Dispersion systems

Dispersion system =

s/l, l/l, ...

According to the size of the dispersed phase:

dispersed phase in a continuum phase (medium)

- \bigcirc coarse dispersion (suspension), $> 1 \mu m$
- colloid 1 μm-1 nm
 - heterogeneous (micelles, precipitates,...)
 - homogeneous (solutions of macromolecules)
- solutions

Examples: polymer solutions, asphalt concrete, starch, milk, fresh precipitate...

Properties of dispersions

- Coarse dispersions: turbidity (look as a haze), milk-like size $\gg \lambda$: white/gray (if particles are not colored) size $\approx \lambda$: Tyndall phenomenon, blue is scattered more (red Sun in dust) size $\ll \lambda$: Rayleigh scattering, blue is scattered more elastic scattered - photon energy does not change
- Colligative properties measurable only in fine dispersions
- Brownian motion, diffusivity decreases as the size increases $(D = k_{\rm B}T/6\pi\eta R)$
- Oviscosity bigger than the fluid medium, often non-Newton
 - plasticity = a minimum stress needed to flow, viscosity decreases with the shear strain
 - dilatancy = viscosity increases with flow speed/shear strain (starch + water)
- Density in between both phases
- Surface tension often lower

Dispersion systems

Dissolved or dispersed phase	Continuous medium	Solution: Homogeneous mixture: Dissolved phase < 1 nanometer	Colloid: Dispersed phase between 1 nanometer and 1 micrometer	Coarse dispersion (Suspension): Heterogeneous mixture: Dispersed phase > 1 micrometer
Gas	Gas	Gas mixture: air (oxygen and other gases in nitrogen)	None	None
Liquid	Gas	None	Aerosol: fog, mist, vapor, hair sprays	Aerosol
Solid	Gas	None	Solid aerosol: smoke, cloud, air particulates	Solid aerosol: dust
Gas	Liquid	Solution: oxygen in water	Foam: whipped cream, shaving cream	Foam
Liquid	Liquid	Solution: alcoholic beverages	Emulsion: miniemulsion, microemulsion	Emulsion: milk, mayonnaise, hand cream
Solid	Liquid	Solution: sugar in water	Sol: pigmented ink, blood	Suspension: mud (soil, clay or silt particles are suspended in water), chalk powder suspended in water
Gas	Solid	Solution: hydrogen in metals	Solid foam: aerogel	Foam: dry sponge, styrofoam, pumice
Liquid	Solid	Solution: amalgam (mercury in gold), hexane in paraffin wax	Gel: agar, gelatin, silicagel, opal	Wet sponge
Solid	Solid	Solution: alloys, plasticizers in plastics	Solid sol: cranberry glass	Gravel, granite

Classification

Shape of particles:

- \bigcirc globular, isometric particles $(r_X \approx r_y \approx r_z)$
- laminar, anisometric particles $(r_X \approx r_y \gg r_z)$
- \bigcirc fibrillar, anisometric particles $(r_X \gg r_y \approx r_z)$

Interactions:

- \bigcirc lyophilic dispersions (medium wets the particles, θ < 90°) in water: hydrophilic
- lyophobic dispersions (does not wet) in water: hydrophobic

Preparation of dispersions

polymerization

- oversaturation of a solution (ouzo, anise drink)
- oversaturation of a micellar colloid (over CMC = critical micellar concentration)
- mechanically (grinding, ultrasound)
- electrically (electric arch, cathodic sputtering)
- precipitation reactions insoluble product (AgBr in a photographic "emulsion")

Microcrystals of a precipitate may be aggregated (flocculated), because the el. double layer is thin in a concentrated ionic solution (according to the DLVO theory), rinsing out the ions stabilizes he colloid (peptization).

Aggregation caused by weak forces:

free disperged particles $\overset{\text{flocculation}}{\underset{\text{peptization}}{\longleftarrow}}$ weakly bound aggregates

Distribution functions

E.g., mass (differential) distribution function $F_W(m)$:

ratio (prob = count/(total number)) of particles of masses in interval (m, m + dm) is $F_{w}(m)dm$.

