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Kindergarten: vector = (1, . . . , n),  ∈RR
Quantum kindergarten:  ∈CC
Mathematics: vector space (linear space) is defined by the axioms:

For vectors ,, and numbers , b ∈RR or CC (a fielda in general):





as in RR

 + ( + ) = ( + ) + 

 +  =  + 

∃ null vector 0 :  + 0 = 

∃ opposite vector −  :  + (−) = 0

(b) = (b)
1 = 

( + ) =  + 

( + b) =  + b

Notation: , , ⃗ (real in 2D, 3D), , |〉 (“ket”),  (?)

ačesky komutativní těleso
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A set of nonzero vectors (),  = 1..m, is linearly dependent if there is a null linear combination
with at least one of  nonzero: ∑

() = 0

A linearly independent set of vectors such that any vector (of given space) can be expressed as
its linear combination is called a basis

 =
∑

b()

Example. Are the following vectors in RR4 linearly dependent? see mmpc1.mw

(1,2,3,4)T, (1,−2,3,−4)T, (1,0,1,0)T

no

Example. Are the following vectors in CC2 linearly dependent?
 



1

!
,

 
1 + 

1 − 

!

yes

Example. Consider a linear space of functions of  ∈ [0,2π] with basis {1, cos(), cos(2),
cos(3), . . .}. Can function cos2() be expressed in this basis? yes:{1/2,0,1/2,0,0,0,...}
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We need a richer structure!

Kindergarten: scalar product ⃗ · ⃗ =∑

Mathematics: (,) is a number (real, complex) obeying axioms:

(,) = (, )∗ (∗ = complex conjugate)
(,) = ∗(,) (in physics) ⇒ (, ) = (,)

= (,) (in mathematics) ⇒ (, ) = ∗(,)
( + ,) = (,) + (,)

(, ) ≥ 0
(, ) = 0 ⇒  = 0 (null vector)

Notation: T, T · , †,b (,), 〈,〉, ⃗ · ⃗,  · , 〈|〉 (bra-ket),  (covector-vector)
· (real spaces) or | (complex spaces) = sum over a pair of indices

Definition: If (, ) = 0, vectors ,  are perpendicular

(, )1/2 = || = ∥∥ = normc

bsymbol † = transpose + complex conjugate = adjoint = Hermitean (Hermitian) conjugate
csimilar space with a norm only (and complete) = Banach space; under some conditions (,) = (|+ |2− |− |2)/4
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Dot-product in RRn: ⃗ · y⃗ = |⃗||y⃗| cosθ ≡ y cosθ ≤ y.

For nonzero , b (zero cases are trivial):d

b⊥ = b − 〈|b〉
2

 ⇒ 〈|b⊥〉 = 〈|b −
〈|b〉
2

〉 = 〈|b〉 − 〈|b〉
2
〈|〉 = 0

b =
〈|b〉
2

 + b⊥

Pythagorase:

| | has two meanings:
|complex number|
and |vector|

b2 =
�|〈|b〉|

2

�2
2 + b2⊥ ≥

�|〈|b〉|
2

�2
2 =

|〈|b〉|2
2

2b2 ≥ |〈|b〉|2 ⇒ |||b| ≥ |〈|b〉| RR≥ 〈|b〉

⇒ triangle inequality (in RR)

| + b| ≤ || + |b| or | − z| ≤ | − y| + |y − z|
i.e., | − b| is a metric.
dCommon shortcut: 2 ≡ ||2 = 〈|〉
eIn complex spaces: 〈b|〉∗ = 〈|b〉 and for scalar c ∈CC it holds |c|2 = 〈c|c〉 = c∗c〈|〉 = |c|2||2
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Hilbert space = linear space with a scalar product which is: example of not-complete
space: finite linear com-
binations of {(1,0,0, . . .),
(0,1,0, . . .), (0,0,1, . . .), . . .}

complete (any Cauchy sequencef converges in the (, ) metric)

usually also separable (it contains a countable dense subset
⇒ there is a countable basis)

Loosely: ”no vector is missing”
“it is not too big” or “there are no problems with using infinite sums”

Any finite vector space is a Hilbert space.

