Dispersion systems				$\begin{aligned} & 1 / 20 \\ & \text { col12 } \end{aligned}$	Properties of dispersion	$2 / 20$ col12
Dispersion dispersed s/l, $1 / 1, \ldots$ According O coarse - colloid - hetero - homog O solutions Examples:	system phase in to the siz dispersion $1 \mu \mathrm{~m}-1 \mathrm{~nm}$ ogeneous geneous s polymer	a continuum phase e of the dispersed ph (suspension), > 1 (micelles, precipita (solutions of macrom solutions, asphalt	(medium) phase: $\mu \mathrm{m}$ tes,...) molecules) oncrete, starch, milk	k, fresh precipitate. .	Coarse dispersions: turbidity (look size $\gg \lambda$: white/gray (if particles a size $\approx \lambda$: Tyndall phenomenon, blue size $\ll \lambda$: Rayleigh scattering, blue elastic scattered - photon energy Colligative properties - measurabl Brownian motion, diffusivity decre ($D=k_{B} T / 6 \pi \eta R$) Viscosity - bigger than the fluid m - plasticity $=$ a minimum stress n to flow, viscosity decreases with the shear strain - dilatancy = viscosity increases with flow speed/shear strain (starch + water) Density - in between both phases Surface tension - often lower	
Dispersion systems					-	
$\begin{aligned} & \text { Dissolved or } \\ & \text { dispersed } \\ & \text { phase } \end{aligned}$	Continuous	$\begin{array}{\|c} \text { Solution: Homogeneous } \\ \text { mixture: Dissolved phase } \\ 1 \text { nanometer } \end{array}$	Colloid: Dispersed phase between 1 nanometer and micrometer	Coarse dispersion (Suspension): Dispersed phase > 1 micromete	Shape of particles: globular, isometric particles (r_{x}	
Gas	Gas	Gas mixture ir in (oxyen and	ne		- laminar, anisometric particles (r_{x}	
Liqud	${ }_{\text {gas }}$	None	${ }_{\text {Apraself }}^{\text {Aeg, mist, vepor, hair }}$		- fibrillar, anisometric particles (r_{x}	
Solid	Gas	None		Soild eerssol iust	Interaction	
${ }^{\text {Gas }}$	Liquid	Solution: oxygen in water	Fanm: whipead cream, shaving cream		- lyophilic dispersions (medium we	
Ligu	Liquid	Solution: alconolic beverages		(tmusion: milk, mayomais, hand	in water: hydrophilic	
Soid	Liquid	Soution: sugar in water	Sol: Pigmented ink, blood	Suspension: mud (soil, clay or silt particles are suspended in water), chalk powder suspended in water	in water: hydrophobic	
${ }^{\text {gas }}$	Sold	Solutor: hydrogen in metals	Solid famm: aerogel	Foam: dry sporge, styrforam, punice		
Liqa	solid	Solution amalsam (mercrur in	Sela aga, geatat, sticagel,	wet sponge		
		Solution: alloys, plasticizers in plastics	Solid sol cranbery glass	Gravel, grante		
Preparation of dispersionspolymerizationoversaturation of a solution (ouzo, anise drink)oversaturation of a micellar colloid (over CMC = critical micellar concentration)mechanically (grinding, ultrasound)electrically (electric arch, cathodic sputtering)precipitation reactions - insoluble product (AgBr in a photographic "emulsion")Microcrystals of a precipitate may be aggregated (flocculated), because the el. dou-bele layer is thin in a concentrated ionic solution (according to the DLVO theory),rinsing out the ions stabilizes he colloid (peptization).Aggregation caused by weak forces:free disperged particles $\underset{\text { flocculation }}{\substack{\text { peptization }}}$ weakly bound aggregates					Distribution functions \quadsshow/frakaly.sh] $]_{6 / 20}$ coll2	
					E.g., mass (differential) distribut ratio (prob = count/(total number)) of $F_{w}(m) \mathrm{d} m$. Normalization: Cumulative (integrated) distrib. function $I_{W}(m)=\int_{0}^{m} F_{w}\left(m^{\prime}\right) \mathrm{d} m^{\prime},$ Similar: Distribution function of partic Monodisperse system - all particle crystals Spheres: fcc 74\%, "random close Polydisperse systems: e.g. asph try to guess the fraction of minera Fraction = group of particles of approx	$\mathrm{d} m$) is form fractal)
Sedimentation					Speed of sedimentation	$8 / 20$ coll
Potential of external force (e.g., gravity) $=U$ asphalt concrete: External force: $\vec{F}=-\operatorname{grad} U$ 95% mineral filling					Density of particles $=\rho_{1}$ Density of dispersion medium $=\rho$ Viscosity of dispersion $=\eta$ Particle volume $=V_{1}$ Friction coefficient $=f$ Sedimentation speed $=v$ In the field of gravity: The force must be corrected for the buoyant force (Archimedes' principle): $F=V_{1}\left(\rho_{1}-\rho\right) g, \quad v=\frac{F}{f}=\frac{V_{1}\left(\rho_{1}-\rho\right) g}{f}$ Spherical particles: $V_{1}=\frac{4}{3} \pi r^{3}, f=6 \pi \eta r$ (Stokes) $v=\frac{2 r^{2}}{9 \eta}\left(\rho_{1}-\rho\right) g$ In a centrifuge: use $R \omega^{2}$ instead of g (typical $1000 \mathrm{~g}-10,000 \mathrm{~g}$, ultracentrifuge up to $10^{6} \mathrm{~g}$) Small particles sediment slowly. Molecules sediment, too (very slowly): uranium enrichment by centrifugation of $\mathrm{UF}_{6}(\mathrm{~g})$	
Forces in a centrifuge:$\begin{aligned} & \qquad F=m R \omega^{2}, \quad U=-\frac{1}{2} m(R \omega)^{2}, \omega=2 \pi \nu=\frac{2 \pi}{\tau} \\ & \omega=\text { angular (circular) frequency } \\ & \nu=\text { frequency (in } \mathrm{Hz} \text { or RPM, } 1 \mathrm{RPM}=\frac{1}{60} \mathrm{~Hz} \text {) } \\ & R=\text { radius of rotation } \\ & \tau=\text { period } \end{aligned}$						

