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Eigenvector, λ, and eigenvalue, λ, of square matrix A are defined by

δ = unit matrixA · λ = λλ or (A − λδ) · λ = 0

The second equation can hold (for nonzero vector λ) only if matrix A − λδ is singular, i.e:

det(A − λδ) = 0

⇒ algebraic equation of the n-th degree, with n roots (multiplicity included).

Examples: The weighted matrix of the 2nd derivatives of a potential in a calculation of fundamental
frequencies, heat (conduction) equation, wave equation, Schrödinger equation, stochastic matrix,
system of linear differential equations, simultaneous 1st order kinetic equations . . .

Example. Calculate eigenvalues and eigenvectors of matrix
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A symmetric matrix (in RR): A = AT

A self-adjoint (Hermitian, Hermitean) matrix (in CC): A = A†, A† ≡ (A∗)T

Eigenvalues of a self-adjoint (symmetric in RR) matrix are real.

Proof: Left-multiply A ·  = λ by †:

† · A ·  =
∑

j

∗ Ajj =
∑



∗ λ = λ||2

=
∑

j

∗ A
∗
j j =

∑

j

jA
∗
j 

∗
 =


∑

j

∗j Aj



∗

= λ∗||2

⇒ λ = λ∗ ⇒ λ ∈RR.

The proof for symmetric matrices in RR uses a (richer) complex Hilbert space

Matrices in RR have real eigenvalues or pairs of complex conjugate ones

Matrix of rotation
start /home/jiri/vyuka/maple/mmpc1.mw 3/19
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An orthogonal matrix R in 3D (rotation or improper rotation by α around an axis) has 3 eigenvalues:

{1, cosα +  sinα, cosα −  sinα}
Proof: It is enough to consider matrix of rotation by α around axis ẑ ↓ ; cf. mmpc1.mw (general).

The eigenvector corresponding to eigenvalue of 1 is the axis of rotation (this vector does not
change by applying the rotation). For the angle of rotation, it holds:

2 cosα + 1 = TrR

because the trace ��������

cosα − λ − sinα 0

sinα cosα − λ 0

0 0 1 − λ

��������
= 0

[(cosα − λ)2 + sin2α](1 − λ) = 0

TrA =
∑



A

is invariant under basis change.

Proof:

Tr (ABC) = Tr (BCA) = Tr (CAB) =
∑
jk AjBjkCk

Tr (X−1AX) = Tr (AXX−1) = TrA (basis change)
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Vector = “ket” = |〉, |〉 =  (“column vector”)

Co-vector = “bra” = Hermitean conjugate:
|〉† = 〈|, 〈| = ∗ (“row vector”)

Scalar product: 〈|〉 =∑ 
∗
  =

∑
〈| |〉 =

∑
 |〉∗ 〈|∗ =

∑
〈|∗ |〉∗ = 〈|〉∗

Operator: A or Â: |A〉, in some context also A|〉 or |A|〉; |A〉 =
∑
jAjj

Operator acting on a bra (def.): 〈A| = bra such that 〈A|〉 = 〈|A〉 ≡ 〈|A|〉 ∀;

Hence, we can write a matrix element as: 〈|A|〉 =∑j 
∗
 Ajj

In coordinates: 〈A|j =
∑
 
∗
 Aj = (

∑
 A

∗
j )

∗ = (
∑
A
∗
j )

∗ = (
∑
A
†
j)

∗ = |A†〉∗j
Any matrix: 〈|A†|〉 = 〈|A|〉∗
Distinguish: 〈A| and 〈A|: 〈A|j = (|A〉†)j =

∑
A
∗
j 

∗


For a Hermitean (self-adjoint) matrix: A† = A ⇒ 〈|A|〉 = 〈|A|〉∗ (it is also scalar product)

Proving λ ∈RR again: 〈|A|〉 = 〈|λ〉 = λ〈|〉 !
= 〈|A|〉∗ = λ∗〈|〉

credit: http://backreaction.blogspot.cz/2006/07/bra-cat.html
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Eigenvectors (of different eigenvalues) of a self-adjoint matrix are perpendicular.

