Eigenvalues and eigenvectors

Eigenvector, v_{λ}, and eigenvalue, λ, of matrix A are defined by

$$
A \cdot v_{\lambda}=\lambda v_{\lambda} \quad \text { or } \quad(A-\lambda \delta) \cdot v_{\lambda}=0
$$

The second equation can hold (for nonzero vector v_{λ}) only if matrix $A-\lambda \delta$ is singular, i.e:

$$
\operatorname{det}(A-\lambda \delta)=0
$$

\Rightarrow algebraic equation of the n-th degree, with n roots (incl. multiplicity).
Examples: weighted matrix of 2nd derivatives of a potential in a calculation of fundamental frequencies, heat (conduction) equation, wave equation, Schrödinger equation, stochastic matrix, system of linear differential equations, ...
Example. Calculate eigenvalues and eigenvectors of matrix

$$
\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

Bra-ket notation

3/14
Vector $=$ "ket" $=|v\rangle,|v\rangle_{i}=v_{i}$ ("column vector")
Co-vector $=$ "bra" $=$ Hermitean conjugate:
$|v\rangle^{\dagger}=\langle v|,\left\langle\left. v\right|_{i}=v_{i}^{*}\right.$ ("row vector")

Scalar product: $\langle u \mid v\rangle=\sum_{i} u_{i}^{*} v_{i}=\sum_{i}\left\langle\left. u\right|_{i} \mid v\right\rangle_{i}=\sum_{i}|u\rangle_{i}^{*}\left\langle\left. v\right|_{i} ^{*}=\sum_{i}\left\langle\left. v\right|_{i} ^{*} \mid u\right\rangle_{i}^{*}=\langle v \mid u\rangle^{*}\right.$
Operator: A or $\hat{A}:|A v\rangle$, in some context also $A|v\rangle$ or $|A| v\rangle ;|A v\rangle_{i}=\sum_{j} A_{i j} v_{j}$
Operator acting on a bra: $\langle u A|=$ bra such that $\langle u A \mid v\rangle=\langle u \mid A v\rangle \forall v$;
Hence, we can write a matrix element as: $\langle u| A|v\rangle=\sum_{i j} u_{i}^{*} A_{i j} v_{j}$
In coordinates: $\left\langle\left. u A\right|_{j}=\sum_{i} u_{i}^{*} A_{i j}=\left(\sum_{i} u_{i} A_{i j}^{*}\right)^{*}=\left(\sum_{i} A_{i j}^{*} u_{i}\right)^{*}=\left(\sum_{i} A_{j i}^{\dagger} u_{i}\right)^{*}=\left(\left|A^{\dagger} u\right\rangle\right)_{j}^{*}\right.$
Any matrix: $\langle u| A^{\dagger}|v\rangle=\langle v| A|u\rangle^{*}$
Distinguish: $\langle A u|$ and $\langle u A|:\left\langle\left. A u\right|_{j}=\sum_{i} A_{j i}^{*} u_{i}^{*}\right.$
For a Hermitean (self-adjoint) matrix: $A^{\dagger}=A \Rightarrow\langle u| A|v\rangle=\langle v| A|u\rangle^{*}$
Proving $\lambda \in \mathbb{R}$ again: $\langle v| A|v\rangle=\langle v \mid \lambda v\rangle=\lambda\langle v \mid v\rangle \stackrel{!}{=}\langle v| A|v\rangle^{*}=\lambda^{*}\langle v \mid v\rangle$

Spectral theorem

A similar statement ("spectral theorem") holds for compact self-adjoint operators in ∞-dimensional Hilbert spaces. Various generalizations exist.
Hermitean in physics = self-adjoint, in mathematics there are subtleties: the generated basis may not span the entire Hilbert space.

Compact operator:

A map of a sequence in a 1-ball contains a Cauchy subsequence (which converges). Loosely: An image of a 1-ball shrinks enough ("in higher dimensions").
An operator is compact if it is bounded and it maps a compact (= closed + bounded) set to a set whose closure space is compact (closure $=$ set + boundary).