Sedimentation equilibrium

From Boltzmann probability

Ideal solution: concentration \propto Boltzmann probability \Rightarrow

$$
c(\vec{r})=c_{0} \exp \left(\frac{-U(\vec{r})}{k_{\mathrm{B}} T}\right)
$$

In a gravitational field this is the barometric formula:

$$
c(h)=c(0) \exp \left(\frac{-V_{1}\left(\rho_{1}-\rho\right) g h}{k_{\mathrm{B}} T}\right)
$$

In a centrifuge of angular frequency $\omega=2 \pi \times$ frequency:

$$
c(r)=c(0) \exp \left(\frac{\frac{1}{2} V_{1}\left(\rho_{1}-\rho\right)(R \omega)^{2}}{k_{\mathrm{B}} T}\right)
$$

where $\Delta m=V_{1}\left(\rho_{1}-\rho\right)$

Examples

[xcat centrifuge.evu] $11 / 20$

Example. The equilibrium concentration of monodisperse oil droplets in a cuvette 10 cm tall is twice as large near the surface than at the bottom. Calculate the diameter of oil droplets. The temperature is $25^{\circ} \mathrm{C}$, the density of water is $0.997 \mathrm{~g} \mathrm{~cm}^{-3}$, the density of oil is $0.920 \mathrm{~g} \mathrm{~cm}^{-3}$.

Example. Consider a globular protein of molecular weight of 20 kDa . What is the speed of sedimentation in a centrifuge of 24000 RPM at a point 5 cm from the axis? The density of the protein is $1.35 \mathrm{~g} \mathrm{~cm}^{-3}$, the viscosity of water is 0.891 mPas .

DLVO theory

13/20

Deryagin (Дерягин, Derjaguin) + Landau (Ландау),
Verwey + Overbeek.

- repulsion of charged surfaces (screened by a Gouy-Chapman (diffusion) layer) stabilizes a colloid
- attractive dispersion (London) forces tries to stick particles together

Stability is a result of a competition between both forces

> - surface charge increases stability
> - dispersion forces decrease stability

van der Waals forces

For 2 molecules r apart ($r \gg$ overlap of orbitals), the energy decays as $\propto 1 / r^{6}$:

$$
u(r)=-\frac{C}{r^{6}}
$$

- charge-charge: $u \propto 1 / r$
- dipole-charge: $u \propto 1 / r^{2}$ (fixed dipole orientation)
- dipole-dipole: $u \propto 1 / r^{3}$

Freely rotating dipole-freely rotating dipole: $u \propto 1 / r^{6}$

- Dipole-induced dipole: $u \propto 1 / r^{6}$
- London (dispersion) force (fluctuating dipole-fluctuation dipole): fluctuation \Rightarrow dipole \Rightarrow el. field $\propto 1 / r^{3} \Rightarrow$ induced dipole $\propto 1 / r^{3} \Rightarrow u \propto 1 / r^{6}$ Usually the most pronounced
London force for $r \gg 1 \mu \mathrm{~m}: u \propto 1 / r^{7}$.