Proof:

〈(2)|A|(1)〉 = 〈(2)|A(1)〉 = 〈(2)|λ1(1)〉 = λ1〈(2)|(1)〉
= 〈(1)|A|(2)〉∗ = [λ2〈(1)|(2)〉]∗ = λ∗2 〈(2)|(1)〉 = λ2〈(2)|(1)〉

which can hold (for λ1 ̸= λ2), only if 〈(1)|(2)〉 = 0. We can always orthonormalize a subspace of
degenerate eigenvalues, hence a self-adjoint matrix generates an orthogonal basis.

In coordinates:
∑

j

(2)∗ Aj
(1)
j =

∑



(2)∗

∑

j

Aj
(1)
j =

∑



(2)∗ λ1
(1)
 = λ1

∑



(2)∗ (1)

=
∑

j

(1)j A∗j 
(2)∗
 =

∑

j

(1)j λ∗2 
(2)∗
j = λ∗2

∑



(1) (2)∗ = λ2
∑



(2)∗ (1)

Examples see mmpc2.mw
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A similar statement (“spectral theorem”) holds for compact self-adjoint operators in ∞-dimen-
sional Hilbert spaces. Various generalizations exist.

Hermitean in physics = self-adjoint, in mathematics there are subtleties: the generated basis may
not span the entire Hilbert space.

Compact operator:
A map of an infinite sequence in a 1-ball contains a Cauchy subsequence (which converges).
An operator is compact if it is bounded and it maps a compact (= closed + bounded) set to a set
whose closure space is compact (closure = set + boundary).
Loosely: An image of a 1-ball shrinks enough (“in higher dimensions”).

Compact set X:
Every sequence in X has a convergent subsequence whose limit is in X.
Every open cover of X has a finite subcover.
Loosely (Peter Lax): A compact city can be guarded by finitely many near-sighted policemen.

Examples:

diag{1,1/4,1/9, ...} is compact self-adjoint

Identity δ = diag{1,1,1, ...} in an ∞-dimensional space is not compact

p̂ = −ih ∂
∂ is self-adjoint but not compact (proof: per partes, watch ∗ and order!)
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Let A ∈RRn × RRn be a symmetric matrix and b(j) be its eigenvectors, |b(j)| = 1.

Let matrix U be composed of column vectors b(j); i.e., Uj = b
(j)
 .

Then b(j)
T · b(k) = δjk ⇒ U is orthogonal, UT · U = δ.

The eigenvector condition becomes:

b()T · A · b(j) = b()T · λjb(j) = λjδj ⇒ UT · A · U =




λ1
λ2

λn



= Λ (diagonal matrix)

For  = U ·  or  = U−1 ·  ≡ UT · , we get a diagonal quadratic form

T · A ·  = T · UT · A · U ·  = T · Λ ·  =
∑



λ
2


Similarly in CC for self-adjoint matrices (T replaced by †)

Thus “diagonalization = calculating eigenvectors and eigenvalues”.

Example – quadratic form
pic/qform.sh 8/19
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2 − 4y + y2

Matrix:

A =

 
1 −2
−2 1

!

Characteristic equation:

det

 
1 − λ −2
−2 1 − λ

!
= λ2 − 2λ − 3

roots: λ1 = −1, λ2 = 3. Equations for the eigenvectors:

A1 = −1 ⇒ 1 =
�
1

1

�

A2 = 32 ⇒ 2 =
�−1
1

�

And normalized eigenvectors → basis:
rotation by 45◦

 =

 
1/
p
2 −1/p2

1/
p
2 1/

p
2

!
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The signature = number of (positive,negative,zero) eigenvalues.

Example: the signature of 2 − 4y + y2 is (+−)a.

