Adsorption

↑ Ar on graphite →

- adsorption: on surface (interface)
- absorption: inside (bulk)
- sorption: both

- molecular adsorption (g) \rightarrow (s), (l) \rightarrow (s)/(l),...
- ion adsorption Paneth-Fajans rule
- exchange ion adsorption, counterions in aluminosilicates

Physical adsorption and chemisorption

	physical adsorption	chemisorption			
forces	physical (weak: van der Waals, H-bonds)	covalent bonds			
specificity	non-specific (easy to liquefy – easily adsorbed)	specific			
adsorption	$-20 \text{ to } -40 \text{ kJ mol}^{-1}$	$-40 \text{ to } -400 \text{ kJ mol}^{-1}$			
heat	(≈ condensation heat)	(≈ reaction heat)			
number of	several layers possible	one layer			
layers	(as condensation)				
activation	0	> 0			
energy					
rate	high (seconds)	slow at low T , fast at high T			
amount	large below $T_{\rm C}$, small above $T_{\rm C}$	small; usually given by kinetics			
adsorbed					
reversibility	easy (vacuum, temperature)	not so easy (vacuum + higher T)			

Langmuir adsorption isotherm

- Occupied Good for chemisorption, adsorption in small cavities (zeolites); limited for physical adsorption ($p \ll p^s$)
- Independent (noninteracting) adsorption centers of one kind
- Max 1 molecule/center (one layer)

Known: Activity of the adsorbate: $a_A = \frac{p_A}{p^{st}}$, or from solution: $a_A = \frac{c_A(\odot)}{c^{st}}$

Equilibrium constant of adsorption K_{ad}

Adsorption equilibrium:

$$L + A \rightarrow LA$$

$$[LA] + [L] = c_{L0}, \qquad \frac{[LA]}{a_A[L]} = K_{ad}$$

Coverage (saturation):

$$\theta = \frac{\text{adsorbed amount}}{\text{maximum amount (monolayer)}} = \frac{\text{[LA]}}{c_{\text{L0}}} = \frac{K_{\text{ad}} a_{\text{A}}}{1 + K_{\text{ad}} a_{\text{A}}}$$

Gas:
$$\theta = \frac{bp_A}{1 + bp_A}$$
, $b = \frac{K_{ad}}{p^{st}}$

Options

Dissociative adsorption

$$2L + A_2 \rightarrow 2LA$$

$$\theta = \frac{bp_{A}^{1/2}}{1 + bp_{A}^{1/2}}$$

Competitive adsorption (2 compounds):

$$L + A \rightarrow LA$$

$$L + B \rightarrow LB$$

$$\theta_{A} = \frac{b_{A}p_{A}}{1 + b_{A}p_{A} + b_{B}p_{B}}$$

Heterogeneous catalysis

 $+\frac{5/18}{col11}$

A catalyst in solid phase, large specific surface area. The rate-determining process may be:

- diffusion (in solution: k drops if we increase the viscosity)
- chemisorption (*T*-dependent)
- surface diffusion

Example – chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium

$$A + L \stackrel{k_1}{\underset{k_{-1}}{\rightleftharpoons}} LA \stackrel{k_2}{\longrightarrow} B + L$$

If not $k_2 \ll k_{-1}$, follow the Michaelis–Menten kinetics

for $k_2 \ll k_{-1}$ use pre-equilibrium, $K_{ad} = k_1/k_{-1}$

$$-\frac{dc_A}{d\tau} = \frac{dc_B}{d\tau} = k_2 c_{L0} \theta = k_2 c_{L0} \frac{K_{ad} c_A}{1 + K_{ad} c_A} \stackrel{gas}{\propto} \frac{bp_A}{1 + bp_A}$$

- small c_A : $-\frac{dc_A}{d\tau} = k_2 K_{ad} c_{L0} c_A \stackrel{gas}{\propto} p_A$ (1st order)
- large c_A : $-\frac{dc_A}{d\tau} = k_2 c_{L0} \stackrel{gas}{=} const$ (saturated catalyst **0th order**)

E.g., decomposition of phosphane (phosphine, PH₃) on tungsten (W).

Heterogeneous catalysis

 $+\frac{6/18}{col11}$

Reaction in (g) or (less typically) in (l):

$$A + B \rightarrow P$$

Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react

$$-\frac{dc_{P}}{d\tau} = k\theta_{A}\theta_{B} = k\frac{b_{A}p_{A}b_{B}p_{B}}{(1 + b_{A}p_{A} + b_{B}p_{A})^{2}}$$

Most common type for heat-activated reactions on a solid catalyst, e.g.:

$$CO + 2H_2 \xrightarrow{ZnO} CH_3OH$$

Complex rate/temperature dependence.

Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g)

$$-\frac{\mathrm{d}c_{\mathrm{P}}}{\mathrm{d}\tau} = k\theta_{\mathrm{A}}p_{\mathrm{B}} = k\frac{b_{\mathrm{A}}p_{\mathrm{A}}p_{\mathrm{B}}}{1 + b_{\mathrm{A}}p_{\mathrm{A}}}$$

E.g., $H + H \rightarrow H_2$ on dust grains in the interstelar space

BET Isotherm

Stephen <u>B</u>runauer Paul Hugh <u>E</u>mmet Edward <u>T</u>eller*

Usage: determining the specific surface area of adsorbent

- independent adsorption centers of the same kind simple but problematic assumption
- several layers
- 1st layer as in the Langmuir isotherm
- additional layers bound in the same way as in a liquid

Known: Activity of the adsorbate: a_A Equilibrium constants of adsorption: K_{ad} (1st layer), K (more layers)

^{*} also known as "the father of the hydrogen bomb"

BET Isotherm

Adsorption center = L, molecule = A, complexes LA, LA₂, . . .

Balance:
$$\sum_{n=0}^{\infty} [LA_n] = c_{L0}$$
, coverage: $\theta = \frac{1}{c_{L0}} \sum_{n=0}^{\infty} n[LA_n] \in (0, \infty)$
 $L + A \rightarrow LA$ $[LA] = K_{ad}\alpha_A[L]$
 $LA + A \rightarrow LA_2$ $[LA_2] = K\alpha_A[LA]$
 $LA_2 + A \rightarrow LA_3$ $[LA_3] = K\alpha_A[LA_2]$

$$c_{L0} - [L] = K_{ad}\alpha_A[L] + K\alpha_A(c_{L0} - [L])$$

$$\Rightarrow [L] = \frac{c_{L0}(1 - Ka_A)}{1 - K_{ad}a_A - K_{ad}a_A}$$

$$\theta = \frac{1}{c_{L0}} K_{ad} \alpha_A [L] \left[1 + 2K \alpha_A + 3(K \alpha_A)^2 + \cdots \right] = \frac{K_{ad} \alpha_A [L]}{(1 - K \alpha_A)^2}$$

$$S_1 = 1 + x + x^2 + x^3 + \dots = 1 + xS_1 \implies S_1 = 1/(1-x)$$

 $S_2 = 1 + 2x + 3x^2 + \dots = S_1 + xS_2 \implies S_2 = 1/(1-x)^2 \text{ or } S_2 = dS_1/dx$

col11

$$\theta = \frac{K_{\text{ad}}\alpha_{\text{A}}}{(1 - K\alpha_{\text{A}})[1 + (K_{\text{ad}} - K)\alpha_{\text{A}}]}$$

K describes the adsorption to 2nd, 3rd, ... layers = condensation. From the equlibrium at the saturated vapor pressure p^{s} :

$$LA_n(I) + A(g) \rightarrow LA_{n+1}(I) \Rightarrow K = \frac{a(l)}{a(l)a_A} = \frac{p^{St}}{p^S}$$

Let us replace $a_A = \frac{p}{p^{st}}$ and let us define $C = \frac{K_{ad}}{K}$. The common form of BET is:

$$\theta = \frac{Cp/p^{S}}{(1 - p/p^{S})[1 + (C - 1)p/p^{S}]}$$

For C it holds:

$$C = \frac{K_{\text{ad}}}{K} = \exp\left[-\frac{\Delta_{\text{ad,1}}G_{\text{m}}^{\circ} - \Delta_{\text{ad,n}}G_{\text{m}}^{\circ}}{RT}\right] \approx \exp\left[-\frac{\Delta_{\text{ad,1}}H_{\text{m}}^{\circ} - \Delta_{\text{ad,n}}H_{\text{m}}^{\circ}}{RT}\right]$$

where $\Delta_{ad,n} = -\Delta_{vap}$

 $C\gg 1$: forces adsorbent-adsorbate are much stronger than adsorbate-adsorbate e.g., very hydrofilic surface

 $C \approx 1$: similar forces, bad adsorbent

 $C \ll 1$: poor adsorption (hydrophobic surface)

Freundlich isotherm

Freundlich isotherm

- empirical
- heterogeneous surfaces
- \bigcirc fails close to $p_A = p^S$

$$a = k p^{1/n}$$

a/a_{mono}, Freundlich: a (a.u.)

a = amount adsorbed k = constant (decreasing with increasing T) n = constant, n > 1 ($n \approx 1$ for high T)

Isotherms compared

Capillary condensation and hysteresis

It follows from the Kelvin equation that there is a lower saturated pressure above the meniscus in hydrophilic/lyofilic pores (contact angle < 90°). Therefore, the pores get filled already at $p < p^s$, hence the amount adsorbed (α) increases.

col11

Complex pore shape (cavities, bottle-like), open cylinders (curvatures for adsorption/desorption differ) \Rightarrow hysteresis (different shape for adsorption/desorption)

col11

Example

The adsorption of ethylene on activated carbon at 273 K, expressed as the mass of ethylene per mass of charcoal (α) in dependence on pressure (p), is shown in the table below. Determine the constants of the Langmuir isotherm and the specific surface area of the adsorbent. One molecule of ethylene covers $19 \,\text{Å}^2 = 0.19 \,\text{nm}^2$.

