	Linear dependence
Kindergarten: vector = $(v_1, \dots, v_n), v_i \in \mathbb{R}$	A set of nonzero vectors $v^{(0)}$, $i = 1, m$, is linearly dependent if there is a null linear
Quantum kindergarten: $v_i \in \mathbb{C}$	combination with at least one of a_i nonzero:
Mathematics: vector space (linear space) is defined by the axioms:	$\sum_{i=1}^{n} a_i v^{(l)} = 0$
For vectors u, v, w and numbers $a, b \in \mathbb{R}$ or \mathbb{C} :	expressed as its linear combination is called a basis
u + (v + w) = (u + v) + w $u + v = v + u$	$\mathbf{v} = \sum \mathbf{v}_i b^{(i)}$
$\exists \text{ null vector } 0: v + 0 = v$	Example. Are the following vectors in \mathbb{R}^3 linearly dependent?
$\exists \text{ opposite vector } -v: v + (-v) = 0$ $a(hv) = (ah)v$ $\exists \text{ as in } \mathbb{R}$	(1, 1, 1), (1, -1, 1), (1, 0, -1)
1 v = v	Example. Are the following vectors in \mathbb{C}^2 linearly dependent?
a(u+v) = au+av	(i, 1), (1 + i, 1 - i)
(a+b)v = av+bv	Example. Consider a linear space of functions of $x \in [0, 2\pi]$ with basis
Notation: ν , $\boldsymbol{\nu}$, $\hat{\nu}$ (real in 2D, 3D), $\underline{\nu}$, $ \nu\rangle$ ("ket"), $\boldsymbol{\nu}_i$?	{1, $\cos(x)$, $\cos(2x)$, $\cos(3x)$,}. Can function $\cos^2(x)$ be expressed in this basis?
	See mmpc1.mw
Scalar (inner, dot) product	(Cauchy–)Schwarz inequality
We need a richer structure!	For nonzero a, b (zero cases are trivial): ^c $\langle a b \rangle$
Kindergarten: scalar product $ec{u}\cdotec{v}=\sum u_iv_i$	$b_1 = b - \frac{\langle a b \rangle}{a} \Rightarrow \langle a b_1 \rangle = 0$
Mathematics: (u, v) is a number (real, complex) obeying axioms:	a^2 $(a b)$ b
$(u, v) = (v, u)^* (* = \text{complex conjugate})$ $(au, v) = a^*(u, v) \text{ (in physics)}$	$b = \frac{\langle a b\rangle}{a^2} a + b_\perp \qquad \qquad a$
= a(u, v) (in mathematics)	Pythagoras ^d
(u + v, w) = (u, w) + (v, w) $(u, u) \ge 0$	$b^{2} = \left(\frac{ \langle a b\rangle }{2}\right)^{2}a^{2} + b_{1}^{2} \ge \left(\frac{ \langle a b\rangle }{2}\right)^{2}a^{2} = \frac{ \langle a b\rangle ^{2}}{2}$
$(u, u) = 0 \Rightarrow u = 0$ (null vector)	$(a^2) + (a^2) a^2$
Notation: $u^{T}v$, $u^{T}v$, $u^{\dagger}v$, $a(u, v)$, (u, v) , $\vec{u} \cdot \vec{v}$, $u \cdot v$, $(u v)$ (bra-ket); also as a linear form (see below). $u_i v^i$	$a^{2}b^{2} \ge \langle a b\rangle ^{2} \implies a b \ge \langle a b\rangle $
\cdot = sum over a pair of indices, usually in $\mathbb R$	⇒ triangle inequality
if $(u, v) = 0$, vectors u, v are perpendicular $(u, u)^{1/2} = u = u = \text{perm}^{b}$	$ a+b \le a + b $ or $ x-z \le x-y + y-z $
a [†] = transpose + complex conjugate = adjoint = Hermitean (Hermitian) conjugate	Common shortcut: $a^2 \equiv a^2 = \langle a a \rangle$
"similar space with a norm only (and complete) = Banach space; under some conditions $(u, v) = (u + v ^2 - u - v ^2)/4$	aln \mathbb{C} , we must be careful because of $(b a)^* = (a b)$; particularly, $ \langle a b\rangle a ^2 = \langle \langle a b\rangle^* a \langle a b\rangle a\rangle = \langle \langle b a\rangle a \langle a b\rangle a\rangle = \langle a b\rangle ^2 a^2$
Hilbert space 5/13 mmpc1	Orthogonal and orthonormal bases 6/13 mmpc1
Hilbert space = linear space with a scalar product which is:	Orthogonal basis = all vectors are perpendicular.
