Eigenvalues and eigenvectors

i.e:

Bra-ke

Vector =

Scalar p

Operato

Operato Hence, v In coord

Distingu For a He Proving .

A simila

in ∞-din

Compac

A map o Loosely:

set to a

Loosely policeme

Exampl

🔵 Identi

 $\hat{p}_x = \cdot$

Exam

Matrix:

Characte

Eigenvector, v_{λ} , and **eigenvalue**, λ , of matrix A are defined by

 $A \cdot v_{\lambda} = \lambda v_{\lambda}$ or $(A - \lambda \delta) \cdot v_{\lambda} = 0$ The second equation can hold (for nonzero vector v_{λ}) only if matrix $A - \lambda \delta$ is singular,

 $\det(A - \lambda \delta) = 0$

Examples: weighted matrix of 2nd derivatives of a potential in a calculation of funda-

mental frequencies, heat (conduction) equation, wave equation, Schrödinger equa-

 $\left(\begin{array}{rr}1 & -1\\1 & 1\end{array}\right)$

 \Rightarrow algebraic equation of the *n*-th degree, with *n* roots (incl. multiplicity).

tion, stochastic matrix, system of linear differential equations, \ldots

Example. Calculate eigenvalues and eigenvectors of matrix

1/14 **Eigenvalues**

2/14

4/14

6/14

8/14

A symmetric matrix (in \mathbb{R}): $A = A^{\mathsf{T}}$

A **self-adjoint** (Hermitean) matrix (in \mathbb{C}): $A = A^{\dagger}$, $A^{\dagger} \equiv (A^*)^{\top}$

Eigenvalues of a self-adjoint (symmetric in \mathbb{R}) matrix are real.

Proof: Left-multiply $A \cdot v = \lambda v$ by v^{\dagger} :

$$\begin{aligned} \mathbf{v}^{\dagger} \cdot \mathbf{A} \cdot \mathbf{v} &= \sum_{ij} \mathbf{v}_{i}^{*} \mathbf{A}_{ij} \mathbf{v}_{j} = \sum_{i} \mathbf{v}_{i}^{*} \lambda \mathbf{v}_{i} = \lambda |\mathbf{v}|^{2} \\ &= \sum_{ij} \mathbf{v}_{i}^{*} \mathbf{A}_{ji}^{*} \mathbf{v}_{j} = \sum_{ij} \mathbf{v}_{j} \mathbf{A}_{ji}^{*} \mathbf{v}_{i}^{*} = \left(\sum_{ij} \mathbf{v}_{j}^{*} \mathbf{A}_{ji} \mathbf{v}_{i}\right)^{*} = \lambda^{*} |\mathbf{v}|^{2} \end{aligned}$$

 $\Rightarrow \lambda = \lambda^* \Rightarrow \lambda \in \mathbb{R}.$

igoplus The proof for symmetric matrices in ${\mathbb R}$ uses a (richer) complex Hilbert space

igoplus Matrices in ${\mathbb R}$ have real eigenvalues or pairs of complex conjugate ones

°S

of a self-adjoint matrix are perpendicular.

$$\langle v^{(2)} | A | v^{(1)} \rangle = \langle v^{(2)} | A v^{(1)} \rangle = \langle v^{(2)} | \lambda_1 v^{(1)} \rangle = \lambda_1 \langle v^{(2)} | v^{(1)} \rangle$$

$$(2)|A|v^{(1)}\rangle = \langle v^{(1)}|A|v^{(2)}\rangle^* = [\lambda_2\langle v^{(1)}|v^{(2)}\rangle]^* = \lambda_2^*\langle v^{(2)}|v^{(1)}\rangle = \lambda_2\langle v^{(2)}|v^{(1)}\rangle$$

