
\uparrow Ar on graphite \rightarrow
adsorption: on surface (interface)
absorption: inside (bulk)
sorption: both
molecular adsorption $(\mathrm{g}) \rightarrow(\mathrm{s}),(\mathrm{I}) \rightarrow(\mathrm{s}) /(\mathrm{I}), \ldots$

- ion adsorption

Paneth-Fajans rule

- exchange ion adsorption, counterions in aluminosilicates

Physical adsorption and chemisorption

	physical adsorption	chemisorption
forces	physical (weak: van der Waals, H-bonds)	covalent bonds
specificity	non-specific (easy to liquefy easily adsorbed)	specific
adsorption heat	-20 to -40 kJ mol $(\approx$ condensation heat)	-40 to -400 kJ mol (-1 $(\approx$ reaction heat)
number of layers	several layers possible (as condensation)	one layer
activation energy	0	>0
rate	high (seconds)	slow at low T, fast at high T
amount adsorbed	large below T_{C}, small above T_{C}	small; usually given by kinetics
reversibility	easy (vacuum, temperature)	not so easy (vacuum + higher T)

Langmuir adsorption isotherm

Good for chemisorption, adsorption in small cavities (zeolites); limited for physical adsorption ($p \ll p^{\mathrm{S}}$)
O Independent (noninteracting) adsorption centers of one kind
Max 1 molecule/center (one layer)
Known: Activity of the adsorbate: $a_{\mathrm{A}}=\frac{p_{\mathrm{A}}}{p^{\text {st }}}$, or from solution: $a_{\mathrm{A}}=\frac{c_{\mathrm{A}}(\odot)}{c^{\mathrm{st}}}$

$$
\text { Equilibrium constant of adsorption } K_{\text {ad }}
$$

Adsorption equilibrium:

$$
L+A \rightarrow L A
$$

$$
[\mathrm{LA}]+[\mathrm{L}]=c_{\mathrm{LO}}, \quad \frac{[\mathrm{LA}]}{a_{\mathrm{A}}[\mathrm{~L}]}=K_{\mathrm{ad}}
$$

Coverage (saturation):

$$
\theta=\frac{\text { adsorbed amount }}{\text { maximum amount (monolayer) }}=\frac{[\mathrm{LA}]}{c_{\mathrm{L} 0}}=\frac{K_{\mathrm{ad}} a_{\mathrm{A}}}{1+K_{\mathrm{ad}} a_{\mathrm{A}}}
$$

Gas:

$$
\theta=\frac{b p_{\mathrm{A}}}{1+b p_{\mathrm{A}}}, \quad b=\frac{K_{\mathrm{ad}}}{p^{\mathrm{st}}}
$$

Options

Dissociative adsorption

$$
\begin{aligned}
& 2 \mathrm{~L}+\mathrm{A}_{2} \rightarrow 2 \mathrm{LA} \\
& \theta=\frac{b p_{\mathrm{A}}^{1 / 2}}{1+b p_{\mathrm{A}}^{1 / 2}}
\end{aligned}
$$

Competitive adsorption (2 compounds):

$$
\begin{gathered}
\mathrm{L}+\mathrm{A} \rightarrow \mathrm{LA} \\
\mathrm{~L}+\mathrm{B} \rightarrow \mathrm{LB} \\
\theta_{\mathrm{A}}=\frac{b_{\mathrm{A}} p_{\mathrm{A}}}{1+b_{\mathrm{A}} p_{\mathrm{A}}+b_{\mathrm{B}} p_{\mathrm{B}}}
\end{gathered}
$$

Heterogeneous catalysis

A catalyst in solid phase, large specific surface area.
The rate-determining process may be:
diffusion (in solution: k drops if we increase the viscosity)
chemisorption (T-dependent)
surface diffusion
Example - chemisorption determines the rate, $A \rightarrow B$ Independent active centers L, adsorption equilibrium

$$
\mathrm{A}+\mathrm{L} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{LA} \xrightarrow{k_{2}} \mathrm{~B}+\mathrm{L}
$$

If not $k_{2} \ll k_{-1}$, follow the MichaelisMenten kinetics
for $k_{2} \ll k_{-1}$ use pre-equilibrium, $K_{\text {ad }}=k_{1} / k_{-1}$

$$
-\frac{\mathrm{d} c_{\mathrm{A}}}{\mathrm{~d} \tau}=\frac{\mathrm{d} c_{\mathrm{B}}}{\mathrm{~d} \tau}=k_{2} c_{\mathrm{L} 0} \theta=k_{2} c_{\mathrm{L} 0} \frac{K_{\mathrm{ad}} c_{\mathrm{A}}}{1+K_{\mathrm{ad}} c_{\mathrm{A}}} \stackrel{\text { gas }}{\propto} \frac{b p_{\mathrm{A}}}{1+b p_{\mathrm{A}}}
$$

small $c_{A}:-\frac{d c_{\mathrm{A}}}{\mathrm{d} \tau}=k_{2} K_{\mathrm{ad}} c_{\mathrm{LO}} C_{\mathrm{A}} \stackrel{\text { gas }}{\propto} p_{\mathrm{A}}$ (1st order)