Normalization:

$$\int_0^\infty F_W(m)\mathrm{d}m=1$$

Cumulative (integrated) distrib. function = ratio of particles of masses < m:

$$I_{W}(m) = \int_{0}^{m} F_{W}(m') dm', \quad Q_{W}(m) = \int_{m}^{\infty} F_{W}(m') dm' = 1 - I_{W}(m)$$

Similar: Distribution function of particle volumes, ...

- \bigcirc Monodisperse system all particles of the same size (peak on $F_w(m)$); may form crystals Spheres: fcc 74%, "random close packing" 64%
- Polydisperse systems: e.g. asphalt concrete (example of random fractal) try to guess the fraction of mineral filling

Fraction = group of particles of approx. the same size (filtering, ...)

Sedimentation

Potential of external force (e.g., gravity) = UExternal force: $\vec{F} = -\operatorname{grad} U$

asphalt concrete: 95 % mineral filling 5 % bitumen

Forces of gravity (acceleration = *g*):

$$F = -mg$$
, $U = mhg$

Forces in a centrifuge:

$$F = mR\omega^2$$
, $U = -\frac{1}{2}m(R\omega)^2$, $\omega = 2\pi\nu = \frac{2\pi}{\tau}$

 ω = angular (circular) frequency

 ν = frequency (in Hz or RPM, 1 RPM = $\frac{1}{60}$ Hz)

R = radius of rotation

 $\tau = \mathsf{period}$

Speed of sedimentation

Density of particles = ρ_1 Density of dispersion medium = ρ Viscosity of dispersion = η Particle volume = V_1 Friction coefficient = tSedimentation speed = v

The force must be corrected for the buoyant force (Archimedes' principle):

$$F = V_1(\rho_1 - \rho)g, \quad v = \frac{F}{f} = \frac{V_1(\rho_1 - \rho)g}{f}$$

Spherical particles: $V_1 = \frac{4}{3}\pi r^3$, $f = 6\pi\eta r$ (Stokes)

$$v = \frac{2r^2}{9n}(\rho_1 - \rho)g$$

In a centrifuge: use $R\omega^2$ instead of g

(typical 1000g - 10,000g, ultracentrifuge up to 10^6g)

Small particles sediment slowly. Molecules sediment, too (very slowly): uranium enrichment by centrifugation of UF₆(g)

Sedimentation equilibrium

From Boltzmann probability

Ideal solution: concentration \propto Boltzmann probability \Rightarrow

$$c(\vec{r}) = c_0 \exp\left(\frac{-U(\vec{r})}{k_B T}\right)$$

In a gravitational field this is the barometric formula:

$$c(h) = c(0) \exp\left(\frac{-V_1(\rho_1 - \rho)gh}{k_B T}\right)$$

In a centrifuge of angular frequency $\omega = 2\pi \times \text{frequency}$

$$c(r) = c(0) \exp\left(\frac{\frac{1}{2}V_1(\rho_1 - \rho)(R\omega)^2}{k_B T}\right)$$

where $\Delta m = V_1(\rho_1 - \rho)$

Sedimentation equilibrium

From the speeds of sedimentation and diffusion

$$v_{\text{sedimentation}} = \frac{F}{f} = -\frac{\nabla U}{f}$$

$$V_{\text{diffusion}} = \frac{J}{c} = -\frac{D\nabla c}{c} = -D\nabla \ln c = -\frac{k_{\text{B}}T}{f} \nabla \ln c$$

$$v_{\text{sedimentation}} + v_{\text{diffusion}} = 0 \implies c = c_0 \exp\left(-\frac{U}{k_B T}\right)$$

Let μ be per particle (not mole), infinite dilution approximation:

$$\mu = \mu_0 + k_B T \ln(c/c^{st})$$
 \Rightarrow $v_{\text{diffusion}} = -\frac{1}{\epsilon} \nabla \mu$

Thus

is equivalent to

 $\nu_{sedimentation} + \nu_{diffusion} = 0$

 $U + \mu = const$

Some time ago, we used the assumption of $U + \mu = \text{const to } \mathbf{de}$ rive $D = k_BT/f$

Examples

Example. The equilibrium concentration of monodisperse oil droplets in a cuvette 10 cm tall is twice as large near the surface than at the bottom. Calculate the diameter of oil droplets. The temperature is 25 °C, the density of water is 0.997 g cm⁻³, the density of oil is $0.920 \,\mathrm{g\,cm^{-3}}$.