Compact set X :

Every sequence in X has a convergent subsequence whose limit is in X.
Loosely (Peter Lax): A compact city can be guarded by finitely many near-sighted policemen.
Every open cover of X has a finite subcover.

Examples:

$\operatorname{diag}\{1,1 / 4,1 / 9, \ldots\}$ is compact self-adjoint
Identity $\delta=\operatorname{diag}\{1,1,1, \ldots\}$ in ∞-dimensional space is not compact
$\hat{p}_{x}=-i \hbar \frac{\partial}{\partial x}$ is self-adjoint but not compact

Example - quadratic form

$$
x^{2}-4 x y+y^{2}
$$

Matrix:

$$
A=\left(\begin{array}{cc}
1 & -2 \\
-2 & 1
\end{array}\right)
$$

Characteristic equation:

$$
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & -2 \\
-2 & 1-\lambda
\end{array}\right)=\lambda^{2}-2 \lambda-3
$$

roots: $\lambda_{1}=-1, \lambda_{2}=3$. Equations for the eigenvectors:

$$
\begin{aligned}
& A v_{1}=-v_{1} \Rightarrow v_{1}=\binom{1}{1} \\
& A v_{2}=3 v_{2} \Rightarrow v_{2}=\binom{-1}{1}
\end{aligned}
$$

And normalized eigenvectors \rightarrow basis:

$$
v=\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

Eigenvalues

A symmetric matrix (in \mathbb{R}): $A=A^{\top}$
A self-adjoint (Hermitean) matrix (in \mathbb{C}): $A=A^{\dagger}, A^{\dagger} \equiv\left(A^{*}\right)^{\top}$
Eigenvalues of a self-adjoint (symmetric in \mathbb{R}) matrix are real.
Proof: Left-multiply $A \cdot v=\lambda v$ by v^{\dagger} :

$$
\begin{aligned}
v^{\dagger} \cdot A \cdot v & =\sum_{i j} v_{i}^{*} A_{i j} v_{j}=\sum_{i} v_{i}^{*} \lambda v_{i}=\lambda|v|^{2} \\
& =\sum_{i j} v_{i}^{*} A_{j i}^{*} v_{j}=\sum_{i j} v_{j} A_{j i}^{*} v_{i}^{*}=\left(\sum_{i j} v_{j}^{*} A_{j i} v_{i}\right)^{*}=\lambda^{*}|v|^{2}
\end{aligned}
$$

$\Rightarrow \lambda=\lambda^{*} \Rightarrow \lambda \in \mathbb{R}$.

- The proof for symmetric matrices in \mathbb{R} uses a (richer) complex Hilbert space

Matrices in \mathbb{R} have real eigenvalues or pairs of complex conjugate ones

Orthogonality of eigenvectors

Eigenvectors (of different eigenvalues) of a self-adjoint matrix are perpendicular. Proof:

$$
\begin{gathered}
\left\langle v^{(2)}\right| A\left|v^{(1)}\right\rangle=\left\langle v^{(2)} \mid A v^{(1)}\right\rangle=\left\langle v^{(2)} \mid \lambda_{1} v^{(1)}\right\rangle=\lambda_{1}\left\langle v^{(2)} \mid v^{(1)}\right\rangle \\
\left\langle v^{(2)}\right| A\left|v^{(1)}\right\rangle=\left\langle v^{(1)}\right| A\left|v^{(2)}\right\rangle^{*}=\left[\lambda_{2}\left\langle v^{(1)} \mid v^{(2)}\right\rangle\right]^{*}=\lambda_{2}^{*}\left\langle v^{(2)} \mid v^{(1)}\right\rangle=\lambda_{2}\left\langle v^{(2)} \mid v^{(1)}\right\rangle
\end{gathered}
$$

which can hold (for $\lambda_{1} \neq \lambda_{2}$), only if $\left\langle v^{(1)} \mid v^{(2)}\right\rangle=0$. We can always orthonormalize a subspace of degenerate eigenvalues, hence a self-adjoint matrix generates an orthonormal basis.