- large $c_{A}:-\frac{d c_{A}}{d \tau}=k_{2} c_{L 0} \stackrel{\text { gas }}{=}$ const (saturated catalyst - 0th order)
E.g., decomposition of phosphane (phosphine, PH_{3}) on tungsten (W).

Heterogeneous catalysis

Reaction in (g) or (less typically) in (I):

$$
A+B \rightarrow P
$$

Langmuir-Hinshelwood mechanism: both A and B are adsorbed and then react

$$
-\frac{\mathrm{d} c_{\mathrm{P}}}{\mathrm{~d} \tau}=k \theta_{\mathrm{A}} \theta_{\mathrm{B}}=k \frac{b_{\mathrm{A}} p_{\mathrm{A}} b_{\mathrm{B}} p_{\mathrm{B}}}{\left(1+b_{\mathrm{A}} p_{\mathrm{A}}+b_{\mathrm{B}} p_{\mathrm{A}}\right)^{2}}
$$

Most common type for heat-activated reactions on a solid catalyst, e.g.:

$$
\mathrm{CO}+2 \mathrm{H}_{2} \xrightarrow{\mathrm{ZnO}} \mathrm{CH}_{3} \mathrm{OH}
$$

Complex rate/temperature dependence.
Elye-Rideal mechanism: A is adsorbed, then directly reacts with B in (g)

$$
-\frac{\mathrm{d} C_{\mathrm{P}}}{\mathrm{~d} \tau}=k \theta_{\mathrm{A}} p_{\mathrm{B}}=k \frac{b_{\mathrm{A}} p_{\mathrm{A}} p_{\mathrm{B}}}{1+b_{\mathrm{A}} p_{\mathrm{A}}}
$$

E.g., $\mathrm{H}+\mathrm{H} \rightarrow \mathrm{H}_{2}$ on dust grains in the interstelar space

Stephen Brunauer
 Paul Hugh Emmet
 Edward Teller*

Usage: determining the specific surface area of adsorbent
independent adsorption centers of the same kind simple but problematic assumption

- several layers

1st layer as in the Langmuir isotherm
additional layers bound in the same way as in a liquid
Known: Activity of the adsorbate: a_{A} Equilibrium constants of adsorption: $K_{\text {ad }}$ (1st layer), K (more layers)

[^0]
BET Isotherm

Adsorption center $=\mathrm{L}$, molecule $=\mathrm{A}$, complexes $\mathrm{LA}, \mathrm{LA}_{2}, \ldots$
Balance: $\sum_{n=0}^{\infty}\left[\mathrm{LA}_{n}\right]=c_{\mathrm{L} 0}, \quad$ coverage: $\theta=\frac{1}{c_{\mathrm{L}}} \sum_{n=0}^{\infty} n\left[\mathrm{LA}_{n}\right] \in(0, \infty)$

$$
\begin{aligned}
\mathrm{L}+\mathrm{A} & \rightarrow \mathrm{LA} & {[\mathrm{LA}] } & =K_{\mathrm{ad}} a_{\mathrm{A}}[\mathrm{~L}] \\
\mathrm{LA}+\mathrm{A} & \rightarrow \mathrm{LA}_{2} & {\left[\mathrm{LA}_{2}\right] } & =K a_{\mathrm{A}}[\mathrm{LA}] \\
\mathrm{LA}_{2}+\mathrm{A} & \rightarrow \mathrm{LA}_{3} & {\left[\mathrm{LA}_{3}\right] } & =K a_{\mathrm{A}}\left[\mathrm{LA}_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& c_{\mathrm{L} 0}-[\mathrm{L}]=K_{\mathrm{ad}} a_{\mathrm{A}}[\mathrm{~L}]+K a_{\mathrm{A}}\left(c_{\mathrm{L} 0}-[\mathrm{L}]\right) \\
& \Rightarrow \quad {[\mathrm{L}]=} \\
& c_{\mathrm{L} 0}\left(1-K a_{\mathrm{A}}\right) \\
& 1-K_{\mathrm{ad}} a_{\mathrm{A}}-K_{\mathrm{ad}} a_{\mathrm{A}}
\end{aligned}
$$

