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Dispersion system =
dispersed phase in a continuum phase (medium)

s/l, l/l, . . .

According to the size of the dispersed phase:

coarse dispersion (suspension), > 1μm

colloid 1μm–1 nm
– heterogeneous (micelles, precipitates,. . . )
– homogeneous (solutions of macromolecules)

solutions

Examples: polymer solutions, asphalt concrete, starch, milk, fresh precipitate. . .



Properties of dispersions
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Coarse dispersions: turbidity (look as a haze), milk-like
size � λ: white/gray (if particles are not colored)
size ≈ λ: Tyndall phenomenon, blue is scattered more (red Sun in dust)
size � λ: Rayleigh scattering, blue is scattered more
elastic scattered – photon energy does not change

Colligative properties – measurable only in fine dispersions

Brownian motion, diffusivity decreases as the size increases
(D = kBT/6πηR)

Viscosity – bigger than the fluid medium, often non-Newton
– plasticity = a minimum stress needed

to flow, viscosity decreases with
the shear strain

– dilatancy = viscosity increases
with flow speed/shear strain

credit: http://www.physics.emory.edu/˜weeks/squishy/

(starch + water)

Density – in between both phases

Surface tension – often lower



Dispersion systems
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credit: wikipedia



Classification
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Shape of particles:

globular, isometric particles (r ≈ ry ≈ rz)

laminar, anisometric particles (r ≈ ry� rz)

fibrillar, anisometric particles (r� ry ≈ rz)

Interactions:

lyophilic dispersions (medium wets the particles, θ < 90◦)
in water: hydrophilic

lyophobic dispersions (does not wet)
in water: hydrophobic



Preparation of dispersions
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polymerization

oversaturation of a solution (ouzo, anise drink)

oversaturation of a micellar colloid (over CMC = critical micellar concentration)

mechanically (grinding, ultrasound)

electrically (electric arch, cathodic sputtering)

precipitation reactions – insoluble product (AgBr in a photographic “emulsion”)

Microcrystals of a precipitate may be aggregated (flocculated), because the el. dou-
ble layer is thin in a concentrated ionic solution (according to the DLVO theory),
rinsing out the ions stabilizes he colloid (peptization).

Aggregation caused by weak forces:

free disperged particles
flocculation→←
peptization

weakly bound aggregates



Distribution functions
[show/fraktaly.sh] 6/20

co12

E.g., mass (differential) distribution function F(m):
ratio (prob = count/(total number)) of particles of masses in interval (m,m+ dm) is
F(m)dm.
Normalization:

∫ ∞

0
F(m)dm = 1

Cumulative (integrated) distrib. function = ratio of particles of masses <m:

(m) =
∫ m

0
F(m′)dm′, Q(m) =

∫ ∞

m
F(m′)dm′ = 1 − (m)

Similar: Distribution function of particle volumes, . . .

Monodisperse system – all particles of the same size (peak on F(m)); may form
crystals
Spheres: fcc 74%, “random close packing” 64%

Polydisperse systems: e.g. asphalt concrete (example of random fractal)
try to guess the fraction of mineral filling

Fraction = group of particles of approx. the same size (filtering, . . . )



Sedimentation
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Potential of external force (e.g., gravity) = U asphalt concrete:
95 % mineral filling
5 % bitumen

External force: ~F = −gradU

Forces of gravity (acceleration = g):

F = −mg, U =mhg

Forces in a centrifuge:

F =mRω2, U = −
1

2
m(Rω)2, ω = 2πν =

2π

τ
ω = angular (circular) frequency
ν = frequency (in Hz or RPM, 1 RPM = 1

60 Hz)
R = radius of rotation
τ = period



Speed of sedimentation
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Density of particles = ρ1
Density of dispersion medium = ρ
Viscosity of dispersion = η
Particle volume = V1
Friction coefficient = ƒ
Sedimentation speed = 

