_{n}] = c_{L0}$, coverage: $\theta = \frac{1}{c_{L0}} \sum_{n=0}^{\infty} n[LA_{n}] \in (0, \infty)$
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\leftarrow} LA \stackrel{k_2}{\leftarrow} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1+K_{ad}c_A} \stackrel{gas}{\propto} \frac{bp_A}{1+bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \stackrel{gas}{\sim} p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \stackrel{gas}{\sim} const (saturated catalyst - Oth order)$ E.g., decomposition of phosphane (phosphine, PH ₃) on tungsten (W). BET Isotherm Stephen Brunauer Paul Hugh Emmet Edward Teller* Usage: determining the specific surface area of adsorbent • independent adsorption cen- ters of the same kind simple but problematic as- sumption	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k\theta_{A}\theta_{B} = k \frac{b_{A}p_{A}b_{B}p_{B}}{(1 + b_{A}p_{A} + b_{B}p_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence. Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_{P}}{d\tau} = k\theta_{A}p_{B} = k \frac{b_{A}p_{A}p_{B}}{1 + b_{A}p_{A}}$ E.g., H + H \rightarrow H ₂ on dust grains in the interstelar space $\frac{BET Isotherm}{content} = L, molecule = A, complexes LA, LA_{2},$ Balance: $\sum_{n=0}^{\infty} [LA_{n}] = c_{L0}, coverage: \theta = \frac{1}{c_{L0}} \sum_{n=0}^{\infty} n[LA_{n}] \in (0, \infty)$ $L + A \rightarrow LA \qquad [LA_{2} = Ka_{A}[LA]]$ $LA_{2} + A \rightarrow LA_{3} \qquad [LA_{3}] = Ka_{A}[LA]$ $LA_{2} + A \rightarrow LA_{3} \qquad [LA_{3}] = Ka_{A}[LA]$
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \frac{k_1}{k_{-1}} LA \frac{k_2}{k} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1 + K_{ad}c_A} \propto \frac{bp_A}{1 + bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2K_{ad}c_{L0}c_A \propto p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \frac{gas}{2}$ const (saturated catalyst – Oth order) E.g., decomposition of phosphane (phosphine, PH ₃) on tungsten (W). BET Isotherm • Stephen Brunauer Paul Hugh Emmet Edward Teller* Usage: determining the specific surface area of adsorbent • independent adsorption cen- ters of the same kind simple but problematic as-	Reaction in (g) or (less typically) in (l):A + B \rightarrow PLangmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dcp}{d\tau} = k \theta_A \theta_B = k \frac{b_A p_A b_B p_B}{(1 + b_A p_A + b_B p_A)^2}$ Most common type for heat-activated reactions on a solid catalyst, e.g.:CO + 2 H2 $\stackrel{ZnO}{\rightarrow}$ CH3OHComplex rate/temperature dependence.Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dcp}{d\tau} = k \theta_A p_B = k \frac{b_A p_A p_B}{1 + b_A p_A}$ E.g., H + H \rightarrow H2 on dust grains in the interstelar space BET Isotherm Adsorption center = L, molecule = A, complexes LA, LA2,Balance: $\sum_{n=0}^{\infty} [LA_n] = c_{L0}$, coverage: $\theta = \frac{1}{c_{L0}} \sum_{n=0}^{\infty} n[LA_n] \in (0, \infty)$ L + A \rightarrow LA[LA] = $K_{ad}aA[L]$ LA \rightarrow LA[LA] = $Ka_a(LA]$ LA] = $Ka_a(LA]$ LA \rightarrow LA[LA] = $Ka_a(LA]$ LA \rightarrow LA $= [LA] = Ka_a(Aa[LA])$ LA $= \frac{1}{c_{L0}} \sum_{n=0}^{\infty} n[LA_n] \in (0, \infty)$ L $= \frac{1}{c_{L0}} \sum_{n=0}^{\infty} n[LA_n] = (0, \infty$
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\underset{k_{-1}}{\overset{1}{\leftarrow}}} LA \stackrel{k_2}{\longrightarrow} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}C_A}{1 + K_{ad}C_A} \stackrel{gas}{\propto} \frac{bp_A}{1 + bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2K_{ad}C_{L0}c_A \stackrel{gas}{} p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \stackrel{gas}{} const}$ (saturated catalyst – Oth order) E.g., decomposition of phosphane (phosphine, PH ₃) on tungsten (W). BET isotherm Stephen Brunauer Paul Hugh Emmet Edward Teller* Usage: determining the specific surface area of adsorbent • independent adsorption cen- ters of the same kind simple but problematic as- sumption • several layers	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k\theta_{A}\theta_{B} = k \frac{b_{A}p_{A}b_{B}p_{B}}{(1 + b_{A}p_{A} + b_{B}p_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence. Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_{P}}{d\tau} = k\theta_{A}p_{B} = k \frac{b_{A}p_{A}p_{B}}{1 + b_{A}p_{A}}$ E.g., H + H \rightarrow H ₂ on dust grains in the interstelar space $\frac{BET Isotherm}{content} = L, molecule = A, complexes LA, LA_{2},$ Balance: $\sum_{n=0}^{\infty} [LA_{n}] = c_{L0}, coverage: \theta = \frac{1}{c_{L0}} \sum_{n=0}^{\infty} n[LA_{n}] \in (0, \infty)$ $L + A \rightarrow LA \qquad [LA_{2} = Ka_{A}[LA]]$ $LA_{2} + A \rightarrow LA_{3} \qquad [LA_{3}] = Ka_{A}[LA]$ $LA_{2} + A \rightarrow LA_{3} \qquad [LA_{3}] = Ka_{A}[LA]$