In coordinates:

$$
\begin{array}{r}
\sum_{i j} v_{i}^{(2) *} A_{i j} v_{j}^{(1)}=\sum_{i} v_{i}^{(2) *} \sum_{j} A_{i j} v_{j}^{(1)}=\sum_{i} v_{i}^{(2) *} \lambda_{1} v_{i}^{(1)}=\lambda_{1} \sum_{i} v_{i}^{(2) *} v_{i}^{(1)} \\
\sum_{i j} v_{i}^{(2) *} A_{i j} v_{j}^{(1)}=\sum_{i j} v_{j}^{(1)} A_{j i}^{*} v_{i}^{(2) *}=\sum_{j} v_{j}^{(1)} \lambda_{2}^{*} v_{j}^{(2) *}=\lambda_{2}^{*} \sum_{i} v_{i}^{(1)} v_{i}^{(2) *} \\
=\lambda_{2} \sum_{i} v_{i}^{(2) *} v_{i}^{(1)}
\end{array}
$$

Examples see mmpc2.mw

Diagonalization of a quadratic form

6/14
Let $A \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ be a symmetric matrix and $b^{(j)}$ be its eigenvectors, $\left|b^{(j)}\right|=1$. Let matrix U be composed of column vectors $b^{(j)}$, i.e., $U_{i j}=b_{i}^{(j)}$.
Then $b^{(j)} \cdot b^{(k)}=\delta_{j k} \Rightarrow U$ is orthogonal, $U^{\top} \cdot U=\delta$.
The eigenvector condition becomes:

$$
b^{(i) \top} \cdot A \cdot b^{(j)}=b^{(i) \top} \cdot \lambda_{j} b^{(j)}=\lambda_{j} \delta_{i j} \Rightarrow U^{\top} \cdot A \cdot U=\Lambda
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right), \Lambda_{i j}=\lambda_{j} \delta_{i j}=\lambda_{i} \delta_{i j}$ is a diagonal matrix with eigenvalues at the diagonal.
The transformed quadratic form is

$$
x^{\top} \cdot A \cdot x=u^{\top} \cdot U^{\top} \cdot A \cdot U \cdot u=u^{\top} \cdot \wedge \cdot u=\sum_{i} \lambda_{i} u_{i}^{2}
$$

where

$$
x=U \cdot u \text { or } u=U^{-1} \cdot x \equiv U^{\top} \cdot x
$$

Similarly in \mathbb{C} for self-adjoint matrices (${ }^{\top}$ replaced by ${ }^{\dagger}$)
The unitary transformation U (e.g., a rotation in \mathbb{R}^{n}) transforms a symmetric (in \mathbb{R}) or self-adjoint matrix (in \mathbb{C}) to a diagonal one. Thus "diagonalization = calculating eigenvectors and eigenvalues".

Signature of a quadratic form

The signature $=$ number of (positive, negative,zero) eigenvalues.
Example: the signature of $x^{2}-4 x y+y^{2}$ is $(+,-)^{\text {a }}$.
For $f\left(x_{i}\right)$ "countinuous enough", the condition for an extreme is:

$$
\frac{\partial f}{\partial x_{i}}=0, i=1, \ldots, n
$$

If this holds true for x^{0}, the Taylor expansion at the minimum is:

$$
f(x)=f\left(x^{0}\right)+\frac{1}{2} \sum_{i j}\left(x_{i}-x_{i}^{0}\right) A_{i j}\left(x_{j}-x_{j}^{0}\right), \quad A_{i j}=\frac{\partial f^{2}}{\partial x_{i} \partial x_{j}} x_{i}=x_{i}^{0}, x_{j}=x_{j}^{0}
$$

If the signature of A is $(n, 0,0)=(++++\ldots)$, the form is positive definite and f has a local minimum at x^{0}.
If the signature of A is $(0, n, 0)=(----\ldots)$, then the form is negative definite, and f has a local maximum at x^{0}.
If the signature contains pluses and minuses, it is indefinite, and f has a saddle point at x^{0}.
${ }^{\text {a }}$ Often written in form $\left(n_{+}, n_{-}, n_{0}\right)=(1,-1,0)$

Sylvestr criterion

 $+\begin{array}{r}9 / 14 \\ \hline \text { mpc2 }\end{array}$We calculate the subdeterminants:

$$
\begin{aligned}
& \operatorname{det}\left|A_{i j}\right| i, j=1 \\
& \operatorname{det}\left|A_{i j}\right| i, j=1 . .2 \\
& \operatorname{det}\left|A_{i j}\right| i, j=1 . .3
\end{aligned}
$$

All are positive at point x^{0} : minimum
Alternating signs at point $x^{0}(-,+,-, \ldots)$: maximum
The proof uses the spectral theorem and the Cholesky decomposition of a Hermitean matrix $A=L^{*} \cdot L$, where L is a triangular matrix.