\bigcirc complete (any Cauchy sequence ^e converges in the (<i>u</i> , <i>u</i>) metric)	Orthonormal basis = also normalized.
● usually also separable (it contains a countable dense subset ⇒ there is a count- able basis)	$b^{(i)} \cdot b^{(j)} = \delta_{ij}$
	$\sum_{i=1}^{n} b_{i} (i) = b_{i$
Loosely: "it is not too big",	$V_i = V_i \cap V_i \rightarrow V_i = V_i \cap V_i = V_i \cap V_i$
Loosely: "it is not too big", "there are no problems with using infinite sums"	$v_i = v \cdot b^{(v)} \Rightarrow v = \sum v_i b^{(v)} = (v_1, \dots, v_n)_b$ Scalar product:
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space.	Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is:	Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$	Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons: there are 2^n -tuples of functions if spin is	Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included	Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2 ⁿ -tuples of functions if spin is included	Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included $\{v_i\}_{i=1}^{\infty}$ is Cauchy if $\forall d > 0 \exists n : v_j - v_i < d \forall i, j > n$	Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included $\{v_i\}_{i=1}^{\infty}$ is Cauchy if $\forall d > 0 \exists n : v_j - v_i < d \forall i, j > n$ Gram-Schmidt Orthogonalization 7/13 mmpcl	$v_i = v \cdot b^{(s)} \Rightarrow v = \sum v_i b^{(s)} = (v_1, \dots, v_n)_b$ Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear forms $8/13 \text{ mmpc1}$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included $\{v_i\}_{i=1}^{\infty}$ is Cauchy if $\forall d > 0 \exists n : v_j - v_i < d \forall i, j > n$ Gram–Schmidt Orthogonalization A general basis $b^{(i)}$ can be orthogonalized by the Gram–Schmidt algorithm:	$v_i = v \cdot b^{(s)} \Rightarrow v = \sum v_i b^{(s)} = (v_1,, v_n)_b$ Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear forms Linear forms $\frac{8/13}{mmpc1}$ Linear form f (linear operator) assigns a number $f(v) \in \mathbb{R}$, or $f(v) \in \mathbb{C}$, to a vector.
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included ${}^{\bullet} \{v_i\}_{i=1}^{\infty}$ is Cauchy if $\forall d > 0 \exists n : v_j - v_i < d \forall i, j > n$ Gram–Schmidt Orthogonalization A general basis $b^{(i)}$ can be orthogonalized by the Gram–Schmidt algorithm: $b^{(1)} := b^{(1)}/ b^{(1)} $ $b^{(2)} := b^{(2)} (b^{(1)} b^{(2)} b^{(1)} b^{(2)} := b^{(2)}/ b^{(2)} $	$v_i = v \cdot b^{(s)} \Rightarrow v = \sum v_i b^{(s)} = (v_1,, v_n)_b$ Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear forms Linear forms $\frac{8/13}{\text{mmpcl}}$ Linear form f (linear operator) assigns a number $f(v) \in \mathbb{R}$, or $f(v) \in \mathbb{C}$, to a vector. Axioms: for linear forms f, g, number a, and a vector v: $(f : v)^{(s)} = f(v) = v(v)$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included $\{v_i\}_{i=1}^{\infty}$ is Cauchy if $\forall d > 0 \exists n : v_j - v_i < d \forall i, j > n$ Gram–Schmidt Orthogonalization A general basis $b^{(i)}$ can be orthogonalized by the Gram–Schmidt algorithm: $b^{(1)} := b^{(1)}/ b^{(1)} $ $b^{(2)} := b^{(2)} - (b^{(1)} b^{(2)})b^{(1)}$, $b^{(2)} := b^{(2)}/ b^{(2)} $ $b^{(3)} := b^{(3)} - (b^{(1)} b^{(3)})b^{(1)} - (b^{(2)} b^{(3)})b^{(2)}$, $b^{(3)} := b^{(3)}/ b^{(3)} $	$v_i = v \cdot p^{(s)} \Rightarrow v = \sum v_i p^{(s)} = (v_1,, v_n)_b$ Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear forms Linear form f (linear operator) assigns a number $f(v) \in \mathbb{R}$, or $f(v) \in \mathbb{C}$, to a vector. Axioms: for linear forms f, g, number a, and a vector v: (f + g)(v) = f(v) + g(v) $f(av) = af(v)$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included ${}^{\bullet} \{v_i\}_{i=1}^{\infty}$ is Cauchy if $\forall d > 0 \exists n : v_j - v_i < d \forall i, j > n$ Gram–Schmidt Orthogonalization A general basis $b^{(i)}$ can be orthogonalized by the Gram–Schmidt algorithm: $b^{(1)} := b^{(1)}/ b^{(1)} $ $b^{(2)} := b^{(2)} - (b^{(1)} b^{(2)})b^{(1)}, b^{(2)} := b^{(2)}/ b^{(2)} $ $b^{(3)} := b^{(3)} - (b^{(1)} b^{(3)})b^{(1)} - (b^{(2)} b^{(3)})b^{(2)}, b^{(3)} := b^{(3)}/ b^{(3)} $ ":=" means "assign to" as in a computer code.	$v_i = v \cdot b^{(s)} \Rightarrow v = \sum v_i b^{(s)} = (v_1, \dots, v_n)_b$ Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear forms Barrow Second
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included $e^{\{v_i\}_{i=1}^{\infty}}$ is Cauchy if $\forall d > 0 \exists n : v_j - v_i < d \forall i, j > n$ Gram–Schmidt Orthogonalization A general basis $b^{(i)}$ can be orthogonalized by the Gram–Schmidt algorithm: $b^{(1)} := b^{(1)/ b^{(1)} }$ $b^{(2)} := b^{(2)} - (b^{(1)} b^{(2)})b^{(1)}$, $b^{(2)} := b^{(2)/ b^{(2)} }$ $b^{(3)} := b^{(3)} - (b^{(1)} b^{(3)})b^{(1)} - (b^{(2)} b^{(3)})b^{(2)}$, $b^{(3)} := b^{(3)/ b^{(3)} }$ ":=" means "assign to" as in a computer code. Bases used in a Hilbert space are usually orthogonal or orthonormal	$v_i = v \cdot b^{(s)} \Rightarrow v = \sum v_i b^{(s)} = (v_1, \dots, v_n)_b$ Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear forms Linear form f (linear operator) assigns a number $f(v) \in \mathbb{R}$, or $f(v) \in \mathbb{C}$, to a vector. Axioms: for linear forms f, g, number a, and a vector v: (f + g)(v) = f(v) + g(v) $f(av) = af(v)$ For finite n one can write $f(u) = \sum^n f_i u_i$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included ${}^{\circ}\{v_i\}_{i=1}^{\infty}$ is Cauchy if $\forall d > 0 \exists n : v_j - v_i < d \forall i, j > n$ Gram–Schmidt Orthogonalization A general basis $b^{(i)}$ can be orthogonalized by the Gram–Schmidt algorithm: $b^{(1)} := b^{(1)}/ b^{(1)} $ $b^{(2)} := b^{(2)} - (b^{(1)} b^{(2)})b^{(1)}$, $b^{(2)} := b^{(2)}/ b^{(2)} $ $b^{(3)} := b^{(3)} - (b^{(1)} b^{(3)})b^{(1)} - (b^{(2)} b^{(3)})b^{(2)}$, $b^{(3)} := b^{(3)}/ b^{(3)} $ ":=" means "assign to" as in a computer code. Bases used in a Hilbert space are usually orthogonal or orthonormal Example. Find all orthonormal bases $\{(b^{(1)}, b^{(2)}\}$ in \mathbb{C}^2 for $b^{(1)} = (1, i)/\sqrt{2}$.	$v_i = v \cdot b^{(s)} \Rightarrow v = \sum v_i b^{(s)} = (v_1, \dots, v_n)_b$ Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear forms $\begin{cases} 8/13 \\ mmpc1 \end{cases}$ Linear form f (linear operator) assigns a number $f(v) \in \mathbb{R}$, or $f(v) \in \mathbb{C}$, to a vector. Axioms: for linear forms f, g, number a, and a vector v: (f + g)(v) = f(v) + g(v) $f(av) = af(v)$ For finite n one can write $f(u) = \sum_{i=1}^n f_i u_i$ In infinite-dimension spaces there may be continuity problems
