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Eigenvector, λ, and eigenvalue, λ, of matrix A are defined by

A · λ = λλ or (A − λδ) · λ = 0
The second equation can hold (for nonzero vector λ) only if matrix A−λδ is singular,
i.e:

det(A − λδ) = 0
⇒ algebraic equation of the n-th degree, with n roots (incl. multiplicity).

Examples: weighted matrix of 2nd derivatives of a potential in a calculation of funda-
mental frequencies, heat (conduction) equation, wave equation, Schrödinger equa-
tion, stochastic matrix, system of linear differential equations, . . .
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A symmetric matrix (in R): A = AT

A self-adjoint (Hermitean) matrix (in C): A = A†, A† ≡ (A∗)T

Eigenvalues of a self-adjoint (symmetric in R) matrix are real.

Proof: Left-multiply A ·  = λ by †:

† · A ·  =
∑

j

∗ Ajj =
∑



∗ λ = λ||2

=
∑

j

∗ A
∗
j j =

∑

j

jA
∗
j 

∗
 =


∑

j

∗j Aj



∗

= λ∗||2

⇒ λ = λ∗ ⇒ λ ∈ R.

The proof for symmetric matrices in R uses a (richer) complex Hilbert space

Matrices in R have real eigenvalues or pairs of complex conjugate ones
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Vector = “ket” = |〉, |〉 =  (“column vector”)

Co-vector = “bra” = Hermitean conjugate:
|〉† = 〈|, 〈| = ∗ (“row vector”)

Scalar product: 〈|〉 =∑ 
∗
  =

∑
〈| |〉 =

∑
 |〉∗ 〈|∗ =

∑
〈|∗ |〉∗ = 〈|〉∗

Operator: A or Â: |A〉, in some context also A|〉 or |A|〉; |A〉 =
∑
jAjj

Operator acting on a bra: 〈A| = bra such that 〈A|〉 = 〈|A〉 ∀;

Hence, we can write a matrix element as: 〈|A|〉 =∑j 
∗
 Ajj

In coordinates: 〈A|j =
∑
 
∗
 Aj = (

∑
 A

∗
j )

∗ = (
∑
A
∗
j )

∗ = (
∑
A
†
j)

∗ = (|A†〉)∗j
Any matrix: 〈|A†|〉 = 〈|A|〉∗

Distinguish: 〈A| and 〈A|: 〈A|j =
∑
A
∗
j 

∗


For a Hermitean (self-adjoint) matrix: A† = A ⇒ 〈|A|〉 = 〈|A|〉∗

Proving λ ∈ R again: 〈|A|〉 = 〈|λ〉 = λ〈|〉 != 〈|A|〉∗ = λ∗〈|〉
credit: http://backreaction.blogspot.cz/2006/07/bra-cat.html
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Eigenvectors (of different eigenvalues) of a self-adjoint matrix are perpendicular.
Proof:

〈(2)|A|(1)〉 = 〈(2)|A(1)〉 = 〈(2)|λ1(1)〉 = λ1〈(2)|(1)〉

〈(2)|A|(1)〉 = 〈(1)|A|(2)〉∗ = [λ2〈(1)|(2)〉]∗ = λ∗2 〈(2)|(1)〉 = λ2〈(2)|(1)〉
which can hold (for λ1 6= λ2), only if 〈(1)|(2)〉 = 0. We can always orthonormalize a
subspace of degenerate eigenvalues, hence a self-adjoint matrix generates an
orthonormal basis.

In coordinates:
∑

j

(2)∗ Aj
(1)
j =

∑



(2)∗

∑

j

Aj
(1)
j =

∑



(2)∗ λ1
(1)
 = λ1

∑



(2)∗ (1)

∑

j

(2)∗ Aj
(1)
j =

∑

j

(1)j A∗j 
(2)∗
 =

∑

j

(1)j λ∗2 
(2)∗
j = λ∗2

∑



(1) (2)∗

= λ2
∑



(2)∗ (1)

Examples see mmpc2.mw
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A similar statement (“spectral theorem”) holds for compact self-adjoint operators
in ∞-dimensional Hilbert spaces. Various generalizations exist.