Example. Consider a globular protein of molecular weight of 20 kDa. What is the speed of sedimentation in a centrifuge of 24000 RPM at a point 5 cm from the axis? The density of the protein is $1.35 \,\mathrm{g\,cm^{-3}}$, the viscosity of water is $0.891 \,\mathrm{mPa\,s}$.

$$V_{1}=2.46\times10^{-26}\,\mathrm{m}^{3},\,r=1.8\,\mathrm{nm},\,v=0.32\,\mathrm{mm}\,h^{-1},\,\alpha=32200g$$

Stability of dispersions

12/20

Dispersions are thermodynamically metastable (large interface)

- sedimentation (\(\psi\)), creaming (\(\psi\))
- flocculation (reversible), coagulation (irreversible)
- coalescence (of droplets)
- Ostwald ripening (small → large, Kelvin equation)

Stabilization:

- by electric double laver DLVO theory (see below)
- steric (adsorption of macromolecules in a good solvent)
- depletion (macromolecules in between particles)

DLVO theory: Electrostatic repulsion

- electrosteric
- kinetic (in a very viscous medium)

Diffusion (Gouy–Chapman) layer, 1:1 electrolyte, small $\phi e/k_BT$:

DLVO theory

Deryagin (Дерягин, Derjaguin) + Landau (Ландау),

Verwey + Overbeek.

- repulsion of charged surfaces (screened by a Gouy-Chapman (diffusion) layer) stabilizes a colloid
- attractive dispersion (London) forces tries to stick particles together

Stability is a result of a competition between both forces

- surface charge increases stability - dispersion forces decrease stability
- Surface charge = layer charge

$$\sigma = -\int_0^\infty (\rho_+ - \rho_-) \mathrm{d}x = -\int_0^\infty c F \left\{ \exp \left[-\frac{\phi(x)e}{k_B T} \right] - \exp \left[\frac{\phi(x)e}{k_B T} \right] \right\} \mathrm{d}x$$

 $\phi = \phi_0 e^{-x/\lambda}$, where $\lambda = \sqrt{\frac{\epsilon RT}{2\epsilon F^2}}$

For small $\frac{\phi(x)e}{k_{\mathrm{B}}T}$: $\sigma \approx \int_{0}^{\infty} 2cF \frac{\phi(x)e}{k_{\mathrm{B}}T} \mathrm{d}x = 2\lambda cF \phi_{0} \frac{e}{k_{\mathrm{B}}T} = \frac{\epsilon}{\lambda} \phi_{0}$

 ϵ/λ = capacity of the Gouy–Chapman double layer (per unit area)

Energy (per unit area) of the surface charge σ in potential ϕ_0 is (in the superposition approximation, that's why multiplied by 2)

$$E_{\text{elst}} = 2\sigma\phi_0 e^{-d/\lambda} = 2\frac{\lambda\sigma^2}{\epsilon} e^{-d/\lambda} = 2\frac{\epsilon\phi_0^2}{\lambda} e^{-d/\lambda}$$

Formulas for curved interfaces are more complex, however, the leading term is always $\mathrm{e}^{-d/\lambda}$

van der Waals forces

For 2 molecules r apart ($r \gg$ overlap of orbitals), the energy decays as $\propto 1/r^6$:

$$u(r) = -\frac{c}{r^6}$$

- \bigcirc charge-charge: $u \propto 1/r$
- \bigcirc dipole–charge: $u \propto 1/r^2$ (fixed dipole orientation)
- \bigcirc dipole-dipole: $u \propto 1/r^3$
- \bigcirc Freely rotating dipole–freely rotating dipole: $u \propto 1/r^6$
- Oipole-induced dipole: $u \propto 1/r^6$
- London (dispersion) force (fluctuating dipole–fluctuation dipole): fluctuation \Rightarrow dipole \Rightarrow el. field $\propto 1/r^3 \Rightarrow$ induced dipole $\propto 1/r^3 \Rightarrow u \propto 1/r^6$ Usually the most pronounced
- London force for $r \gg 1\mu$ m: $u \propto 1/r^7$.