$$
\theta=\frac{1}{c_{\mathrm{L} 0}} K_{\mathrm{ad}} a_{\mathrm{A}}[\mathrm{~L}]\left[1+2 K a_{\mathrm{A}}+3\left(K a_{\mathrm{A}}\right)^{2}+\cdots\right]=\frac{K_{\mathrm{ad}} a_{\mathrm{A}}[\mathrm{~L}]}{\left(1-K a_{\mathrm{A}}\right)^{2}}
$$

$$
S_{1}=1+x+x^{2}+x^{3}+\cdots=1+x S_{1} \Rightarrow S_{1}=1 /(1-x)
$$

$$
S_{2}=1+2 x+3 x^{2}+\cdots=S_{1}+x S_{2} \Rightarrow S_{2}=1 /(1-x)^{2} \text { or } S_{2}=d S_{1} / d x
$$

$$
\theta=\frac{K_{\mathrm{ad}} a_{\mathrm{A}}}{\left(1-K a_{\mathrm{A}}\right)\left[1+\left(K_{\mathrm{ad}}-K\right) a_{\mathrm{A}}\right]}
$$

K describes the adsorption to 2 nd, $3 r d, \ldots$ layers $=$ condensation. From the equlibrium at the saturated vapor pressure $p^{\text {s }}$:

$$
\mathrm{LA}_{n}(\mathrm{I})+\mathrm{A}(\mathrm{~g}) \rightarrow \mathrm{LA}_{n+1}(\mathrm{I}) \Rightarrow K=\frac{a(l)}{a(l) a_{\mathrm{A}}}=\frac{p^{\mathrm{st}}}{p^{\mathrm{s}}}
$$

Let us replace $a_{A}=\frac{p}{p^{s t}}$ and let us define $C=\frac{K_{\mathrm{ad}}}{K}$. The common form of BET is:

$$
\theta=\frac{C p / p^{5}}{\left(1-p / p^{5}\right)\left[1+(C-1) p / p^{5}\right]}
$$

For C it holds:

$$
C=\frac{K_{\mathrm{ad}}}{K}=\exp \left[-\frac{\Delta_{\mathrm{ad}, 1} G_{\mathrm{m}}^{\ominus}-\Delta_{\mathrm{ad}, n} G_{\mathrm{m}}^{\ominus}}{R T}\right] \approx \exp \left[-\frac{\Delta_{\mathrm{ad}, 1} H_{\mathrm{m}}^{\ominus}-\Delta_{\mathrm{ad}, n} H_{\mathrm{m}}^{\ominus}}{R T}\right]
$$

where $\Delta_{\text {ad }, n}=-\Delta_{\text {vap }}$
$C \gg 1$: forces adsorbent-adsorbate are much stronger than adsorbate-adsorbate e.g., very hydrofilic surface
$C \approx 1$: similar forces, bad adsorbent
$C \ll 1$: poor adsorption (hydrophobic surface)

Freundlich isotherm

Freundlich isotherm

- empirical
heterogeneous surfaces
fails close to $p_{\mathrm{A}}=p^{\mathrm{S}}$

$$
a=k p^{1 / n}
$$

$a=$ amount adsorbed
$k=$ constant (decreasing with increasing T)
$n=$ constant, $n>1$ ($n \approx 1$ for high T)

Isotherms compared

Capillary condensation and hysteresis

It follows from the Kelvin equation that there is a lower saturated pressure $p_{r}^{\mathrm{s}}<p_{\infty}^{\mathrm{s}}$ above the meniscus in hydrophilic/lyofilic pores (contact angle $<90^{\circ}$). Therefore, the pores get filled already at $p<p^{\text {s }}$, hence the amount adsorbed (a) increases.
Complex pore shape (cavities, bottle-like), open cylinders (curvatures for adsorption/desorption differ) \Rightarrow hysteresis (different shape for adsorption/desorption)

Example

The adsorption of ethylene on activated carbon at 273 K , expressed as the mass of ethylene per mass of charcoal (α) in dependence on pressure (p), is shown in the table below. Determine the constants of the Langmuir isotherm and the specific surface area of the adsorbent. One molecule of ethylene covers $19 \AA^{2}=0.19 \mathrm{~nm}^{2}$.

$\frac{p}{\mathrm{MPa}}$	0.1	0.2	0.28	0.41	0.98	1.39	1.93	2.75	3.01	3.51
a	0.089	0.127	0.144	0.163	0.189	0.198	0.206	0.208	0.209	0.210

Surfactants

surface active (acting) agent
adsorbed at the solvent surface
decreases the surface tension

usually a hydrophilic "head" ($-\mathrm{COOH},-\mathrm{SO}_{3} \mathrm{H}$) and a hydrophobic "tail" (aliphatic: $0.205 \mathrm{~nm}^{2} /$ molecule)
(a)

O longer molecules are not dissolved, but can compose films at a surface

Surface pressure

Experiment. Throw matches to water, touch the surface with soap or other detergent.