Fundamental vibrations

$\boldsymbol{M} \cdot \Delta \ddot{\boldsymbol{\tau}}=-\boldsymbol{A} \cdot \Delta \boldsymbol{\tau}$, where $\boldsymbol{M}=\operatorname{diag}\left(m_{1}, m_{1}, m_{1}, \ldots, m_{N}, m_{N}, m_{N}\right)$ We are looking for a transformation (basis) in the form

$$
\Delta \tau=M^{-1 / 2} \cdot \boldsymbol{U} \cdot \boldsymbol{U}
$$

where \boldsymbol{U} is orthogonal. By inserting:

$$
\boldsymbol{M} \cdot \boldsymbol{M}^{-1 / 2} \cdot \boldsymbol{U} \cdot \ddot{u}=-A \cdot M^{-1 / 2} \cdot U \cdot u
$$

Left-multiplied by $\boldsymbol{U}^{-1} \cdot \boldsymbol{M}^{-1 / 2}$. :

$$
\ddot{u}=-\Lambda \cdot u, \quad \Lambda=U^{-1} \cdot M^{-1 / 2} \cdot A \cdot M^{-1 / 2} \cdot U
$$

There exists an orthogonal matrix \boldsymbol{U} so that $\boldsymbol{\Lambda}=\boldsymbol{U}^{-1} \cdot \boldsymbol{M}^{-1 / 2} \cdot \boldsymbol{A} \cdot \boldsymbol{M}^{-1 / 2} \cdot \boldsymbol{U}$ is diagonal, in other words, we diagonalize the symmetric matrix A^{\prime} :

$$
A^{\prime}=M^{-1 / 2} \cdot \boldsymbol{A} \cdot \boldsymbol{M}^{-1 / 2}
$$

The Newton equations separate into $3 N$ independent harmonic oscillators:

$$
\ddot{u}_{\alpha}=-\Lambda_{\alpha \alpha} u_{\alpha}, \quad \alpha=1, \ldots, 3 N
$$

The frequences are

$$
\nu_{\alpha}=\frac{\sqrt{\Lambda_{\alpha \alpha}}}{2 \pi}
$$

6 are zero for a general molecule, 5 for linear molecules

Homogeneous linear differential equations of the 1st order ${ }^{3 / 14}$

The system of homogeneous linear differential equations of the 1st order:

$$
\left.\begin{array}{rl}
\dot{x}_{1} & =A_{11} x_{1}+A_{12} x_{2}+\cdots+A_{1 n} x_{n} \\
& \vdots \\
\dot{x}_{n} & =A_{n 1} x_{1}+A_{n 2} x_{2}+\cdots+A_{n n} x_{n}
\end{array}\right\} \quad \dot{x}=A \cdot x
$$

One of n linearly independent solutions

$$
x=\mathrm{e}^{\lambda t} v \Rightarrow A \cdot v=\lambda v
$$

For real A, λ are real or complex conjugate pairs.
General solution if all λ 's are diferent:

$$
x=\sum_{\lambda} C_{\lambda} \mathrm{e}^{\lambda t} v_{\lambda}
$$

where C_{λ} 's are determined from the initial conditions.
If there are multiple eigenvalues (roots of the characteristic equation), we have $\mathrm{e}^{\lambda t}$, $t \mathrm{e}^{\lambda t}, t^{2} \mathrm{e}^{\lambda t}$, etc.
The set is always equivalent to one homogeneous linear differential equations of the n-th order.
see mmpc2.mw

Fundamental vibrations

Let PES be $U_{\text {pot }}(\boldsymbol{\tau}), \boldsymbol{\tau}=\left\{\vec{r}_{1}, \ldots, \vec{\Gamma}_{N},\right\}$, with a (local) minimum at $\boldsymbol{\tau}_{\text {min }}$, deviation from the minimum: $\Delta \boldsymbol{\tau}=\boldsymbol{\tau}-\boldsymbol{\tau}_{\text {min }}$.