 $|v^{(2)}\rangle = 0$. We can always orthonormalize a ence a self-adjoint matrix generates an

$$\sum_{ij} v_i^{(2)*} A_{ij} v_j^{(1)} = \sum_i v_i^{(2)*} \sum_j A_{ij} v_j^{(1)} = \sum_i v_i^{(2)*} \lambda_1 v_i^{(1)} = \lambda_1 \sum_i v_i^{(2)*} v_i^{(1)}$$
$$\sum_{ij} v_i^{(2)*} A_{ij} v_j^{(1)} = \sum_{ij} v_j^{(1)} A_{ji}^* v_i^{(2)*} = \sum_j v_j^{(1)} \lambda_2^* v_j^{(2)*} = \lambda_2^* \sum_i v_i^{(1)} v_i^{(2)*}$$
$$= \lambda_2 \sum_i v_i^{(2)*} v_i^{(1)}$$

ic form

and $b^{(j)}$ be its eigenvectors, $|b^{(j)}| = 1$. ectors $b^{(j)}$, i.e., $U_{ij} = b_i^{(j)}$. al, $U^{\mathsf{T}} \cdot U = \delta$.

 $b^{(j)} = \lambda_j \delta_{ij} \Rightarrow U^{\mathsf{T}} \cdot A \cdot U = \Lambda$

 $\lambda_i \delta_{ij}$ is a diagonal matrix with eigenvalues

$$\mathbf{x}^{\mathsf{T}} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{u}^{\mathsf{T}} \cdot \mathbf{U}^{\mathsf{T}} \cdot \mathbf{A} \cdot \mathbf{U} \cdot \mathbf{u} = \mathbf{u}^{\mathsf{T}} \cdot \mathbf{A} \cdot \mathbf{u} = \sum_{i} \lambda_{i} u_{i}^{2}$$

$$x = U \cdot u$$
 or $u = U^{-1} \cdot x \equiv U^{T} \cdot x$

replaced by [†]) tation in \mathbb{R}^n) transforms a symmetric (in \mathbb{R}) al one. Thus "diagonalization = calculating

n

gative,zero) eigenvalues. ² is (+, –)^a.

ndition for an extreme is:

 $i = 1, \ldots, n$

nsion at the minimum is:

$$f(x) = f(x^{0}) + \frac{1}{2} \sum_{ij} (x_{i} - x_{i}^{0}) A_{ij}(x_{j} - x_{j}^{0}), \quad A_{ij} = \frac{\partial f^{2}}{\partial x_{i} \partial x_{j}}_{|x_{i} = x_{i}^{0}, x_{j} = x_{i}^{0}}$$

- If the signature of A is (n, 0, 0) = (+ + + + ...), the form is **positive definite** and f has a local minimum at x^0 .
- If the signature of A is (0, n, 0) = (---...), then the form is **negative definite**, and f has a local maximum at x^0 .
- If the signature contains pluses and minuses, it is indefinite, and f has a saddle point at x^0 .

^aOften written in form $(n_+, n_-, n_0) = (1, -1, 0)$

Bra-ket notationControlVector = "ket" = [v], |v], |=v], ("column vector")Column vector")Covector = "horn" = Hermiten conjugate:Image and the column vector (1/2)Scalar product: (al(v) =
$$\sum_i a_i^* v_i = \sum_i (al_i (v); = \sum_i (a_i), (v) = \sum_i (a_i), ($$

 $\binom{\mathsf{T}}{\mathsf{T}}$ ' $\binom{\mathsf{T}}{\mathsf{T}}$ ' $\binom{\mathsf{T}}{\mathsf{T}}$ ' $\frac{\mathsf{T}}{\mathsf{T}}$ ' $\frac{\mathsf{T}}{\mathsf{T}}$

roots: $\lambda_1 = -1$, $\lambda_2 = 3$. Equations for the eigenvectors:

$$Av_1 = -v_1 \Rightarrow v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$Av_2 = 3v_2 \Rightarrow v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

And normalized eigenvectors \rightarrow basis:

 $\begin{pmatrix}
1/\sqrt{2} & -1/\sqrt{2} \\
1/\sqrt{2} & 1/\sqrt{2}
\end{pmatrix}$

rotation by 45°

quadratic form is
$$x^{\mathsf{T}} \cdot A \cdot x = u^{\mathsf{T}} \cdot U^{\mathsf{T}} \cdot A \cdot U \cdot u = u^{\mathsf{T}} \cdot \Lambda \cdot u = \sum_{i=1}^{n} u^{\mathsf{T}} \cdot A \cdot u =$$

Sylvestr criterion + ^{9/14} / _{mmpc2}	Fundamental vibrations 10/14 mmpc2
We calculate the subdeterminants:	Let PES be $U_{\text{pot}}(\tau)$, $\tau = \{\vec{r}_1, \dots, \vec{r}_N, \}$, with a (local) minimum at τ_{min} , deviation from the minimum $\Delta \tau = \tau - \tau_{\text{min}}$.
$\det A_{ij} _{i,j=1}$	Taylor expansion to the 2nd order: $=0$
$\det A_{ij} _{i,j=12}$	$-\frac{\partial U_{\text{pot}}}{\partial t}$ 1 $-\frac{\partial^2 U_{\text{pot}}}{\partial t}$
$\det A_{ij} _{i,j=13}$	$U_{\text{pot}}(\boldsymbol{\tau}) = U_{\text{pot}}(\boldsymbol{\tau}_{\min}) + \sum_{i} \frac{\partial \mathcal{O}_{\text{pot}}}{\partial \vec{r}_{i}}(\boldsymbol{\tau}_{\min}) \cdot \Delta \vec{r}_{i} + \frac{1}{2} \sum_{i,j} \Delta \vec{r}_{i} \cdot \frac{\partial \mathcal{O}_{\text{pot}}}{\partial \vec{r}_{i} \partial \vec{r}_{j}}(\boldsymbol{\tau}) \cdot \Delta \vec{r}_{j}$
\bigcirc All are positive at point x^0 : minimum.	Newton equations of motion:
• Alternating signs at point x^0 (-, +, -,): maximum. The proof uses the spectral theorem and the Cholesky decomposition of a Hermitean	$m_i \Delta \vec{r}_i \equiv m_i \frac{\partial^2 \Delta \vec{r}_i}{\partial t^2} = \vec{f}_j = -\sum A_{ij} \Delta \vec{r}_j$
matrix $A = L^* \cdot L$, where L is a triangular matrix.	where the so called Hessian matrix is
	$A_{ij} = \frac{\partial^2 U_{\text{pot}}}{\partial \vec{r}_i \partial \vec{r}_i} (\boldsymbol{\tau}_{\min}), \Delta \vec{r}_i = \vec{r}_i - \vec{r}_{i,\min}$
	In the matrix form (vector = $3N$ numbers, matrix = $3N \times 3N$):
	$\mathbf{M} \cdot \Delta \ddot{\mathbf{\tau}} = -\mathbf{A} \cdot \Delta \mathbf{\tau}$, where $\mathbf{M} = \text{diag}(m_1, m_1, m_1, \dots, m_N, m_N, m_N)$
Fundamental vibrations [tchem/showvib.sh] 11/14 mmpc2	Fundamental vibrations – diatomic molecule
$\mathbf{M} \cdot \Delta \ddot{\mathbf{\tau}} = -\mathbf{A} \cdot \Delta \mathbf{\tau}$, where $\mathbf{M} = \text{diag}(m_1, m_1, m_1, \dots, m_N, m_N, m_N)$	Two atoms connected by a spring:
We are looking for a transformation (basis) in the form	$(I_{1}, -\frac{K}{2}) \rightarrow M = \begin{pmatrix} K/m & -K/m \end{pmatrix} \rightarrow R = \text{diag}(2K/m 0)$
$\Delta \boldsymbol{\tau} = \boldsymbol{M}^{-1/2} \cdot \boldsymbol{U} \cdot \boldsymbol{u}$	$U_{\text{pot}} = \frac{1}{2} (X - Y) \implies A = \begin{pmatrix} -K/m & K/m \end{pmatrix} \implies B = \text{diag}(2K/M, 0)$
where \boldsymbol{U} is orthogonal. By inserting:	The frequences are