Lowering surface (Gibbs) energy \Rightarrow increase the surface covered by a surfactant \Rightarrow surface pressure

$$
\pi=\gamma_{0}-\gamma_{\text {surf }}>0
$$

Unit: N/m

hexadecanol, palmitate: 2D crystal phospholipides (less regular): 2D liquid film

1 = solvent
2 = surfactant
Surface excess:

$$
\begin{aligned}
\Gamma_{2,1} & =\int_{-\infty}^{\infty}\left[c_{2}(x)-\frac{c_{2}^{\text {bulk }}}{c_{1}^{\text {bulk }}} c_{1}(x)\right] \mathrm{d} x \\
& =\frac{1}{\mathcal{A}}\left[n_{2}^{\text {surf }}-\frac{n_{2}^{\text {bulk }}}{n_{1}^{\text {bulk }}} n_{1}^{\text {surf }}\right]
\end{aligned}
$$

$c_{i}(x)=$ concentration of compound i at x $c_{i}^{\text {bulk }}=$ concentration of i in the bulk $n_{i}^{\text {surf }}=\mathcal{A} \int_{-\infty}^{x^{\text {surf }}} c_{i}(x) \mathrm{d} x$ for $\chi^{\text {surf }}$ far away

Gibbs adsorption isotherm

Gibbs-Duhem equation in the bulk at constant $[p, T]$:

$$
\begin{align*}
\mathrm{d} G^{\text {bulk }}= & \mu_{1} \mathrm{~d} n_{1}^{\text {bulk }}+\mu_{2} \mathrm{~d} n_{2}^{\text {bulk }}=\mathrm{d}\left(\mu_{1} n_{1}^{\text {bulk }}+\mu_{2} n_{2}^{\text {bulk }}\right) \\
& \Rightarrow \mathrm{d} \mu_{1} n_{1}^{\text {bulk }}+\mathrm{d} \mu_{2} n_{2}^{\text {bulk }}=0 \Rightarrow \mathrm{~d} \mu_{1}=-\mathrm{d} \mu_{2} \frac{n_{2}^{\text {bulk }}}{n_{1}^{\text {bulk }}} \tag{1}
\end{align*}
$$

Similarly for the surface (to $\chi^{\text {surf }}$):

$$
\begin{gather*}
\mathrm{d} G^{\text {surf }}=\mu_{1} \mathrm{~d} n_{1}^{\text {surf }}+\mu_{2} \mathrm{~d} n_{2}^{\text {surf }}+\gamma \mathrm{d} \mathcal{A}=\mathrm{d}\left(\mu_{1} n_{1}^{\text {surf }}+\mu_{2} n_{2}^{\text {surf }}+\gamma \mathcal{A}\right) \\
\Rightarrow \mathrm{d} \mu_{1} n_{1}^{\text {surf }}+\mathrm{d} \mu_{2} n_{2}^{\text {surf }}+\mathrm{d} \gamma \mathcal{A}=0 \tag{2}
\end{gather*}
$$

The chemical potentials are the same! On inserting (1) to (2):

$$
\begin{gathered}
-\mathrm{d} \mu_{2} \frac{n_{2}^{\text {bulk }}}{n_{1}^{\text {bulk }}} n_{1}^{\text {surf }}+\mathrm{d} \mu_{2} n_{2}^{\text {surf }}+\mathrm{d} \gamma \mathcal{A}=\mathrm{d} \mu_{2}\left(n_{2}^{\text {surf }}-\frac{n_{2}^{\text {bulk }}}{n_{1}^{\text {bulk }}} n_{1}^{\text {surf }}\right)^{\ell^{-1}}+\mathrm{d} \gamma \mathcal{A}=0 \\
\Gamma_{2,1}=-\left(\frac{\partial \gamma}{\partial \mu_{2}}\right)_{p, T} \approx-\frac{c_{2}}{R T}\left(\frac{\partial \gamma}{\partial c_{2}}\right)_{p, T}
\end{gathered}
$$

A surfactant (decreasing the surface energy) exhibits a positive surface excess

Concentration dependence of the surface tension

Atomic Layer Deposition (ALD)

A precursor adsorbed to a monomolecular layer. Example:
vapor of $\mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{6}$ (trimethylaluminium dimer): disociative chemisorption
remove vapor (vacuum, nitrogen)
water vapor $\rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$
remove vapor

[^0]: * also known as "the father of the hydrogen bomb"

