1/13 - 2/13
Vectors mn/ml Linear dependence mépd
Kindergarten: vector = (vi,...,vn), Vi€R A set of nonzero vectors v, i = 1..m, is linearly dependent if there is a null linear
Quantum kindergarten: v; e C combination with at least one of a; nonzero:
Mathematics: vector space (linear space) is defined by the axioms: Zaiv(” =0
For vectors u, v, w and numbers a, b € R or C: A linearly indgper)dent set of vef:tor's such that any vector (of given space) can be
expressed as its linear combination is called a basis
u+(v+w) = (U+V)+w vzzvib(i)
u+v = v+u
I null vector0:v+0 = v Example. Are the following vectors in R3 linearly dependent?
3 opposite vector —v:v+(—v) = 0 R (1,1,1),(1,-1,1),(1,0,-1)
abv) = (ab)v asin ou
lv = v Example. Are the following vectors in C2 linearly dependent?
a(u+v) = au+av (1), (Q+i1-10)
(a+b)v = av+bv sak
Example. Consider a linear space of functions of x € [0,2m] with basis
Notation: v, v, V (real in 2D, 3D), v, |v) (“ket"), v; ? {1, cos(x), cos(2x), cos(3x), ...}. Can function cos2(x) be expressed in this basis?
{""""0'0°07/1'0°2/1} sk
See mmpcl.mw
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Scalar (inner, dot) product P (Cauchy-)Schwarz inequality ko)
We need a richer structure! For nonzero a, b (zero cases are trivial):€ (alb)
—a
Kindergarten: scalar product @- v = Y u;v; alb a?
g p UiV bl=b—( 2)0 = (alby)=0
Mathematics: (u, v) is a number (real, complex) obeying axioms: a b by
(u,v) = (v,u)* (* = complex conjugate) b= (alb)a+ by a
(au,v) = a*(u,v) (in physics) a?
= a(u,v) (in mathematics) Pythagorasd
(u+tv,w) = (Uw)+(v,w) 2 2 2
alb alb alb
G = 0 p2 = (LD 5 o (@B 5 [(alb)l
_ _ a2 + a? a?
(u,u)=0 = u=0 (null vector)
Notation: u™v, u™-v, utv,2 (u, v), (U, v), G-V, u-v, {(ulv) (bra-ket); a2b2>|{alb)l? = lallb] > |{alb)|
also as a linear form (see below), u;v!
- = sum over a pair of indices, usually in R = triangle inequality
if (u, v) =0, vectors u, v are perpendicular la+ bl <lal+1b| or [x=2z|<|x—y|+|y—2z|
(u, w)¥2 = |u| = |Ju|| = normP i.e., la— bl is a metric.
at = transpose + complex conjugate = adjoint = Hermitean (Hermitian) conjugate <Common shortcut: a? = |a?| = (ala)
bsimilar space with a norm only (and complete) = Banach space; under some conditions (u, v) = din C, we must be careful because of (b|a)* = (a|b);
(lu+ vI2=Ju—v?y4 particularly, [{alb)al? = ((alb)*al(alb)a) = {(bla)al{alb)a) = |{alb)|*a?
. 5/13 6/13
Hilbert space P Orthogonal and orthonormal bases )
Hilbert space = linear space with a scalar product which is: Orthogonal basis = all vectors are perpendicular.
@ complete (any Cauchy sequence® converges in the (u, u) metric) Orthonormal basis = also normalized.
@ usually also separable (it contains a countable dense subset = there is a count- b® . p0) = b
able basis) Components of v in an orthonormal basis:
Loosely: “it is not too big”, . S vi=v-b® = v= Zvib(i) = (VL. Vb
“there are no problems with using infinite sums”
Scalar product:
Any finite vector space is a Hilbert space.
Y P P u~v=Zu,~v,~ (Zul.*w in C in physics)
Example. Wavefunction is a vector of a Hilbert space, flz[J(T)lsz must be finite.
The scalar product is:
(¢ly) = f o(T)* y(1)dT
In chemistry T € R3M, n = # of electrons; there are 2M-tuples of functions if spin is
included %
e{v;}2, is Cauchy if Vd > 0 3n : [vj— v <d Vij > n '
. - - 7/13 - 8/13
Gram-Schmidt Orthogonalization mmpcl Linear forms mmpcl