$\mathbf{M} \cdot \mathbf{M}^{-1/2} \cdot \mathbf{U} \cdot \hat{\mathbf{u}} = -\mathbf{A} \cdot \mathbf{M}^{-1/2} \cdot \mathbf{U} \cdot \mathbf{u}$ Left-multiplied by $U^{-1} \cdot \mathbf{M}^{-1/2} \cdot \mathbf{U}$	$v_1 = \frac{\sqrt{2K/m}}{1}$ (sym. stretch), $v_2 = 0$ (translation)
$\ddot{u} = -\Lambda \cdot \mu \Lambda = \mu^{-1} \cdot M^{-1/2} \cdot \Lambda \cdot M^{-1/2} \cdot \mu$	2π
There exists an orthogonal matrix U so that $\Lambda = U^{-1} \cdot M^{-1/2} \cdot A \cdot M^{-1/2} \cdot U$ is diagonal,	Unnormalized eigenvectors:
in other words, we diagonalize the symmetric matrix A' :	$\boldsymbol{\psi}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \boldsymbol{\psi}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
$\mathbf{A'} = \mathbf{M}^{-1/2} \cdot \mathbf{A} \cdot \mathbf{M}^{-1/2}$ The Newton equations constate into 2N independent harmonic assillators:	
The Newton equations separate into SM independent narmonic oscillators.	$\rightarrow \leftarrow \rightarrow \rightarrow$
The frequences are	
$\gamma \alpha = \frac{\sqrt{\Lambda_{\alpha\alpha}}}{\alpha}$	
2π	
6 are zero for a general molecule, 5 for linear molecules	14/14
Homogeneous linear differential equations of the 1st order https://www.applications.com/definitions/applicati	Example mmpc2
The system of homogeneous linear differential equations of the 1st order:	$\dot{\mathbf{x}} = \mathbf{y}, \ \dot{\mathbf{y}} = -\mathbf{x}$
$\dot{x}_1 = A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n$	(0,1) (i) (1)
$ \begin{array}{c} \vdots \\ \dot{\mathbf{x}}_{n} = A_{-1}\mathbf{x}_{1} + A_{-2}\mathbf{x}_{2} + \dots + A_{n}\mathbf{x}_{n} \end{array} $	$A = \begin{pmatrix} -1 & 0 \end{pmatrix} \Rightarrow \lambda = \pm i, \forall_i = \begin{pmatrix} 1 \end{pmatrix}, \forall_{-i} = \begin{pmatrix} i \end{pmatrix}$
One of <i>n</i> linearly independent solutions:	(i) (1)
$y = e^{\lambda t} y \rightarrow A \cdot y = \lambda y$	$\mathbf{v}_i = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v}_{-i} = \begin{pmatrix} i \\ i \end{pmatrix}$
For real A λ are real or complex conjugate pairs	General solution:
General solution if all λ 's are different:	$C_i v_i e^{it} + C_{-i} v_{-i} e^{-it} \begin{cases} x = iC_i e^{it} + C_{-i} e^{-it} \\ e^{-it} = it \end{cases}$
$x = \sum C_{\lambda} e^{\lambda t} v_{\lambda}$	$y = C_i e^{it} + iC_{-i} e^{-it}$ With initial conditions $x(0) = 1$, $y(0) = 0$: $iC_i = C_{-i} = 1/2$, so that
λ where C_{λ} 's are determined from the initial conditions.	$x = \cos(t), \ v = -\sin(t)$
If there are multiple eigenvalues (roots of the characteristic equation), we have $e^{\lambda t}$,	Equivalent differential equation of the 2nd order:
$te^{\lambda t}, t^2 e^{\lambda t},$ etc.	$\ddot{\mathbf{x}} = -\mathbf{x}$ (harmonic oscillator)
The set is always equivalent to one homogeneous linear differential equations of the <i>n</i> -th order. see mmpc2.mw	