In the field of gravity:
The force must be corrected for the buoyant force (Archimedes’ principle):

F = V1(ρ1 − ρ)g,  =
F

ƒ
=
V1(ρ1 − ρ)g

ƒ

Spherical particles: V1 =
4
3πr

3, ƒ = 6πηr (Stokes)

 =
2r2

9η
(ρ1 − ρ)g

In a centrifuge: use Rω2 instead of g
(typical 1000g – 10,000g, ultracentrifuge up to 106g)

Small particles sediment slowly. Molecules sediment, too (very slowly): uranium en-
richment by centrifugation of UF6(g)



Sedimentation equilibrium
9/20
co12

From Boltzmann probability

Ideal solution: concentration ∝ Boltzmann probability ⇒

c(~r) = c0 exp
�−U(~r)

kBT

�

In a gravitational field this is the barometric formula:

c(h) = c(0)exp
�−V1(ρ1 − ρ)gh

kBT

�

In a centrifuge of angular frequency ω = 2π × frequency:

c(r) = c(0)exp

 1
2V1(ρ1 − ρ)(Rω)

2

kBT

!

where Δm = V1(ρ1 − ρ)



Sedimentation equilibrium
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From the speeds of sedimentation and diffusion

sedimentation =
F

ƒ
= −

∇U

ƒ

diffusion =
J

c
= −

D∇c

c
= −D∇ ln c = −

kBT

ƒ
∇ ln c

sedimentation + diffusion = 0 ⇒ c = c0 exp
�

−
U

kBT

�

Let μ be per particle (not mole), infinite dilution approximation:

μ = μ0 + kBT ln(c/cst) ⇒ diffusion = −
1

ƒ
∇μ

Thus

sedimentation + diffusion = 0

is equivalent to

Some time ago, we
used the assumption
of U+ μ = const to de-
rive D = kBT/ƒU + μ = const



Examples
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Example. The equilibrium concentration of monodisperse oil droplets in a cuvette
10 cm tall is twice as large near the surface than at the bottom. Calculate the diam-
eter of oil droplets. The temperature is 25 ◦C, the density of water is 0.997 g cm−3,
the density of oil is 0.920 g cm−3. 42nm

Example. Consider a globular protein of molecular weight of 20 kDa. What is the
speed of sedimentation in a centrifuge of 24000 RPM at a point 5 cm from the axis?
The density of the protein is 1.35 g cm−3, the viscosity of water is 0.891 mPa s.
V1=2.46×10−26m3,r=1.8nm,=0.32mmh−1,=32200g



Stability of dispersions
12/20
co12

Dispersions are thermodynamically metastable (large interface)

sedimentation (↓), creaming (↑)

flocculation (reversible), coagulation (irreversible)

coalescence (of droplets)

Ostwald ripening (small → large, Kelvin equation)

Stabilization:

by electric double layer
DLVO theory (see below)

steric (adsorption of macromolecules in a
good solvent)

depletion (macromolecules in between par-
ticles)

electrosteric

kinetic (in a very viscous medium)

credit: http://www.malvern.jp/



DLVO theory
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Deryagin (Der�gin, Derjaguin) + Landau (Landau),
Verwey + Overbeek.

repulsion of charged surfaces (screened by a Gouy–Chapman (diffusion) layer)
stabilizes a colloid

attractive dispersion (London) forces tries to stick particles together

Stability is a result of a competition between both forces

– surface charge increases stability
– dispersion forces decrease stability



DLVO theory: Electrostatic repulsion
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Diffusion (Gouy–Chapman) layer, 1:1 electrolyte, small ϕe/kBT:

ϕ = ϕ0e−/λ, where λ =

√

√

√
εRT

2cF2

Surface charge = − layer charge

σ = −
∫ ∞

0
(ρ+ − ρ−)d = −

∫ ∞

0
cF
�

exp
�

−
ϕ()e

kBT

�

− exp
�

ϕ()e

kBT

��

d

For small
ϕ()e

kBT
: σ ≈

∫ ∞

0
2cF

ϕ()e

kBT
d = 2λcFϕ0

e

kBT
=
ε

λ
ϕ0

ε/λ = capacity of the Gouy–Chapman double layer (per unit area)