Sedimentation equilibrium

From the speeds of sedimentation and diffusion

$$
\begin{gathered}
v_{\text {sedimentation }}=\frac{F}{f}=-\frac{\nabla U}{f} \\
v_{\text {diffusion }}=\frac{J}{c}=-\frac{D \nabla c}{c}=-D \nabla \ln c=-\frac{k_{\mathrm{B}} T}{f} \nabla \ln c \\
v_{\text {sedimentation }}+v_{\text {diffusion }}=0 \Rightarrow c=c_{0} \exp \left(-\frac{U}{k_{\mathrm{B}} T}\right)
\end{gathered}
$$

Let μ be per particle (not mole), infinite dilution approximation:

$$
\mu=\mu_{0}+k_{\mathrm{B}} T \ln \left(c / c^{\mathrm{st}}\right) \Rightarrow v_{\text {diffusion }}=-\frac{1}{f} \nabla \mu
$$

Thus
$v_{\text {sedimentation }}+v_{\text {diffusion }}=0 \quad$ Some time ago, we
is equivalent to used the assumption of $U+\mu=$ const to $\mathbf{d e}$ rive $D=k_{\mathrm{B}} T / f$

Stability of dispersions

Dispersions are thermodynamically metastable (large interface)

- sedimentation (\downarrow), creaming (\uparrow)
- flocculation (reversible), coagulation (irreversible)
- coalescence (of droplets)

Ostwald ripening (small \rightarrow large, Kelvin equation)

Stabilization:

- by electric double layer DLVO theory (see below)
- steric (adsorption of macromolecules in a good solvent)
- depletion (macromolecules in between particles)

electrosteric
kinetic (in a very viscous medium)
 $14 / 20$
col12

DLVO theory: Electrostatic repulsion

Diffusion (Gouy-Chapman) layer, 1:1 electrolyte, small $\phi e / k_{B} T$:

$$
\phi=\phi_{0} \mathrm{e}^{-x / \lambda}, \text { where } \lambda=\sqrt{\frac{\epsilon R T}{2 c F^{2}}}
$$

Surface charge $=-$ layer charge

$$
\sigma=-\int_{0}^{\infty}\left(\rho_{+}-\rho_{-}\right) \mathrm{d} x=-\int_{0}^{\infty} c F\left\{\exp \left[-\frac{\phi(x) e}{k_{\mathrm{B}} T}\right]-\exp \left[\frac{\phi(x) e}{k_{\mathrm{B}} T}\right]\right\} \mathrm{d} x
$$

For small $\frac{\phi(x) e}{k_{\mathrm{B}} T}: \quad \sigma \approx \int_{0}^{\infty} 2 c F \frac{\phi(x) e}{k_{\mathrm{B}} T} \mathrm{~d} x=2 \lambda c F \phi_{0} \frac{e}{k_{\mathrm{B}} T}=\frac{\epsilon}{\lambda} \phi_{0}$
$\epsilon / \lambda=$ capacity of the Gouy-Chapman double layer (per unit area)
Energy (per unit area) of the surface charge σ in potential ϕ_{0} is (in the superposition approximation, that's why multiplied by 2)

$$
E_{\text {elst }}=2 \sigma \phi_{0} \mathrm{e}^{-d / \lambda}=2 \frac{\lambda \sigma^{2}}{\epsilon} \mathrm{e}^{-d / \lambda}=2 \frac{\epsilon \phi_{0}^{2}}{\lambda} \mathrm{e}^{-d / \lambda}
$$

Formulas for curved interfaces are more complex, however, the leading term is always $\mathrm{e}^{-d / \lambda}$