Example. Wavefunction is a vector of a Hilbert space,
∫ |ψ(τττ)|2dτττ must be finiteg. The scalar

product is:

〈ϕ|ψ〉 =
∫
ϕ(τττ)∗ψ(τττ)dτττ

n bosons: τττ ∈RR3n, n fermions (chemistry): τττ ∈ (RR×{α, β})3n

fSequence {}∞=1 is Cauchy if ∀d > 0 ∃n : |j − | < d ∀, j > n. → → →
gFor bound states , cf. de Broglie free-space “matter waves” . . .
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Orthogonal basis = all vectors are perpendicular.
Orthonormal basis = also normalized.

b() · b(j) = δj

Components of  in an orthonormal basis:

 =  · b() ⇒  =
∑

b() = (1, . . . , n)b

Scalar product:

 ·  =
∑



Scalar product in CC in physics

〈|〉 =
∑

∗ 
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A general basis b() can be orthogonalized
by the Gram–Schmidt algorithm:

b(1) := b(1)/ |b(1)|
b(2) := b(2) − 〈b(1)|b(2)〉b(1), b(2) := b(2)/ |b(2)|
b(3) := b(3) − 〈b(1)|b(3)〉b(1) − 〈b(2)|b(3)〉b(2), b(3) := b(3)/ |b(3)|

“:=” means “assign to” as in computer code.

Bases used in a Hilbert space are usually orthogonal or orthonormal

Example. Find all orthonormal bases {b(1), b(2)} in CC2 for b(1) = (1, )/
p
2 (b(1)1 = 1, b(1)2 = )

* 
1



!�����

 


y

!+
= − y !

= 0 ⇒  = y ⇒ b(2) =
c
p
2

�����

 


1

!+
, |c| = 1

Remember complex conjugate in the dot product, ∗ = − more examples:
see mmpc1.mw

Another notation:

�����
1



+†
=

*
1

−

�����

Linear forms 8/16
mmpc1

Linear form ƒ (linear operator) assigns a number ƒ () ∈RR (or CC) to a vector.

Axioms: for linear forms ƒ , g, number , and a vector :

(ƒ + g)() = ƒ () + g()
ƒ () = ƒ ()

For finite n one can write (In infinite-dimension spaces there may be continuity problems):

ƒ () =
n∑

=1
ƒ

Otherwise in Hilbert spaces linear form ≈ scalar product:

ƒ () =
∑

ƒ = (ƒ∗, )

Linear form in Euclidean spaces (in some context) = covector, dual vector, covariant vector
(“normal” vector = contravariant vector)

vector = column vector,

covector = row vector (transposed) ƒT, inverse transformation if a basis changes

Scalar product then is: ƒ () = ƒT ·  = ƒT = ƒ  (Einstein summation convention).
In complex Hilbert spaces T→ †
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Example. Force F⃗ = covector, path ds⃗ = vector.

F⃗ = −∇⃗U, dW = F⃗ · ds⃗
Units: [ F⃗] = energy/length, [ds⃗] = length.

If length unit changes from m to cm, ds⃗ multiplies 100×, but (if the energy unit remains the same)
F⃗ multiplies 0.01×.

Maple

In package LinearAlgebra, operator “.” is used for scalar product:
covector.vector
rows.columns (in matrix multiplication)
^+ = transposition
^* = Hermitean conjugate

3D: Right- and left-handed coordinate system 10/16
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credit: Wikipedia

Right-handed: math, science, technology (Maple default)
Left-handed: 3D image processing (Micro$oft Direct 3D, PovRay)
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Square matrix n × n, e.g.:

A =



A11 A12 A13
A21 A22 A23
A31 A32 A33




may represent:

matrix of coefficients of a set of n of linear equations for n unknowns:∑

j

Ajj = b or A ·  = b or A = b or |Â|〉 = |b〉

linear transformation (map, operator) RRn→RRn or CCn→CCn

→
∑

j

Ajj or → A ·  or → A or |〉 → |Â|〉

matrix of coefficients of a quadratic form RRn→RR or CCn→CC

→
∑

j

Ajj or → T · A ·  or → TA or |〉 → 〈|Â|〉

a quadratic tensor; e.g., of pressure or small deformation
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Notation:

In quantum theory often denoted as Â

Other habits (e.g., as tensors):
↔
A , A

A ·  is less common than A;
in the bra-ket notation A|〉 or |A〉 or |A|〉
Vectors  and co-vectors T or † ≡ 〈| (“bra”) should be distinguished.

Matrices in infinite-dimension spaces are infinite = linear operators

If the set of equations A ·  = b can be solved ∀b, then A is called regular. The solution is then:

 = A−1 · b
where A−1 = inverse matrix, A · A−1 = A−1 · A = δ, and δ = diag(1,1, . . .) = unit matrix, identity

matrix, in coordinates Kronecker delta, also written as E, 11, , ,
↔
 , etc.

Examples. Invert matrices:

a)



1 0 0

0 2 0

0 0 3


 , b)

 
1 1

0 1

!

a)



100

01/20

001/3


,b)

 
1−1
01

!
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Determinant of a square matrix A is the number defined as a sum over all n! permutations p of
indices {1,2, . . . , n}:

detA =
∑
p

sign(p)
∏

A,p()

where sign(p) = (−1)number of transpositions in p.

detA ̸= 0 for a regular matrix.

It holds

det(A · B) = det(A)det(B), det(A−1) =
1

detA
(for regular A)

The determinant of a diagonal or triangular matrix = product of the numbers on the diagonal

Example. Calculate a) sign(2,3,1), b) sign(n, n − 1, n − 2, . . . ,2,1)

a)1,b)(−1)n(n−1)/2(=1forn≡0,3mod4and−1otherwise)

Unitary matrix 14/16
mmpc1

Orthogonalh (in RRn) or unitary (in CCn) matrix is a square matrix for which:

UT · U = δ or U† · U = δ

or in coordinates ∑

j

UT
jUjk =

∑

j

UjUjk = δk or
∑

j

U†jUjk =
∑

j

U∗j Ujk = δk

columns U∗ can be treated as coordinates of an orthonormal basis (in other orthonormal basis),
i.e., a (matrix of) unitary transformation

U is regular: U−1 = U†

|detU| = 1 (in CC); in RR this means that detU = ±1
a unitary matrix transforms an orthonormal basis to an orthonormal basis

linear map → U ·  “preserves angles”, in RR it can be interpreted as:

rotation in RRn (for detU = 1)

rotation and reflection in RRn (for detU = −1).

Examples of linear transformations in RRn useful in molecular chemistry: mmpc1.mw
hterm “orthonormal” is not used

Matrix of rotation
show pic/ATH 15/16
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Matrix of rotation by oriented angle +α in 2D:
 
cosα − sinα
sinα cosα

!

Matrix of rotation by angle α around axis ẑ in 3D:


cosα − sinα 0

sinα cosα 0

0 0 1




Internal coordinates:

credit: Wikipedia
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Write a matrix of rotation by angle α around vector (, b, c)T

Use spherical coordinates:
(, b, c) = (r sinθ cosφ, r sinθ sinφ, r cosθ)
reverse: r =

Æ
2 + b2 + c2, θ = arccos (c/r), φ = arctan (b, )

Overloaded function arctan (b, ) = arctan (b/) + kπ,
where k is such integer that φ = arctan (b, ) is in the
correct quadrant. In Fortran and C called atan2.

Compose from right (= in the order it is applied to a vector):
R−11 = rotation by −φ around ẑ

R−12 = rotation by −θ around ŷ

R3 = rotation by α around ẑ

R2 = rotation by θ around ŷ

R1 = rotation by φ around ẑ

Rotation matrix see mmpc1.mw

R = R1 · R2 · R3 · R−12 · R−11