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included $e^{\{v_i\}_{i=1}^{\infty}}$ is Cauchy if $\forall d > 0 \exists n : v_i - v_i < d \forall i, j > n$ Gram-Schmidt Orthogonalization A general basis $b^{(i)}$ can be orthogonalized by the Gram-Schmidt algorithm: $b^{(1)} := b^{(1)}/ b^{(1)} $ $b^{(2)} := b^{(2)} - \langle b^{(1)} b^{(2)}\rangle b^{(1)}$, $b^{(2)} := b^{(2)}/ b^{(2)} $ $b^{(3)} := b^{(3)} - \langle b^{(1)} b^{(3)}\rangle b^{(1)} - \langle b^{(2)} b^{(3)}\rangle b^{(2)}$, $b^{(3)} := b^{(3)}/ b^{(3)} $ ":=" means "assign to" as in a computer code. Bases used in a Hilbert space are usually orthogonal or orthonormal Example. Find all orthonormal bases $\{(b^{(1)}, b^{(2)}\}$ in \mathbb{C}^2 for $b^{(1)} = (1, i)/\sqrt{2}$. $\underline{\mathbb{Z}}^{*}/\mathbb{T} = \Im Joj \Im(i - \mathbb{T})$	$v_i = v \cdot b^{(s)} \Rightarrow v = \sum v_i b^{(s)} = (v_1, \dots, v_n)_b$ Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear forms Linear form f (linear operator) assigns a number $f(v) \in \mathbb{R}$, or $f(v) \in \mathbb{C}$, to a vector. Axioms: for linear forms f, g, number a, and a vector v: (f + g)(v) = f(v) + g(v) $f(av) = af(v)$ For finite n one can write $f(u) = \sum_{i=1}^n f_i u_i$ In infinite-dimension spaces there may be continuity problems. Otherwise in Hilbert spaces linear form \approx scalar product:
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included $e^{\{v_i\}_{i=1}^{\infty}}$ is Cauchy if $\forall d > 0 \exists n : v_j - v_i < d \forall i, j > n$ Gram–Schmidt Orthogonalization A general basis $b^{(i)}$ can be orthogonalized by the Gram–Schmidt algorithm: $b^{(1)} := b^{(1)}/ b^{(1)} $ $b^{(2)} := b^{(2)} - (b^{(1)} b^{(2)})b^{(1)}$, $b^{(2)} := b^{(2)}/ b^{(2)} $ $b^{(3)} := b^{(3)} - (b^{(1)} b^{(3)})b^{(1)} - (b^{(2)} b^{(3)})b^{(2)}$, $b^{(3)} := b^{(3)}/ b^{(3)} $ ":=" means "assign to" as in a computer code. Bases used in a Hilbert space are usually orthogonal or orthonormal Example. Find all orthonormal bases { $(b^{(1)}, b^{(2)}\}$ in \mathbb{C}^2 for $b^{(1)} = (1, i)/\sqrt{2}$. $\underline{\mathbb{Z}}^{*}/\mathbb{T} = \mathfrak{I} \mathfrak{IO} \mathfrak{I}(r-\mathbb{T})$ Gram–Schmidt orthogonalization examples: mmpc1.mw	$v_i = v \cdot b^{(i)} \Rightarrow v = \sum_i v_i b^{(i)} = (v_1,, v_n)_b$ Scalar product: $u \cdot v = \sum_i u_i v_i (\sum_i u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear forms Linear form f (linear operator) assigns a number $f(v) \in \mathbb{R}$, or $f(v) \in \mathbb{C}$, to a vector. Axioms: for linear forms f, g, number a, and a vector v: (f + g)(v) = f(v) + g(v) $f(av) = af(v)For finite n one can writef(u) = \sum_{i=1}^n f_i u_iIn infinite-dimension spaces there may be continuity problems.Otherwise in Hilbert spaces linear form \approx scalar product:f(v) = \sum_i f_i v_i = (f^*, v)$
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included $\langle v_i \rangle_{i=1}^{\infty}$ is Cauchy if $\forall d > 0 \exists n : v_j - v_i < d \forall i, j > n$ Gram-Schmidt Orthogonalization A general basis $b^{(i)}$ can be orthogonalized by the Gram-Schmidt algorithm: $b^{(1)} := b^{(1)}/ b^{(1)} $ $b^{(2)} := b^{(2)} - (b^{(1)} b^{(2)}\rangle b^{(1)}$, $b^{(2)} := b^{(2)}/ b^{(2)} $ $b^{(3)} := b^{(3)} - (b^{(1)} b^{(3)}\rangle b^{(1)} - (b^{(2)} b^{(3)}\rangle b^{(2)}$, $b^{(3)} := b^{(3)}/ b^{(3)} $ ":=" means "assign to" as in a computer code. Bases used in a Hilbert space are usually orthogonal or orthonormal Example. Find all orthonormal bases { $(b^{(1)}, b^{(2)}\}$ in \mathbb{C}^2 for $b^{(1)} = (1, i)/\sqrt{2}$. $\underline{\mathbb{Z}}^*/\mathbb{T} = \Im \operatorname{Joj} \Im(j - \mathbb{T})$ Gram-Schmidt orthogonalization examples: mmpc1.mw	$v_i = v \cdot b^{(i)} \Rightarrow v = \sum v_i b^{(i)} = (v_1, \dots, v_n)_b$ Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear forms Linear forms $a_i v_i = v \cdot b^{(i)} = \sum u_i v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear form f (linear operator) assigns a number $f(v) \in \mathbb{R}$, or $f(v) \in \mathbb{C}$, to a vector. Axioms: for linear forms f, g, number a, and a vector v: (f + g)(v) = f(v) + g(v) $f(av) = af(v)$ For finite n one can write $f(u) = \sum_{i=1}^n f_i u_i$ In infinite-dimension spaces there may be continuity problems. Otherwise in Hilbert spaces linear form \approx scalar product: $f(v) = \sum f_i v_i = (f^*, v)$ A linear form (in Euclidean spaces) is also called covector : vector = column vector
Loosely: "it is not too big", "there are no problems with using infinite sums" Any finite vector space is a Hilbert space. Example. Wavefunction is a vector of a Hilbert space, $\int \psi(\tau) ^2 d\tau$ must be finite. The scalar product is: $\langle \phi \psi \rangle = \int \phi(\tau)^* \psi(\tau) d\tau$ In chemistry $\tau \in \mathbb{R}^{3n}$, $n = \#$ of electrons; there are 2^n -tuples of functions if spin is included $e_{\{v_i\}_{i=1}^{\infty}}$ is Cauchy if $\forall d > 0 \exists n : v_j - v_i < d \forall i, j > n$ Gram-Schmidt Orthogonalization A general basis $b^{(i)}$ can be orthogonalized by the Gram-Schmidt algorithm: $b^{(1)} := b^{(1)}/ b^{(1)} $ $b^{(2)} := b^{(2)} - (b^{(1)} b^{(2)})b^{(1)}, b^{(2)} := b^{(2)}/ b^{(2)} $ $b^{(3)} := b^{(3)} - (b^{(1)} b^{(3)})b^{(1)} - (b^{(2)} b^{(3)})b^{(2)}, b^{(3)} := b^{(3)}/ b^{(3)} $ ":=" means "assign to" as in a computer code. Bases used in a Hilbert space are usually orthogonal or orthonormal Example. Find all orthonormal bases $\{(b^{(1)}, b^{(2)}\}$ in \mathbb{C}^2 for $b^{(1)} = (1, i)/\sqrt{2}$. $\underline{\subset}^*/\mathbb{T} = \Im JOJ \Im(i - \mathbb{T})$ Gram-Schmidt orthogonalization examples: mmpc1.mw	$V_i = V \cdot b^{(i)} \Rightarrow V = \sum V_i b^{(i)} = (V_1, \dots, V_n)_b$ Scalar product: $u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics})$ Linear forms Linear forms $\begin{cases} u \cdot v = \sum u_i v_i (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics}) \\ (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics}) \\ (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics}) \\ (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics}) \\ (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics}) \\ (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics}) \\ (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics}) \\ (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics}) \\ (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in physics}) \\ (\sum u_i^* v_i \text{ in } \mathbb{C} \text{ in } \mathbb{C} \text{ or } p_i v_i \in \mathbb{C}, \text{ to a vector.} \\ (\sum u_i^* v_i) \\ ($

Covector example	Matrices 10/13 mmpc1