Hermitean in physics = self-adjoint, in mathematics there are subtleties: the gener-
ated basis may not span the entire Hilbert space.

Compact operator:
A map of a sequence in a 1-ball contains a Cauchy subsequence (which converges).
Loosely: An image of a 1-ball shrinks enough (“in higher dimensions”).

An operator is compact if it is bounded and it maps a compact (= closed + bounded)
set to a set whose closure space is compact (closure = set + boundary).

Compact set X:
Every sequence in X has a convergent subsequence whose limit is in X.
Loosely (Peter Lax): A compact city can be guarded by finitely many near-sighted
policemen.

Every open cover of X has a finite subcover.

Examples:

diag{1,1/4,1/9, ...} is compact self-adjoint

Identity δ = diag{1,1,1, ...} in ∞-dimensional space is not compact

p̂ = −ih ∂
∂ is self-adjoint but not compact

Diagonalization of a quadratic form 6/14
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Let A ∈ Rn × Rn be a symmetric matrix and b(j) be its eigenvectors, |b(j)| = 1.

Let matrix U be composed of column vectors b(j), i.e., Uj = b
(j)
 .

Then b(j) · b(k) = δjk ⇒ U is orthogonal, UT · U = δ.
The eigenvector condition becomes:

b()T · A · b(j) = b()T · λjb(j) = λjδj ⇒ UT · A · U = Λ
where Λ = diag(λ1, λ2, . . .), Λj = λjδj = λδj is a diagonal matrix with eigenvalues
at the diagonal.

The transformed quadratic form is

T · A ·  = T · UT · A · U ·  = T · Λ ·  =
∑



λ
2


where

 = U ·  or  = U−1 ·  ≡ UT · 
Similarly in C for self-adjoint matrices (T replaced by †)

The unitary transformation U (e.g., a rotation in Rn) transforms a symmetric (in R)
or self-adjoint matrix (in C) to a diagonal one. Thus “diagonalization = calculating
eigenvectors and eigenvalues”.

Example – quadratic form
[pic/qform.sh] 7/14
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2 − 4y + y2

Matrix:

A =

 
1 −2
−2 1

!

Characteristic equation:

det

 
1 − λ −2
−2 1 − λ

!
= λ2 − 2λ − 3

roots: λ1 = −1, λ2 = 3. Equations for the eigenvectors:

A1 = −1 ⇒ 1 =
�
1

1

�

A2 = 32 ⇒ 2 =
�−1
1

�

And normalized eigenvectors → basis:
rotation by 45◦

 =

 
1/
p
2 −1/p2

1/
p
2 1/

p
2

!

Signature of a quadratic form 8/14
mmpc2

The signature = number of (positive,negative,zero) eigenvalues.

Example: the signature of 2 − 4y + y2 is (+,−)a.

For ƒ () “countinuous enough”, the condition for an extreme is:

∂ƒ

∂
= 0,  = 1, . . . , n

If this holds true for 0, the Taylor expansion at the minimum is:

ƒ () = ƒ (0) +
1

2

∑

j

( − 0 )Aj(j − 0j ), Aj =
∂ƒ2

∂∂j |=0 ,j=0j

If the signature of A is (n,0,0) = (+ + + + ...), the form is positive definite and
ƒ has a local minimum at 0.

If the signature of A is (0, n,0) = (−−−− ...), then the form is negative definite,
and ƒ has a local maximum at 0.

If the signature contains pluses and minuses, it is indefinite, and ƒ has a saddle
point at 0.

aOften written in form (n+, n−, n0) = (1,−1,0)



Sylvestr criterion + 9/14
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We calculate the subdeterminants:

det |Aj|,j=1
det |Aj|,j=1..2
det |Aj|,j=1..3

All are positive at point 0: minimum.

Alternating signs at point 0 (−,+,−, . . .): maximum.

The proof uses the spectral theorem and the Cholesky decomposition of a Hermitean
matrix A = L∗ · L, where L is a triangular matrix.