Energy (per unit area) of the surface charge σ in potential ϕ0 is (in the superposition
approximation, that’s why multiplied by 2)

Eelst = 2σϕ0e−d/λ = 2
λσ2

ε
e−d/λ = 2

εϕ20
λ
e−d/λ

Formulas for curved interfaces are more complex, however, the leading term is
always e−d/λ



van der Waals forces
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For 2 molecules r apart (r � overlap of orbitals), the energy decays as ∝ 1/ r6:

(r) = −
C

r6

charge–charge:  ∝ 1/ r

dipole–charge:  ∝ 1/ r2 (fixed dipole orientation)

dipole–dipole:  ∝ 1/ r3

Freely rotating dipole–freely rotating dipole:  ∝ 1/ r6

Dipole–induced dipole:  ∝ 1/ r6

London (dispersion) force (fluctuating dipole–fluctuation dipole):
fluctuation ⇒ dipole ⇒ el. field ∝ 1/ r3 ⇒ induced dipole ∝ 1/ r3 ⇒  ∝ 1/ r6

Usually the most pronounced

London force for r � 1μm:  ∝ 1/ r7.



DLVO theory: van der Waals forces
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(r) = −
C

r6

Contributions from atom pairs are considered as independent (valid to ∼ 80–90 %)

For two bodies we make a sum (integral); e.g., for a slit:

Point–surface (half-space) first:

wall(d) = −NC
2π

12d3

Then a column of area dA:

EvdW = −
πN 2C

12d2
= −

A

12πd2

(per unit area)
N = NAn/V = number density

A = (πN )2C = Hamaker constant of given substance, [A] = J

Two R-balls d apart, first term of the expansion in d� R: EvdW = −
AR

12πd



DLVO: colloid in a medium
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Cross interaction between both media,

12(r) = −
C12

r6
, A12 = π2N1N2C12

Particles of 2 in material 1 (0 = particles far away)

A1/2 = A11 − 2A12 + A22

Approximation (combining rule):

A12 ≈
Æ

A11A22
Then

A1/2 =
�Æ

A11 −
Æ

A22
�2



DLVO: case study
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TiO2 in a � of NaCl.
A(TiO2) = 19.5×10−20 J, A(H2O) = 3.7×10−20 J, ⇒ A ≈ 6.2×10−20 J

flat interface formulas kBT = thermal “quantum”

energy expressed in kBT per 100 nm2

figure: ϕ0 = 0.15 V, c = 0.1mol dm−3
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barrier 60kBT/100nm2

e−E/kBT = e−60 = 1×10−26
⇒

cubes of side 10 nm will be stable

Rule of the thumb:
stable for barrier > 25kBT

e−25 ≈ 10−11



DLVO: case study – instability halftime
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Diffusivity of a spherical particle of diameter 2R = 10 nm (Stokes formula):

D =
kBT

6πηR
=

1.38×10−23 J K−1 × 298K

6π × 0.89×10−3m−1 kg s−1 × 5×10−9m
= 5×10−11m2 s−1

If the particles are about r = R apart, the typical collision time is

τ ≈
r2

6D
=

(5×10−9m)2

6 × 5×10−11m2 s−1
= 1×10−7 s

For the probability of barrier crossing of πππ = e−25 = 10−11, the typical timescale
of flocculation is:

τ

πππ
≈ 10000s ≈ hours



DLVO: summary
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surfaces close together (at contact): attraction (adhesion)

surfaces far away: fast decreasing attraction

medium distances (according to the potential): energy barrier

The barrier grows = stability increases for:

potential (surface charge) increases (in abs. value)

salt concentration decreases (longer Debye screening range)