A general basis b() can be orthogonalized by the Gram-Schmidt algorithm:
b1 = p(1)pD)
b@ = p@_ (pMp2pM), p(2) .= p(2)/p(2))
b3 = pBI— (pMpBN M) _ (p(|p(3))p(2), p(3) .= p(3)/pB3))

“:=" means “assign to” as in a computer code.
Bases used in a Hilbert space are usually orthogonal or orthonormal
Example. Find all orthonormal bases {(b(1), b(2)} in €2 for b(1) = (1, i)/+/2.
ZA/1 =121 104 2(0—"T)

Gram-Schmidt orthogonalization examples: mmpcl.mw

Linear form f (linear operator) assigns a number f(v) € R, or f(v) € C, to a vector.

Axioms: for linear forms f, g, number a, and a vector v:

F+9v) = f(M+g((v)
flav) = af(v)
For finite n one can write
Fwy=> fu

=1
In infinite-dimension spaces there may be continuity problems.
Otherwise in Hilbert spaces linear form ~ scalar product:

F) = fivi=(f*,v)
A linear form (in Euclidean spaces) is also called covector:

vector = column vector
covector = row vector (transposed) fT.

Scalar product then is: f(u) = fT- u = fTu = flu; (Einstein summation convention). In
complex Hilbert spaces T— T
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Covector example mn/ml Matrices mm/pd
Example. Plane in 3D including the origin can be written as: Square matrix n x n, e.g.:
A.-F=0, A1l A1z Ai3
) : A=| A1 A A23
where 7 is perpendicular to the plane = covector.
A3l A3z As3
Maple may represent:
In package LinearAlgebra, operator “.” is used for scalar product: @ matrix of coefficients of a set of n of linear equations for n u?knowns:
covector.vector ZAijxj =b; or A-x=b or Ax=b or |Ax)=]|b)
rows.columns (in matrix multiplication) J
= transP05|t|on ) @ linear transformation (map, operator) R” — R" or C" — C"
~* = Hermitean conjugate .
Xi— ZA,‘]X/’ or x—A-x or x—Ax or |x)—|Alx)
)
@ matrix of coefficients of a quadratic form
Xi— Zx,'A,-jxj- or x—x"A-x or x—XxAx or Ix) — (x|A|x)
i
@ a quadratic tensor; e.g., of pressure
- 11/13 . 12/13
Matrices mm/pd Determinant mm/pd
Notation: Determinant of a square matrix A is the number defined as a sum over all n!

@ In quantum theory often denoted as A

@ A-x is less common than Ax;
in the bra-ket notation A|x) or |[Ax) or |A|x)

@ Vectors u and co-vectors ul or ut = (ul (“bra”) must be distinguished.
Matrices in infinite-dimension spaces are infinite = linear operators

If the set of equations A-x = b can be solved Vb, then A is called regular. The
solution is then:

x=A"1.p
where A~1 = inverse matrix, A-A~1 = A~1.A =6, where § = diag(1,1,...) = unit
matrix (Kronecker delta), also writtenas E, 1,1,1, I, etc.

permutations p of indices {1,2,...,n}:
detA = Z sign(p) l_[A,yp(,l)
P
where sign(p) = (_1)number of transpositions in p

detA # 0 for a regular matrix.
It holds

1
det(A - B) = det(A)det(B), det(A_l) = JetA (for regular A)
e

The determinant of a diagonal or triangular matrix = product od numbers on the
diagonal
Example. Calculate a) sign(2, 3, 1), b) sign(n,n—1,n—-2,...,2,1)
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Unitary matrix

Orthogonalf (in R) or unitary (in C) matrix is a square matrix for which:
uTu=6 or Ut.U=56
or in coordinates

ZUUUfk =6ijk or ZUJU]'/( =0k
J )

@ columns Uxj can be treated as coordinates of an orthonormal basis (in other
orthonormal basis), i.e., a (matrix of) unitary transformation

@ Uis regular: U~ = Ut
@ nR:detU==1,inC: |detU] =1
@ a unitary matrix transforms an orthonormal basis to an orthonormal basis

@ linear map x — U-x “preserves angles”, in R it can be interpreted as:

- rotation in R" (for detU =1)

- rotation and reflection in R” (for detU = —1).
Examples of linear transformations in R useful in molecular chemistry: mmpcl.mw
fterm “orthonormal” is not used