For ƒ () “countinuous enough”, the condition for an extreme is:

∂ƒ

∂
= 0,  = 1, . . . , n

If this holds true for 0, the Taylor expansion at the minimum is (A = Hessian):

ƒ () = ƒ (0) +
1

2

∑

j

( − 0 )Aj(j − 0j ), Aj =
∂ƒ2

∂∂j |=0 ,j=0j

If the signature of A is (n,0,0) = (+ + + + ...), the form is positive definite and ƒ has a local
minimum at 0.

If the signature of A is (0, n,0) = (− − − − ...), then the form is negative definite, and ƒ has a
local maximum at 0.

If the signature contains pluses and minuses, it is indefinite, and ƒ has a saddle point at 0.
aOften written in form (n+, n−, n0) = (1,−1,0)

Sylvestr criterion (removed) + 10/19
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We calculate the subdeterminants:

det |Aj|,j=1
det |Aj|,j=1..2
det |Aj|,j=1..3

All are positive at point 0: minimum.

Alternating signs at point 0 (−,+,−, . . .): maximum.

The proof uses the spectral theorem and the Cholesky decomposition of a Hermitean matrix A =
L∗ · L, where L is a triangular matrix.
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Let PES be Upot(τττ), τττ = {r⃗1, . . . , r⃗N,}, with a (local) minimum at τττmin; def. Δτττ = τττ − τττmin.

Taylor expansion to the 2nd order:
↙

=0

Upot(τττ) = Upot(τττmin) +
∑



∂Upot

∂r⃗
(τττmin) · Δr⃗ +

1

2

∑

,j

Δr⃗ ·
∂2Upot

∂r⃗∂r⃗j
(τττ) · Δr⃗j

Newton’s equations of motion:

mΔ¨⃗r ≡m
d2Δr⃗

dt2
= ƒ⃗ = −

∑

j

AjΔr⃗j

where the so called Hessian matrix isb

Aj =
∂2Upot

∂r⃗∂r⃗j
(τττmin), Δr⃗ = r⃗ − r⃗,min

In the matrix form (vector = 3N numbers, matrix = 3N × 3N):

MMM · Δτ̈ττ = −AAA · Δτττ, where MMM = diag(m1,m1,m1, . . . ,mN,mN,mN)
bby Ludwig Otto Hesse (1811–1874), German mathematician (differential geometry, group theory);
the Hess law of thermochemistry is by Germain Henri Hess (1802–1850), Swiss-Russian chemist and doctor

Fundamental vibrations
tchem/showvib.sh 12/19
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MMM · Δτ̈ττ = −AAA · Δτττ, where MMM = diag(m1,m1,m1, . . . ,mN,mN,mN)

We are looking for a transformation (basis) in the form

Δτττ = MMM−1/2 · UUU · 
where UUU is orthogonal. By inserting:

MMM ·MMM−1/2 · UUU · ̈ = −AAA ·MMM−1/2 · UUU · 
Left-multiplied by UUU−1 ·MMM−1/2· :

̈ = −ΛΛΛ · , ΛΛΛ = UUU−1 ·MMM−1/2 · AAA ·MMM−1/2 · UUU
There exists an orthogonal matrix UUU so that ΛΛΛ = UUU−1 · MMM−1/2 · AAA · MMM−1/2 · UUU is diagonal, in other
words, we diagonalize the symmetric matrix A′A′A′:

A′A′A′ = MMM−1/2 · AAA ·MMM−1/2
The Newton equations separate into 3N independent harmonic oscillators:

̈α = −Λααα, α = 1, . . . ,3N

The frequences are

# of zero frequencies n0:
6 for general molecules
5 for linear molecules
3 for atoms

nvibr = 3N − n0να =

p
Λαα

2π

Fundamental vibrations – diatomic molecule 13/19
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Two atoms connected by a spring:

Upot =
K

2
( − y)2 ⇒ A′A′A′ =

 
K/m −K/m
−K/m K/m

!