$\frac{p}{\text{MPa}}$	0.1	0.2	0.28	0.41	0.98	1.39	1.93	2.75	3.01	3.51
a	0.089	0.127	0.144	0.163	0.189	0.198	0.206	0.208	0.209	0.210

 $a_{\text{max}} = 0.219$, $b = 6.84 \text{ MPa}^{-1}$, $A_{\text{spec}} = 900 \text{ m}^2 \text{ g}^{-1}$

Surfactants

<u>surface active</u> (acting) <u>agent</u>

- adsorbed at the solvent surface
- decreases the surface tension

usually a hydrophilic "head" (-COOH, -SO₃H) and a hydrophobic "tail" (aliphatic: 0.205 nm²/molecule)

longer molecules are not dissolved, but can compose films at a surface

Experiment. Throw matches to water, touch the surface with soap or other detergent.

Lowering surface (Gibbs) energy \Rightarrow increase the surface covered by a surfactant \Rightarrow surface pressure

$$\pi = \gamma_0 - \gamma_{\text{surf}} > 0$$

Unit: N/m

Films of surfactants

credit: L. Bartovská

hexadecanol, palmitate: 2D crystal phospholipides (less regular): 2D liquid film

Thermodynamics of adsorption

1 = solvent

2 = surfactant

Surface excess:

$$\Gamma_{2,1} = \int_{-\infty}^{\infty} \left[c_2(x) - \frac{c_2^{\text{bulk}}}{c_1^{\text{bulk}}} c_1(x) \right] dx$$

$$= \frac{1}{A} \left[n_2^{\text{surf}} - \frac{n_2^{\text{bulk}}}{n_1^{\text{bulk}}} n_1^{\text{surf}} \right]$$

 $c_i(x)$ = concentration of compound i at x c_i^{bulk} = concentration of i in the bulk

$$n_i^{\text{surf}} = A \int_{-\infty}^{x^{\text{surf}}} c_i(x) dx$$
 for x^{surf} far away

Gibbs adsorption isotherm

Gibbs–Duhem equation in the bulk at constant [p, T]:

$$dG^{\text{bulk}} = \mu_1 dn_1^{\text{bulk}} + \mu_2 dn_2^{\text{bulk}} = d(\mu_1 n_1^{\text{bulk}} + \mu_2 n_2^{\text{bulk}})$$

$$\Rightarrow d\mu_1 n_1^{\text{bulk}} + d\mu_2 n_2^{\text{bulk}} = 0 \Rightarrow d\mu_1 = -d\mu_2 \frac{n_2^{\text{bulk}}}{n_1^{\text{bulk}}}$$
(1)

Similarly for the surface (to x^{surf}):

$$dG^{\text{surf}} = \mu_1 dn_1^{\text{surf}} + \mu_2 dn_2^{\text{surf}} + \gamma dA = d(\mu_1 n_1^{\text{surf}} + \mu_2 n_2^{\text{surf}} + \gamma A)$$

$$\Rightarrow d\mu_1 n_1^{\text{surf}} + d\mu_2 n_2^{\text{surf}} + d\gamma A = 0$$
(2)

The chemical potentials are the same! On inserting (1) to (2):
$$\frac{\Gamma_{2,1}}{-d\mu_2 \frac{n_2^{\text{bulk}}}{n_1^{\text{bulk}}} n_1^{\text{surf}} + d\mu_2 n_2^{\text{surf}} + d\gamma \mathcal{A} = d\mu_2 \left(\frac{n_2^{\text{surf}}}{n_1^{\text{bulk}}} - \frac{n_2^{\text{bulk}}}{n_1^{\text{bulk}}} n_1^{\text{surf}} \right) + d\gamma \mathcal{A} = 0$$

$$\Gamma_{2,1} = -\left(\frac{\partial \gamma}{\partial \mu_2}\right)_{p,T} \approx -\frac{c_2}{RT} \left(\frac{\partial \gamma}{\partial c_2}\right)_{p,T}$$

A surfactant (decreasing the surface energy) exhibits a positive surface excess

Concentration dependence of the surface tension

Atomic Layer Deposition (ALD)

A precursor adsorbed to a monomolecular layer. Example:

- vapor of Al₂(CH₃)₆ (trimethylaluminium dimer): disociative chemisorption
- remove vapor (vacuum, nitrogen)
- water vapor → Al₂O₃
- remove vapor