DLVO theory: van der Waals forces

$$
u(r)=-\frac{C}{r^{6}}
$$

Contributions from atom pairs are considered as independent (valid to ~80-90 \%)
For two bodies we make a sum (integral); e.g., for a slit:
Point-surface (half-space) first:
Then a column of area $\mathrm{d} \mathcal{A}$:

$$
u_{\text {wall }}(d)=-\mathcal{N} C \frac{2 \pi}{12 d^{3}}
$$

$\mathcal{N}=N_{\mathrm{A}} n / V=$ number density

$E_{\mathrm{vdW}}=-\frac{\pi \mathcal{N}^{2} C}{12 d^{2}}=-\frac{A}{12 \pi d^{2}}$ (per unit area)
$A=(\pi \mathcal{N})^{2} C=$ Hamaker constant of given substance, $[A]=\mathrm{J}$
Two R-balls d apart, first term of the expansion in $d \ll R: E_{\mathrm{vdW}}=-\frac{A R}{12 \pi d}$

DLVO: colloid in a medium	$17 / 20$
coll2	

Cross interaction between both media,

$$
u_{12}(r)=-\frac{C_{12}}{r^{6}}, \quad A_{12}=\pi^{2} \mathcal{N}_{1} \mathcal{N}_{2} C_{12}
$$

Particles of 2 in material 1 ($0=$ particles far away)

$$
A_{1 / 2}=A_{11}-2 A_{12}+A_{22}
$$

Approximation (combining rule):

$$
A_{12} \approx \sqrt{A_{11} A_{22}}
$$

Then

$$
A_{1 / 2}=\left(\sqrt{A_{11}}-\sqrt{A_{22}}\right)^{2}
$$

DLVO: case study - instability halftime

Diffusivity of a spherical particle of diameter $2 R=10 \mathrm{~nm}$ (Stokes formula):

$$
D_{i}=\frac{k_{\mathrm{B}} T}{6 \pi \eta R_{i}}=\frac{1.38 \times 10^{-23} \mathrm{JK}^{-1} \times 298 \mathrm{~K}}{6 \pi \times 0.89 \times 10^{-3} \mathrm{~m}^{-1} \mathrm{~kg} \mathrm{~s}^{-1} \times 5 \times 10^{-9} \mathrm{~m}}=5 \times 10^{-11} \mathrm{~m}^{2} \mathrm{~s}^{-1}
$$

- If the particles are about $r=R$ apart, the typical collision time is

$$
\tau \approx \frac{r^{2}}{6 D}=\frac{\left(5 \times 10^{-9} \mathrm{~m}\right)^{2}}{6 \times 5 \times 10^{-11} \mathrm{~m}^{2} \mathrm{~s}^{-1}}=1 \times 10^{-7} \mathrm{~s}
$$

- For the probability of barrier crossing of $\pi=e^{-25}=10^{-11}$, the typical timescale of flocculation is:

$$
\frac{\tau}{\pi} \approx 10000 \mathrm{~s} \approx \text { hours }
$$

DLVO: case study
TiO_{2} in a \odot of NaCl .
$A\left(\mathrm{TiO}_{2}\right)=19.5 \times 10^{-20} \mathrm{~J}, A\left(\mathrm{H}_{2} \mathrm{O}\right)=3.7 \times 10^{-20} \mathrm{~J}, \Rightarrow A \approx 6.2 \times 10^{-20} \mathrm{~J}$

- flat interface formulas $k_{\mathrm{B}} T=$ thermal "quantum"
- energy expressed in $k_{B} T$ per $100 \mathrm{~nm}^{2}$
figure: $\phi_{0}=0.15 \mathrm{~V}, c=0.1 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\begin{aligned}
& \text { barrier } 60 k_{\mathrm{B}} T / 100 \mathrm{~nm}^{2} \\
& \mathrm{e}^{-E / k_{\mathrm{B}} T}=\mathrm{e}^{-60}=1 \times 10^{-26} \\
& \Downarrow
\end{aligned}
$$

cubes of side 10 nm will be stable
Rule of the thumb:
stable for barrier $>25 k_{B} T$

$$
\mathrm{e}^{-25} \approx 10^{-11}
$$

DLVO: summary

Surfaces close together (at contact): attraction (adhesion)
surfaces far away: fast decreasing attraction
medium distances (according to the potential): energy barrier
The barrier grows = stability increases for:
potential (surface charge) increases (in abs. value)
salt concentration decreases (longer Debye screening range)