DLVO theory: van der Waals forces

$$u(r) = -\frac{c}{r}$$

Contributions from atom pairs are considered as independent (valid to $\sim 80-90\%$)

For two bodies we make a sum (integral); e.g., for a slit:

Point-surface (half-space) first:

$$u_{\text{wall}}(d) = -\mathcal{N}C \frac{2\pi}{12d^3}$$

12*d*² (per unit area)

 $\mathcal{N} = N_A n/V = \text{number density}$

 $A = (\pi \mathcal{N})^2 C =$ **Hamaker constant** of given substance, [A] = J

Two R-balls d apart, first term of the expansion in $d \ll R$: $E_{vdW} =$ $12\pi d$

DLVO: colloid in a medium

C

Cross interaction between both media,

$$u_{12}(r) = -\frac{C_{12}}{r^6}, \quad A_{12} = \pi^2 \mathcal{N}_1 \mathcal{N}_2 C_{12}$$

Particles of 2 in material 1 (0 = particles far away)

$$A_{1/2} = A_{11} - 2A_{12} + A_{22}$$

Approximation (combining rule):

$$A_{12} \approx \sqrt{A_{11}A_{22}}$$

Then

$$A_{1/2} = \left(\sqrt{A_{11}} - \sqrt{A_{22}}\right)^2$$

DLVO: case study - instability halftime

19/20 col12

 \bigcirc Diffusivity of a spherical particle of diameter 2R = 10 nm (Stokes formula):

$$D_{i} = \frac{k_{\rm B}T}{6\pi\eta R_{i}} = \frac{1.38\times10^{-23}\,{\rm J\,K^{-1}\times298\,K}}{6\pi\times0.89\times10^{-3}\,{\rm m^{-1}\,kg\,s^{-1}\times5\times10^{-9}\,m}} = 5\times10^{-11}\,{\rm m^{2}\,s^{-1}}$$

igorup If the particles are about r=R apart, the typical collision time is

$$\tau \approx \frac{r^2}{6D} = \frac{(5 \times 10^{-9} \,\mathrm{m})^2}{6 \times 5 \times 10^{-11} \,\mathrm{m}^2 \,\mathrm{s}^{-1}} = 1 \times 10^{-7} \,\mathrm{s}$$

 $\ \, igoplus$ For the probability of barrier crossing of $\pi=e^{-25}=10^{-11},$ the typical timescale of flocculation is:

$$\frac{\tau}{\pi} \approx 10000 \,\mathrm{s} \approx \mathrm{hours}$$

DLVO: case study

plot/dlvo.sh] 18/20

 $k_{\rm B}T$ = thermal "quantum"

TiO₂ in a ⊙ of NaCl.

 $A(\text{TiO}_2) = 19.5 \times 10^{-20} \text{ J}, A(\text{H}_2\text{O}) = 3.7 \times 10^{-20} \text{ J}, \Rightarrow A \approx 6.2 \times 10^{-20} \text{ J}$

- flat interface formulas
- \bigcirc energy expressed in k_BT per 100 nm²
- \bullet figure: $\phi_0 = 0.15 \text{ V}$, $c = 0.1 \text{ mol dm}^{-3}$

barrier $60 k_B T / 100 \text{ nm}^2$ $e^{-E/k_B T} = e^{-60} = 1 \times 10^{-26}$

₩

cubes of side 10 nm will be stable

Rule of the thumb: stable for barrier > $25k_BT$

$$e^{-25} \approx 10^{-11}$$

DLVO: summary

20/20

- surfaces close together (at contact): attraction (adhesion)
- surfaces far away: fast decreasing attraction
- medium distances (according to the potential): energy barrier

The barrier grows = stability increases for:

- potential (surface charge) increases (in abs. value)
- salt concentration decreases (longer Debye screening range)