Example. Plane in 3D including the origin can be written as:	Square matrix $n \times n$, e.g.:
$\vec{n}\cdot\vec{r}=0,$	$\left(\begin{array}{cc}A_{11} & A_{12} & A_{13}\end{array}\right)$
where \vec{n} is perpendicular to the plane = covector.	$A = \left(\begin{array}{c} A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array}\right)$
Maple	may represent:
In package LinearAlgebra, operator "." is used for scalar product: covector.vector rows.columns (in matrix multiplication) ^+ = transposition ^* = Hermitean conjugate	• matrix of coefficients of a set of <i>n</i> of linear equations for <i>n</i> unknowns: $\sum_{j} A_{ij} x_j = b_i \text{or} A \cdot x = b \text{or} Ax = b \text{or} \hat{A} x\rangle = b\rangle$ • linear transformation (map, operator) $\mathbb{R}^n \to \mathbb{R}^n$ or $\mathbb{C}^n \to \mathbb{C}^n$ $x_i \to \sum_j A_{ij} x_j \text{or} x \to A \cdot x \text{or} x \to Ax \text{or} x\rangle \to \hat{A} x\rangle$ • matrix of coefficients of a quadratic form $x_i \to \sum_{ij} x_i A_{ij} x_j \text{or} x \to x^T \cdot A \cdot x \text{or} x \to x^T Ax \text{or} x\rangle \to \langle x \hat{A} x\rangle$ • a quadratic tensor; e.g., of pressure
Matrices 11/1	3 Determinant 12/13
Notation: • In quantum theory often denoted as \hat{A} • $A \cdot x$ is less common than Ax ; in the bra-ket notation $A x\rangle$ or $ Ax\rangle$ or $ A x\rangle$ • Vectors u and co-vectors u^{T} or $u^{\dagger} \equiv \langle u $ ("bra") must be distinguished. Matrices in infinite-dimension spaces are infinite = linear operators If the set of equations $A \cdot x = b$ can be solved $\forall b$, then A is called regular . The solution is then: $x = A^{-1} \cdot b$ where $A^{-1} =$ inverse matrix , $A \cdot A^{-1} = A^{-1} \cdot A = \delta$, where $\delta = \text{diag}(1, 1,) = \text{un}$ matrix (Kronecker delta), also written as E , 1 , 1 , 1 , 1 , 1 , etc.	Determinant of a square matrix A is the number defined as a sum over all n! permutations p of indices {1, 2,, n}: $det A = \sum_{p} \operatorname{sign}(p) \prod A_{i,p(i)}$ where sign(p) = (-1) ^{number} of transpositions in p. det A \neq 0 for a regular matrix. It holds $det(A \cdot B) = det(A) det(B), det(A^{-1}) = \frac{1}{detA} \text{ (for regular A)}$ The determinant of a diagonal or triangular matrix = product od numbers on the diagonal Example. Calculate a) sign(2, 3, 1), b) sign(n, n - 1, n - 2,, 2, 1) (ƏSIMJƏLIO I - pue t pow E '0 = u Joj I =) Z/(I-u)u(I-) (q 'I (e))
Unitary matrix	3
Orthogonal ^f (in \mathbb{R}) or unitary (in \mathbb{C}) matrix is a square matrix for which: $U^T \cdot U = \delta$ or $U^T \cdot U = \delta$ or in coordinates $\sum_j U_{ij}U_{jk} = \delta_{ik}$ or $\sum_j U_{ij}^*U_{jk} = \delta_{ik}$ • columns U_{*j} can be treated as coordinates of an orthonormal basis (in other orthonormal basis), i.e., a (matrix of) unitary transformation • U is regular: $U^{-1} = U^T$ • in \mathbb{R} : det $U = \pm 1$, in \mathbb{C} : $ \det U = 1$ • a unitary matrix transforms an orthonormal basis to an orthonormal basis • linear map $x \rightarrow U \cdot x$ "preserves angles", in \mathbb{R} it can be interpreted as: - rotation in \mathbb{R}^n (for det $U = 1$) - rotation and reflection is \mathbb{R}^n	r
Examples of linear transformations in \mathbb{R}^n useful in molecular chemistry: mmpc1.mm ^f term "orthonormal" is not used	·