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\leftarrow} LA \stackrel{k_2}{\leftarrow} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}c_A}{1+K_{ad}c_A} \stackrel{gas}{\propto} \frac{bp_A}{1+bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2K_{ad}c_{L0}c_A \stackrel{gas}{\propto} p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} \stackrel{gas}{=} const (saturated catalyst - Oth order)$ E.g., decomposition of phosphane (phosphine, PH ₃) on tungsten (W). BET Isotherm * Suspen Brunauer Paul Hugh Emmet Edward Teller* Usage: determining the specific surface area of adsorbent • independent adsorption cen- ters of the same kind simple but problematic as- sumption • several layers • 1st layer as in the Langmuir isotherm • additional layers bound in the same way as in a liquid Known: Activity of the adsorbate: a_A	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k\theta_{A}\theta_{B} = k\frac{b_{A}p_{A}b_{B}p_{B}}{(1 + b_{A}p_{A} + b_{B}p_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence. Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_{P}}{d\tau} = k\theta_{A}p_{B} = k\frac{b_{A}p_{A}p_{B}}{1 + b_{A}p_{A}}$ E.g., H + H \rightarrow H ₂ on dust grains in the interstelar space BET Isotherm $\begin{cases} 8/18 \\ colling $
A catalyst in solid phase, large specific surface area. The rate-determining process may be: • diffusion (in solution: k drops if we increase the viscosity) • chemisorption (T-dependent) • surface diffusion Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium $A + L \stackrel{k_1}{\xrightarrow{\leftarrow}} LA \stackrel{k_2}{\xrightarrow{\leftarrow}} B + L$ for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$ $-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2c_{L0}\theta = k_2c_{L0}\frac{K_{ad}C_A}{1 + K_{ad}C_A} ges \frac{bp_A}{1 + bp_A}$ • small $c_A: -\frac{dc_A}{d\tau} = k_2K_{ad}c_{L0}c_A ges p_A$ (1st order) • large $c_A: -\frac{dc_A}{d\tau} = k_2c_{L0} ges const (saturated catalyst - 0th order) E.g., decomposition of phosphane (phosphine, PH3) on tungsten (W). BET Isotherm Stephen Brunauer Paul Hugh Emmet Edward Teller* Usage: determining the specific surface area of adsorbent • independent adsorption cen- ters of the same kind simple but problematic as- sumption • several layers • 1st layer as in the Langmuir isotherm • additional layers bound in the same way as in a liquid$	Reaction in (g) or (less typically) in (l): $A + B \rightarrow P$ Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react $-\frac{dc_{P}}{d\tau} = k \theta_{A} \theta_{B} = k \frac{b_{A} p_{A} b_{B} p_{B}}{(1 + b_{A} p_{A} + b_{B} p_{A})^{2}}$ Most common type for heat-activated reactions on a solid catalyst, e.g.: $CO + 2 H_{2} \xrightarrow{ZnO} CH_{3}OH$ Complex rate/temperature dependence. Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g) $-\frac{dc_{P}}{d\tau} = k \theta_{A} p_{B} = k \frac{b_{A} p_{A} p_{B}}{1 + b_{A} p_{A}}$ E.g., H + H \rightarrow H ₂ on dust grains in the interstelar space BET Isotherm Adsorption center = L, molecule = A, complexes LA, LA ₂ , Balance: $\sum_{n=0}^{\infty} [LA_{n}] = c_{L0}, \text{coverage: } \theta = \frac{1}{c_{L0}} \sum_{n=0}^{\infty} n[LA_{n}] \in (0, \infty)$ $\frac{L + A \rightarrow LA}{LA_{2}} \qquad [LA_{2}] = Ka_{A}[LA]$ $LA_{2} + A \rightarrow LA_{3} \qquad [LA_{3}] = Ka_{A}[LA]$ $\frac{L}{LA_{2} + A \rightarrow LA_{3}} \qquad [LA_{3}] = Ka_{A}[LA]$ $\frac{L}{LA_{2} + A \rightarrow LA_{3}} \qquad [LA_{3}] = Ka_{A}[LA]$ $\frac{L}{LA_{2} + A \rightarrow LA_{3}} \qquad [LA_{3}] = Ka_{A}[LA]$ $\frac{L}{LA_{2} + A \rightarrow LA_{3}} \qquad [LA_{3}] = Ka_{A}[LA]$ $\frac{L}{LA_{2} + A \rightarrow LA_{3}} \qquad [LA_{3}] = Ka_{A}[LA]$