Fundamental vibrations 10/14
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Let PES be Upot(τττ), τττ = {~r1, . . . , ~rN,}, with a (local) minimum at τττmin, deviation from
the minimum: Δτττ = τττ − τττmin.

Taylor expansion to the 2nd order:
↙

=0

Upot(τττ) = Upot(τττmin) +
∑



∂Upot

∂~r
(τττmin) · Δ~r +

1

2

∑

,j

Δ~r ·
∂2Upot

∂~r∂~rj
(τττ) · Δ~rj

Newton equations of motion:

mΔ ~̈r ≡m
∂2Δ~r

∂t2
= ~ƒj = −

∑

j

AjΔ~rj

where the so called Hessian matrix is

Aj =
∂2Upot

∂~r∂~rj
(τττmin), Δ~r = ~r − ~r,min

In the matrix form (vector = 3N numbers, matrix = 3N × 3N):

MMM · Δτ̈ττ = −AAA · Δτττ, where MMM = diag(m1,m1,m1, . . . ,mN,mN,mN)

Fundamental vibrations
[tchem/showvib.sh]11/14

mmpc2

MMM · Δτ̈ττ = −AAA · Δτττ, where MMM = diag(m1,m1,m1, . . . ,mN,mN,mN)

We are looking for a transformation (basis) in the form

Δτττ = MMM−1/2 · UUU · 
where UUU is orthogonal. By inserting:

MMM ·MMM−1/2 · UUU · ̈ = −AAA ·MMM−1/2 · UUU · 
Left-multiplied by UUU−1 ·MMM−1/2· :

̈ = −ΛΛΛ · , ΛΛΛ = UUU−1 ·MMM−1/2 · AAA ·MMM−1/2 · UUU
There exists an orthogonal matrix UUU so that ΛΛΛ = UUU−1 ·MMM−1/2 ·AAA ·MMM−1/2 ·UUU is diagonal,
in other words, we diagonalize the symmetric matrix A′A′A′:

A′A′A′ = MMM−1/2 · AAA ·MMM−1/2
The Newton equations separate into 3N independent harmonic oscillators:

̈α = −Λααα, α = 1, . . . ,3N

The frequences are

να =

p
Λαα

2π
6 are zero for a general molecule, 5 for linear molecules

Fundamental vibrations – diatomic molecule 12/14
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Two atoms connected by a spring:

Upot =
K

2
( − y)2 ⇒ A′A′A′ =

 
K/m −K/m
−K/m K/m

!
⇒ BBB = diag(2K/m,0)

The frequences are

ν1 =

p
2K/m

2π
(sym. stretch), ν2 = 0 (translation)

Unnormalized eigenvectors:

ψψψ1 =

 
1

−1

!
, ψψψ2 =

 
1

1

!

→← →→

Homogeneous linear differential equations of the 1st order13/14mmpc2

The system of homogeneous linear differential equations of the 1st order:

̇1 = A111 + A122 + · · · + A1nn
...

̇n = An11 + An22 + · · · + Annn





̇ = A · 

One of n linearly independent solutions:

 = eλt ⇒ A ·  = λ
For real A, λ are real or complex conjugate pairs.

General solution if all λ’s are diferent:

 =
∑

λ
Cλeλtλ

where Cλ’s are determined from the initial conditions.

If there are multiple eigenvalues (roots of the characteristic equation), we have eλt,
teλt, t2eλt, etc.

The set is always equivalent to one homogeneous linear differential equations of
the n-th order. see mmpc2.mw
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̇ = y, ẏ = −

A =

 
0 1

−1 0

!
⇒ λ = ±,  =

�


1

�
, − =

�
1



�

 =
�


1

�
, − =

�
1



�

General solution:

Cet + C−−e−t
(
 = Cet + C−e−t

y = Cet + C−e−t

With initial conditions (0) = 1, y(0) = 0: C = C− = 1/2, so that

 = cos(t), y = − sin(t)
Equivalent differential equation of the 2nd order:

̈ = − (harmonic oscillator)

see mmpc2.mw