Taylor expansion to the 2nd order:

$$
U_{\mathrm{pot}}(\boldsymbol{\tau})=U_{\mathrm{pot}}\left(\boldsymbol{\tau}_{\mathrm{min}}\right)+\sum_{i} \frac{\partial U_{\mathrm{pot}}}{\partial \vec{r}_{i}}\left(\tau_{\mathrm{min}}\right) \cdot \Delta \vec{r}_{i}+\frac{1}{2} \sum_{i, j} \Delta \vec{r}_{i} \cdot \frac{\partial^{2} U_{\mathrm{pot}}}{\partial \vec{r}_{i} \partial \vec{r}_{j}}(\boldsymbol{\tau}) \cdot \Delta \vec{r}_{j}
$$

Newton equations of motion:

$$
m_{i} \Delta \vec{r}_{i} \equiv m_{i} \frac{\partial^{2} \Delta \vec{r}_{i}}{\partial t^{2}}=\vec{f}_{j}=-\sum_{j} A_{i j} \Delta \vec{r}_{j}
$$

where the so called Hessian matrix is

$$
A_{i j}=\frac{\partial^{2} U_{\mathrm{pot}}}{\partial \vec{r}_{i} \partial \vec{r}_{j}}\left(\boldsymbol{\tau}_{\min }\right), \quad \Delta \vec{r}_{i}=\vec{r}_{i}-\vec{r}_{i, \min }
$$

In the matrix form (vector $=3 N$ numbers, matrix $=3 N \times 3 N$).

$$
\boldsymbol{M} \cdot \Delta \ddot{\boldsymbol{\tau}}=-\boldsymbol{A} \cdot \Delta \boldsymbol{\tau}, \text { where } \boldsymbol{M}=\operatorname{diag}\left(m_{1}, m_{1}, m_{1}, \ldots, m_{N}, m_{N}, m_{N}\right)
$$

Fundamental vibrations - diatomic molecule

Two atoms connected by a spring

$$
U_{\text {pot }}=\frac{K}{2}(x-y)^{2} \Rightarrow \boldsymbol{A}^{\prime}=\left(\begin{array}{cc}
K / m & -K / m \\
-K / m & K / m
\end{array}\right) \Rightarrow \boldsymbol{B}=\operatorname{diag}(2 K / m, 0)
$$

The frequences are

$$
\nu_{1}=\frac{\sqrt{2 K / m}}{2 \pi}(\text { sym. stretch }), \quad \nu_{2}=0 \text { (translation) }
$$

Unnormalized eigenvectors:

$$
\psi_{1}=\binom{1}{-1}, \quad \psi_{2}=\binom{1}{1}
$$

Example

$$
\begin{gathered}
\dot{x}=y, \dot{y}=-x \\
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \Rightarrow \lambda= \pm i, \quad v_{i}=\binom{i}{1}, v_{-i}=\binom{1}{i} \\
v_{i}=\binom{i}{1}, v_{-i}=\binom{1}{i}
\end{gathered}
$$

General solution:

$$
C_{i} v_{i} \mathrm{e}^{i t}+C_{-i} v_{-i} \mathrm{e}^{-i t}\left\{\begin{array}{l}
x=i C_{i} \mathrm{e}^{i t}+C_{-i} \mathrm{e}^{-i t} \\
y=C_{i} \mathrm{e}^{i t}+i C_{-i} \mathrm{e}^{-i t}
\end{array}\right.
$$

With initial conditions $x(0)=1, y(0)=0: i C_{i}=C_{-i}=1 / 2$, so that

$$
x=\cos (t), y=-\sin (t)
$$

Equivalent differential equation of the 2 nd order:

$$
\ddot{x}=-x \quad \text { (harmonic oscillator) }
$$

see mmpc2.mw