�
K

m
− λ

�2
=
�
K

m

�2
⇒ K

m
− λ = ± K

m
⇒ λ ∈ {2K/m,0}

The frequences are

ν1 =

p
2K/m

2π
(sym. stretch), ν2 = 0 (translation)

Unnormalized eigenvectors:

ψψψ1 =

 
1

−1

!
, ψψψ2 =

 
1

1

!

→← →→
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Check S:\pocitacova chemie\Connect = pyr.vscht.cz/scratch/pocitacova chemie/Connect
or
Find on the web “MobaXterm Home Edition – Portable”

computer:
403-a325-05 (4 cores)

(Unzip and) run (skip paranoic messages)

Click + Start local terminal

Write the chosen relation; e.g., :
[2019-11-11 11:11.11] ssh -X guest@403-a325-05.vscht.cz
Enter PASSWD given (no response while writing PASSWD)

Alternatively, use dialog windows and select X-window forwarding

See also PuTTY + XMing (sometimes installed)

Connect by MobaxTerm 15/19
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If MobaxTerm does not work: Connect by PuTTY + XMing + 16/19
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Terminal PuTTY

Windows Start → Search → putty → Open
or S:pocitacova chemie/Connect/putty64bit.exe

Host name → 403-a325-05 or other computer
computer:
403-a325-05 (4 cores)Connection → + SSH → Tunnels → X11

→ x Enable X11 forwarding

back to Session → Open

Login as: guest

Password: PASSWD

X server to show graphics (Xming)

Windows Start → Search → xming → Open
or
S:pocitacova chemie/Connect/XLaunch.exe - Shortcut.lnk

You should see the following icon in the bottom panel:

Try vibrations by yourself 17/19
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Start Midnight Commander by: Environment variable CHE=2 tells the
script che.sh associated in Midnight
Commander with che-files to start
normal mode calculations and show-
ing in a unique temporary directory.

guest@403-a324-01:~/CHE$ CHE=2 mc

Check that you are in directory ~/CHE (is a symlink)

Click a che-file. First, MM program blend starts:

Right-clicking a button shows context help.

Check that the molecule is optimized by clicking CG (also hot key , )

In case of problems, try editing: click an atom, move + mid button, CG , or rand etc.

Click finish or . to save and quit (do not use quit = not saved).

Then, molecule viewer show starts (if not, type Ctrl-O in the Midnight Commander window and
check a possible message). Watch vibrations:

Use < / > (bottom of the control panel) or PgUp / PgDn to switch vibrational modes.
NB: modes 0..5 (0..4 for a linear molecule) correspond to translations and rotations (ν ≈ 0)

Use 1 .. 7 etc. to change showing style, NFF to raytrace, zbuf for a stereogram, . . .

If needed, control speed by - + (bottom of the control panel) or s S

Homogeneous linear differential equations of the 1st order 18/19
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The system of homogeneous linear differential equations of the 1st order:

̇1 = A111 + A122 + · · · + A1nn
...

̇n = An11 + An22 + · · · + Annn





̇ = A · 

One of n linearly independent solutions:

 = eλt ⇒ A ·  = λ
For real A, λ are real or complex conjugate pairs.

General solution if all λ’s are diferent:

 =
∑

λ
Cλeλtλ

where Cλ’s are determined from the initial conditions.

If there are multiple eigenvalues (roots of the characteristic equation), we have eλt, teλt, t2eλt,
etc.

The set is always equivalent to one homogeneous linear differential equations of the n-th order.
see mmpc2.mw
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̇ = y, ẏ = −

A =

 
0 1

−1 0

!
⇒ λ = ±,  =

�


1

�
, − =

�
1



�

General solution:

Cet + C−−e−t
(
 = Cet + C−e−t

y = Cet + C−e−t

With initial conditions (0) = 1, y(0) = 0:

(
1 = C + C−
0 = C + C−

⇒ C = − 
2, C− =

1
2

 =
1

2
et +

1

2
e−t = cos t, y = − 

2
et +



2
e−t = − sin t

Equivalent differential equation of the 2nd order:

̈ = − (harmonic oscillator)

see mmpc2.mw


